用户名: 密码: 验证码:
原位快速时间分辨显微FTIRS的建立及其对Pt微电极表面动态过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固液界面电化学原位红外反射光谱利用指纹特征和表面选律,检测电极表面吸附物种及其成键和取向,在分子水平上研究反应机理。时间分辨和空间分辨是原位红外光谱两个重要的发展方向。其中时间分辨光谱,在检测短寿命中间体,跟踪反应历程,获取分子水平层次的动力学规律等方面可提供独到的信息。
     本论文自行设计并研制信号同步仪,采用微电极并与红外显微镜相结合,建立了外反射型电化学原位步进扫描时间分辨显微FTIR光谱(in situSSTR-MFTIRS),光谱的时间分辨率最快可达10μs。利用纳米结构电极的异常红外效应,显著提高光谱检测灵敏度,克服了通常薄层电解池中电极对电位变化响应慢的不足,拓宽了快速时间分辨红外光谱的应用范围,为研究电化学快速反应动力学和表面动态过程奠定了基础,开展了以下研究:(1) 运用SSTR-MFTIRS研究了纳米结构Pt微电极上桥式吸附态CO向线型吸附态CO转化的动态过程,观察到转化中间态CO,初步提出转化过程的模型并获得定量的转化动力学数据。(2)设计并研制具有快速传质能力的流动电解池和微电极,实现了将SSTR-MFTIRS应用于不可逆电化学反应过程中的研究,发现纳米结构Pt微电极上吸附态CO的不可逆氧化经历“成核—成长”机理。(3)运用SSTR-MFTIRS研究了纳米结构Pt微电极上吸附态SCN~-的电位诱导取向转化动力学,发现SCN~-从S端吸附转为N端吸附的速度明显低于其逆过程。
     此外还通过编制EG&G263型恒电位仪与红外光谱仪的同步控制软件,建立了电化学原位快速扫描时间分辨显微FTIR反射光谱(RSTR-FTIRS),实现循环伏安和红外光谱同时快速采集,在200mVs~(-1)电位扫描下,光谱的电位分辨率仍可达2.6mV,获得碱性介质中甲醇电催化氧化动态过程的新信息。
     本论文建立的两种原位快速时间分辨显微FTIR反射光谱,实质性地发展了外反射型电化学原位红外光谱技术,所获得的纳米结构微电极表面动态过程和反应动力学研究结果对于深入认识分子水平上的电极过程动力学规律、发展电催化及相关理论具有重要意义。
Electrochemical in situ infrared reflection spectroscopy, on the basis of its fingerprint and surface selection rules, can identify the nature of adsorbates and their surface bonding and orientation in electrode/electrolyte interfaces. The time-resolved and space-resolved spectroscopy have become currently two main directions of the development of electrochemical in situ IR spectroscopy. The former is unique in probing short lifetime intermediates, tracking reaction processes and providing dynamic information at molecule level in electrochemistry.
    In this thesis, we have established an electrochemical in situ step-scan time-resolved microscope FTIR external reflection spectroscopy (in situ SSTR-MFTIRS). The setup consists of an infrared microscope working with microelectrodes, and a home-designed and fabricated signal synchronizer. The time resolution of in situ spectra can reach up to 10s. Abnormal infrared effects (AIREs) of the nanostructured Pt microelectrode was used to improve significantly the IR determination sensitivity. The fast time-resolved FTIRS carried out in a thin-layer IR cell extended the possibility of using in situ SSTR-MFTIRS to study a wide variety of electrochemical reactions. It has been demonstrated that the SSTR-MFTIRS is a promising tool to be used in studies of kinetics and surface processes of fast reactions.
    The studies include: (1) the dynamic processes of site conversion between bridge bonded CO (COB) and linear bonded CO (COO on a nanostructured Pt microelectrode. Based on the determination of intermediate CO species in the site conversion processes and the acquisition of quantitative data of concerning the kinetics, a model of site conversion of adsorbed CO was suggested; (2) A novel spectroelectrochemical flow cell and a microelectrode possessing fast
    
    
    mass transfer were specially designed and fabricated, which allow irreversible electrochemical reactions to be studied by SSTR-MFTIRS. It has illustrated that the irreversible oxidation of CO adsorbed on nanostructured Pt microelectrode occurred according a nucleation and growth mechanism; (3) The potential induced orientation conversion of SCN" adsorbed on nanostructured Pt microelectrode was also investigated by using the SSTR-MFTIRS. It was found that the conversion rate from S-bonded SCN" to N-bonded SCN" is considerably slower than that of the reverse reaction.
    Through a home-developed software to realize the synchronization between 263A potentiostat (EG&G) and FTIR spectrometer, we have developed an electrochemical in situ rapid-scan time-resolved microscope FTIR reflection spectroscopy (RSTR-FTIRS), by which the collection of infrared spectra with an interval 2.6mV and the acquisition of cyclic voltammograms at a scan rate as large as 200mVs-1 can be done simultaneously. By using the RSTR-FTIRS, new information on the kinetics of methanol electrocatalytic oxidation in alkaline media was obtained.
    The establishment of the two types of electrochemical in situ fast time-resolved microscope FTIR reflection spectroscopy have progressed substantially the technique of electrochemical in situ external reflection infrared spectroscopy. The results concerning surface dynamic processes and kinetics obtaining in the present study have thrown a light in understanding at the molecular level the principle of electrode kinetics, and to develop the theory of electrocatalysis and relevant disciplines.
引文
[1] 查全性等著,电极过程动力学导论—3版[M].北京:科学出版社,2002.
    [2] 马淳安,有机电合成导论[M].北京:科学出版社,2002.
    [3] E. Yeager, T.E. Furtak, K. L. Kliewer, D.W. Lynch, Non-Traditional Approaches to the Study of the Solid-Electrolyte Interface [M]. Amsterdam: North-Holland Publishing Co., 1980.
    [4] A. J. Bard, H. D. Abruiia, C. E. Chidsey, L. R. Faulkner, S. W. Feldberg, K. Itaya, M. Majda, O. Melroy, R. W. Murray, M. D. Porter, M. P. Soriaga, W. H. S., The Electrode/Electrolyte Interface-A Status Report [J]. J. Phys. Chem., 1993, 97(28): 7147-7173.
    [5] A. Wieckowshki, Interfacial electrochemistry [M]. New York: VCH, 1999.
    [6] 林仲华,叶思宇,黄明东等,电化学中的光学方法[M].北京:科学出版社,1990.
    [7] 田中群,孙世刚,罗瑾,杨勇,现场光谱电化学研究的新进展[J].物理化学学报,1994,10(9):860-866.
    
    
    [8] 孙世刚,固/液界面现场光谱电化学[J].大学化学,1993,8(6):1-4.
    [9] K.Ashley, S. Pons, Infrared spectroelectrochemistry [J]. Chem. Rev., 1988, 88(4): 673-695.
    [10] 查全性,电极过程动力学(第二版)[M].北京:科学教育出版社,1987.
    [11] 田昭武,电化学研究方法[M].北京:科学出版社,1984.
    [12] 孙世刚,杨毅芸,铂单晶电极表面不可逆反应动力学Ⅱ铂单晶(100)晶面电极上甲酸 氧化反应动力学参数解析[J].物理化学学报,1997,13(8):673-679.
    [13] 杨毅芸,孙世刚,铂单晶电极表面不可逆反应动力学(Ⅲ)[J].物理化学学报,1998,14(10):919-926.
    [14] S. G Sun, Y. Y. Yang, Studies of kinetics of HCOOH oxidation on Pt (100), Pt (110), Pt (111), Pt(510) and Pt(911) single crystal electrodes [J]. J. Electroanal. Chem., 1999, 467(1-2) : 121-131.
    [15] Y. Y. Yang, S. G Sun, Effects of Sb adatoms on kinetics of electrocatalytic oxidation of HCOOH at Sb-modified Pt(100), Pt(111), Pt(110), Pt(320), and Pt(331) surfaces -An energetic modeling and quantitative analysis [J]. J. Phys. Chem. B, 2002, 106(48): 12499-12507.
    [16] 曹楚南,张鉴清,电化学阻抗谱导论[M].北京:科学出版社,2002.
    [17] A. Popova, E. Sokolova, S. Raicheva, M. Christov, AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives [J]. Corrosion Sci., 2003, 45(1): 33-58.
    [18] A.A. Sagues, M. A. Pech-Canul, A. Al-Mausur, Corrosion macrocell behavior of reinforcing steel in partially submerged concrete columns [J]. Corrosion Sci., 2003, 45(1): 7-32.
    [19] J. Genesca, C. Rodriguez, J. Juarez, B. Campillo, L. Martinez, Assessing and improving current efficiency in magnesium base sacrificial anodes by microstructure control [J]. Corros. Rev., 1998, 16(1-2): 95-125.
    [20] M. C. Smart, B. V. Ratnakumar, V. S. Ryan-Mowrey, S. Surampudi, G K. S. Prakash, J. Hub, I. Cheung, Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes [J]. J. Power Sources, 2003, 119: 359-367.
    [21] K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, Li ion kinetic studies on spinel cathodes, Li(M1/6Mn11/6)O-4 (M = Mn, Co, CoAl) by GITT and EIS [J]. J. Mater. Chem., 2003, 13(1): 106-113.
    [22] A. J. Salkind, P. Singh, A. Cannone, T. Atwater, X. Q. Wang, D. Reisner, Impedance modeling of intermediate size lead-acid batteries [J]. J. Power Sources, 2003, 116(1-2): 174-184.
    [23] C. P. Andrieux, P. Hapiot, J. M. Saveant, Fast kinetics by means of direct and indirect electrochemical techniques [J]. Chem. Rev., 1990, 90(5): 723-738.
    [24] 孙世刚,卢国强,甲酸解理吸附的动力学和时间分辨光谱FTIR特征[J].物理化学学报,1995,11(1):56-60.
    [25] J. O. Howell, B. M. Weghtman, Ultrafast voltammetry and voltammetry in highly resistive
    
    solutions with microvoltammetric electrodes [J]. Anal. Chem., 1984, 56(3): 524-529.
    [26] J. Newman, Resistance for flow of current to a disk [J]. J. Electrochem. Soc., 1966, 113(5): 501.
    [27] C. Amatore, M. Maisonhaute, G. Simonneau, Ohmic drop compensation in cyclic voltammetry at scan rates in the megavolts per second range: access to nanometeric diffusion layers via transient electrochemistry [J]. J. Electroanal. Chem., 2000, 486: 141-155.
    [28] 吴玲玲,罗瑾,林仲华,时间分辨光谱电化学进展[J].科学通报,1998,43(16):1696-1704.
    [29] 吴玲玲,罗瑾,陈捷光,林仲华,电化学动态研究--原位时间分辨紫外可见光谱法[J].化学通报,1999,2:32-36.
    [30] C. Hess, M. Wolf, S. Roke, M. Bonn, Femtosecond time-resolved vibrational SFG spectroscopy of CO/Ru(001) [J]. Surf. Sci., 2002, 502-503:304-312.
    [31] H. Ueba, Vibbrational relaxation and pump-probe spectroscopies of adsorbates on sold surfaces [J]. Prog. Surf. Sci., 1997, 55(2) : 115-179.
    [32] C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, Interfacial Electron-Transfer Dynamics in Ru(tcterpy)(NCS)3-Sensitized TiO2 Nanocrystalline Solar Cells [J]. J. Phys. Chem. B, 2002, 106(49): 12693-12704.
    [33] S. Lochbrunner, A. J. Wurzer, E. Riedle, Microscopic Mechanism of Ultrafast Excited-State Intramolecular Proton Transfer: A 30-fs Study of 2-(2'-Hydroxyphenyl)benzothiazole [J]. J. Phys. Chem. A, 2003, 107: 10580-10590.
    [34] J. R. Schoonover, G. F. Strouse, Time-Resolved Vibrational Spectroscopy of Electronically Excited Inorganic Complexes in Solution [J]. Chem. Rev., 1998, 98: 1335-1355.
    [35] D. E. Morris, W. H. Woodruff, In Spectroscopy of Inorganic-Based Materials [M], R.J.H. Clark, R.E. Hester New York: John Wiley & Sons, 1987.
    [36] J. Feinleib, Electroreflectance in metals [J]. Phys. Rev. Lett, 1966, 16: 1200.
    [37] L. Kress, A. Neudeck, A. Petr, L. Dunsch, In situ spectroelectrochemistry of 2,5-diphenyl- 1,3,4-oxadiazole [J]. J. Electroanal. Chem., 1996, 414(1): 31-40.
    [38] S. Mho, S. N. Hoier, B. S. Kim, S. M. Park, Real-Time Spectroelectrochemical Experiments with a Multichannel Detector [J]. Bull. Korean Chem. Soc., 1994, 15(9): 739-743.
    [39] J. Posdorfer, M. Olbrichstock, R. N. Schindler, Spatially-Resolved Uv-Vis Absorption-Measurements in Planar, Cylindrical and Spherical Diffusion Layers Kinetic Investigations of a Heterogeneous Electron-Transfer Reaction [J]. Electrochim. Acta, 1994, 39(13): 2005-2013.
    [40] J. Luo, Z. H. Lin, L. L. Wu, Y. Huang, Z. W. Tian, In situ electronic spectroscopic techniques for interfacial electrochemistry [J]. Chem. Res. Chin. Univ., 1996, 12(3): 270-279.
    [41] R. S. Robinson, C. W. McCurdy, R. L. McCreery, Microsecond spectroelectrochemistry by external reflection from cylindrical microelectrodes [J]. Anal. Chem., 1982, 54(13): 2356-2361.
    [42] R. S. Robinson, R. L. McCreery, Absorption Spectroelectrochemistry with Microelectrodes [J]. Anal. Chem., 1981, 53(7): 997-1001.
    
    
    [43] 吴玲玲,罗瑾,林仲华,邻苯二胺导电聚合物膜的光谱电化学[J].高等学校化学学报,1997,18(10):1657-1663.
    [44] L. L. Wu, J. Luo, Z. H. Lin, Spectroelectrochemical studies of poly-o-phenylenediamine-Part 2. In situ UV-vis subtractive reflectance spectroscopy [J]. J. Electroanal. Chem., 1997, 440(1-2): 173-182.
    [45] J. M. Kim, S. M. Chang, H. Muramatsu, In situ optoelectrochemical approach for the dynamic property study of Polypyrrole thin film by quartz crystal combined with UV-visible advanced design [J]. J. Electrochem. Soc., 1999, 146(12): 4544-4550.
    [46] L. L. Wu, H. G Huang, J. X. Li, J. Luo, Z. H. Lin, Time-resolved UV-Vis spectroelectrochemical studies of the conformational rearrangement in the electron transfer of cytochrome c [J]. Chem. Lett., 1998(11): 1137-1138.
    [47] L. L. Wu, H. G. Huang, J. X. Li, J. Luo, Z. H. Lin, Time-resolved UV-vis spectroelectrocbemical studies of the electron transfer process of cytochrome c [J]. Electrochim. Acta, 2000, 45(18): 2877-2881.
    [48] M. J. Moorcroft, C. E. W. Hahn, R. G Compton, Electrochemical studies of the anaesthetic agent enflurane (2-chloro-1, 1,2-trifluoroethyl difluoromethyl ether) in the presence of oxygen: reaction with electrogenerated superoxide [J]. J. Electroanal. Chem., 2003, 541: 117-131.
    [49] Y. C. Zhu, G J. Cheng, S. J. Dong, In situ UV-vis and CD thin-layer spectroelectrochemistry study of the electrochemical behavior of L-noradrenaline in alkaline solution [J]. Electroanalysis, 1998, 10(14): 955-958.
    [50] J. J. Niu, J. Y. Lee, A. Neudeck, L. Dunsch, Electrochemical and optical characteristics of the hole conducting material N,N '-diphenylbenzidine during oxidation in DMF [1]. Synth. Met., 1999, 99(2): 133-142.
    [51] T. McCormac, D. Farrell, Electrochemical investigation into the interaction between various pyrrole moieties and the well-known electron acceptor, tetracyanoethylene [J]. Electrochim. Acta, 2001, 46(20-21): 3287-3299.
    [52] M. Fleischmann, P. J. Hendra, M. A. J., Raman spectra of pyridine adsorbed at silverelectrode [J]. Chem. Phys. Left., 1974, 26: 163-166.
    [53] Y. Zhang, X. P. Gao, M. J. Weaver, Nature of Surface Bonding on Voltammetrically Oxidized Noble-Metals in Aqueous-Media as Probed by Real-Time Surface-Enhanced Raman-Spectroscopy [J]. J. Phys. Chem., 1993, 97(33): 8656-8663.
    [54] R. A. Gu, J. L. Yao, Y. Y. Xian, Z. Q. Ling, Z. Q. Tian, Time-resolved surface-enhance raman spectroscopic studies on coadsorption of derivatives of thiourea with CIO4" at Ag Electrodes [J]. Acta Chimica Sinica, 1998, 56: 692-699.
    [55] C. T. Shi, W. Zhang, J. R. Lombard, R. L. Birke, Nanosecond time scale kinetics in the flavin mononucleotide on an electrode surface using time-resolved surface-enhanced Raman spectroscopy [J]. J. Phys. Chem., 1992, 96: 10093-10096.
    [56] 陈捷光,李五湖,廖远琰,田中群,拉曼谱仪新聚光系统研制及用于电化学时间分辨研究的初步结果[J].光散射学报,1996,8(1):54-58.
    
    
    [57] C. T. Shi, Z. Wei, R. L. Birke, J. R. Lombardi, Detection of Short-Lived Intermediates in Electrochemical Reactions Using Time-Resolved Surface-Enhanced Raman-Spectroscopy [J]. J. Phys. Chem., 1990, 94(12): 4766-4769.
    [58] R. L. Birke, C. T. Shi, W. Zhang, J. R. Lombardi, A time-resolved SERS study of the adsorption and electrochemical reduction of 4-pyridinecarboxaldehyde and 4-(hydroxymethyl)pyridine [J]. J. Phys. Chem. B, 1998, 102(41): 7983-7996.
    [59] T. Ishioka, T. Uchida, N. Teramae, Analysis of the redox reaction of 9, 10-phenanthrenequinone on a gold electrode surface by cyclic voltammetry and time-resolved Fourier transform surface-enhanced Raman scattering spectroscopy [J]. Anal. Chim. Acta, 2001, 449(1-2): 253-260.
    [60] W. Zhang, A. Vivoni, J. R. Lombardi, R. L. Birke, Time-Resolved SERS Study of Direct Photochemical Charge-Transfer between Fmn and a Ag Electrode [J]. J. Phys. Chem., 1995, 99(34): 12846-12857.
    [61] Y. Misono, K. Shibasaki, N. Yamasawa, Y. Mineo, K. Itoh, Time-resolved resonance Raman and surface-enhanced resonance Raman scattering study on monocation radical formation processes of heptylviologen at silver electrode surfaces [J]. J. Phys. Chem., 1993, 97: 6054-6059.
    [62] Z. Q. Tian, W. H. Li, B. W. Mao, S. Z. Zou, J. S. Gao, Potential-averaged surface-enhanced Raman spectroscopy [J]. Appl. Spectrosc., 1996, 50(12): 1569-1577.
    [63] Z. Q. Tian, W. F. Lin, B. W. Mao, Potential Averaged Surface-Enhanced Raman-Spectroscopic Scn-Adsorbed at Ag Electrodes [J]. J. Electroanal. Chem., 1991, 319(1-2): 403-408.
    [64] C. X. She, W. B. Cai, J. L. Yao, e. al. Potential-averaged Raman spectroscopy for time-resolved measurent of electrochemical system [C]. In A.M. Heyns: in The XVth international coference on Raman spectroscopy, Cape Towm: John Wield & Sons Ltd., 1998.
    [65] 田中群,任斌,吴德印,毛秉伟,徐云峰,激光拉曼光谱研究电化学界面的新进展[J].厦门大学学报(自然科学版),2001,40(2):434-447.
    [66] H. Noda, L. J. Wan, M. Osawa, Dynamics of adsorption and phase formation of p-nitrobenzoic acid at Au(111) surface in solution: A combined surface-enhanced infrared and STM study [J]. Phys. Chem. Chem. Phys., 2001, 3(16): 3336-3342.
    [67] Z. Q. Tian, W. H. Li, B. W. Mao, J. S. Gao, Surface-Enhanced Raman-Spectroscopic Studies on Structural Dynamics of Coadsorption of Thiourea and C104- at Ag Electrodes [J]. J. Electroanal. Chem., 1994, 379(1-2):271-279.
    [68] T. Ishioka, T. Uchida, N. Teramae, Time-resolved near-infrared surface-enhanced Raman spectroscopy of a surface-confined electrochemical reaction of 9,10-phenanthrenequinone [J]. Bull. Chem. Soc. Jpn., 1999, 72(12): 2713-2717.
    [69] H. Wackerbarth, P. Hildebrandt, Redox and conformational equilibria and dynamics of cytochrome c at high electric fields [3]. ChemPhysChem, 2003, 4(7): 714-724.
    [70] D. Gosztola, M. J. Weaver, Electroinduced Structural-Changes in Manganese-Dioxide + Manganese Hydroxide Films as Characterized by Real-Time Surface-Enhanced
    
    Raman-Spectroscopy [J]. J. Electroanal. Chem., 1989, 271(1-2): 141-154.
    [71] Y. Luo, W. B. Cai, X. K. Xing, D. A. Scherson, In situ, time-resolved Raman spectromicrotopography of an operating lithium-ion battery [J]. Electrochem. Solid State Lett., 2004, 7(1): E1-E5.
    [72] Y. Luo, W. B. Cai, D. A. Scherson, In situ, real-time Raman microscopy of embedded single particle graphite electrodes [J]. J. Electrochem. Soc., 2002, 149(8): A1100-A1105.
    [73] B. Pozniak, Y. Mo, D. A. Scherson, The electrochemical oxidation of carbon monoxide adsorbed on Pt(111) in aqueous electrolytes as monitored by in situ potential step-second harmonic generation [J]. Faraday Discuss., 2002, 121:313-322.
    [74] P. B. Miranda, Y. R. Shen, Liquid Interfaces: A Study by Sum-Frequency Vibrational Spectroscopy [J]. J. Phys. Chem. B, 1999, 103(17): 3292-3307.
    [75] A. L. Rille, A. Tadjeddine, In situ visible-infrared sum and difference frequency generation at the electrochemical interface [J]. J. Electroanal. Chem., 1999, 467: 238-248.
    [76] F. Dederichs, K. A. Friedrich, W. Daum, Sum-frequency vibrational spectroscopy of CO adsorption on Pt(111) and Pt(110) electrode surfaces in perehloric acid solution: effects of thin-layer electrolytes in spectroelectrochemistry [J]. J. Phys. Chem. B, 2000, 104(28): 6626-6632.
    [77] A. Peremans, A. Tadjeddine, W.Q. Zheng, A. LeRille, P. GuyotSionnest, P. A. Thiry, Vibrational dynamics of CO at single-crystal platinum electrodes in aqueous and non-aqueous electrolytes [J]. Surf. Sci., 1996, 368: 384-388.
    [78] A. Peremans, A. Tadjeddine, P. GuyotSionnest, Vibrational dynamics of CO at the (100) platinum electrochemical interface [J]. Chem. Phys. Lett., 1995, 247(3): 243-248.
    [79] S. Kim, M. Zhao, D. A. Scherson, K. J. Choit, I. T. Bae, Superlattice structure of an organic adsorbate on Au(111) in an aqueous electrolyte as probed by in situ second harmonic generation [J]. J. Phys. Chem., 1994, 98(38): 9383-9386.
    [80] B. Pozniak, Y. Me, I. C. Stefan, K. Mantey, M. Hartmann, D. A. Scherson, In situ time-resolved second-harmonic generation from Pt(111) microfactted single-crystal platinum microspheres [J]. J. Phys. Chem. B, 2001, 105(33): 7874-7877.
    [81] B. Pozniak, D. A. Scherson, Dynamics of a Surface phase transition as monitored by in situ second harmonic generation [J]. J. Am. Chem. Soc., 2003, 125(25): 7488-7489.
    [82] E. Mishina, A. Karantonis, Q. K. Yu, S. Nakabayashi, Optical second harmonic generation during the electrocatalytic oxidation of formaldehyde on Pt(111): Potentiostatie regime versus galvanostatic potential oscillations [J]. J. Phys. Chem. B, 2002, 106(39): 10199-10204.
    [83] E. R. Savinova, A. Scheybal, M. Danckwerts, U. Wild, B. Pettinger, K. Doblhofer, R. Schlogl, G. Ertl, Structure and dynamics of the interface between a Ag single crystal electrode and an aqueous electrolyte [J]. Faraday Discuss., 2002, 121: 181-198.
    [84] I. Yagi, S. Nakabayashi, K. Uosaki, Real time monitoring of electrochemical deposition of tellurium on Au(111) electrode by optical second harmonic generation technique [J]. Surf. Sci., 1998, 406(1-3): 1-8.
    
    
    [85] M. A. Lovell, M. J. Walters, D. Roy, Surface modification of copper due to co-adsorbed oxygen and cadmium probed with optical second harmonic generation [J]. Electrochim. Acta, 1998, 43(14-15): 2101-2110.
    [86] G. Nagy, D. Roy, Optical 2nd-Harmonic Generation as a Probe of Selective Dissolution of Brass [J]. Langmuir, 1995, 11(9): 3457-3466.
    [87] P. Hayes, A. G. Taylor, J. A. Levitt, C. P. Wilde, An in situ second harmonic generation study of the electrochemical oxidation of silicon in fluoride media [J]. Electrochem. Commun., 2003, 5(10): 883-886.
    [88] J. M. Lantz, R. Baba, R. M. Corn, Optical 2nd-Harmonic Generation as a Probe of Electrostatic Fields and Flat-Band Potential at Single-Crystal Tio2 Electrodes [J]. J. Phys. Chem., 1993, 97(29): 7392-7395.
    [89] J. M. Lantz, R. M. Corn, Time-Resolved Optical 2nd-Harmonic Generation Measurements of Picosecond Band Flattening Processes at Single-Crystal Tio2 Electrodes [J]. J. Phys. Chem., 1994, 98(38): 9387-9390.
    [90] D. S. Bethune, A. C. Luntz, A Laser Infrared Source of Nanosecond Pulses Tunable from 1.4 to 22 Mu-M [J]. Applied Physics B-Photophysics and Laser Chemistry, 1986, 40(2): 107-113.
    [91] L. F. Sutcu, J. L. Wragg, H. W. White, Tunable-Diode-Laser Infrared Reflection Absorption-Spectroscopy of Carbon-Monoxide on Pt(111) [J]. Phys. Rev. B, 1990, 41(12): 8164-8169.
    [92] J. L. Wragg, H. W. White, L. F. Sutcu, Tunable Diode-Laser Infrared-Spectroscopy of the Metal Liquid Interface [J]. Rev. Sci. Instrum., 1988, 59(1): 89-91.
    [93] P. Dietrich, M. Quack, G. Seyfang, Time-Resolved Diode-Laser Infrared-Absorption Spectroscopy of the Nascent Hcl in the Infrared-Laser Chemistry of 1,2-Dichloro-1,1-Difluoroethane [J]. Chem. Phys. Lett., 1990, 167(6): 535-541.
    [94] E. D. Becker, T. C. Farrar, Fourier transform spectroscopy [J]. Science, 1972, 178(4059): 361-368.
    [95] S. Steinkogler, H. Schneider, R. Rehm, M. Walther, P. Koidl, P. Grant, R. Dudek, H. C. Liu, Time-resolved electron transport studies on InGaAs/GaAs-QWIPs [J]. Infrared Phys. Technol., 2003, 44(5-6): 355-361.
    [96] H. C. Liu, J. M. Li, E. R. Brown, K. A. McIntosh, K. B. Nichols, M. J. Manfra, Quantum-Well Intersubband Heterodyne Infrared Detection up to 82 Ghz [J]. Appl. Phys. Lett., 1995, 67(11): 1594-1596.
    [97] H. C. Liu, G. E. Jenkins, E. R. Brown, K. A. McIntosh, K. B. Nichols, M. J. Manfra, Optical Heterodyne-Detection and Microwave Rectification up to 26 Ghz Using Quantum-Well Infrared Photodetectors [J]. IEEE Electron Device Lett., 1995, 16(6): 253-255.
    [98] L. T. Letendre, H. L. Dai, I. A. McLaren, T. J. Johnson, Interfacing a transient digitizer to a step-scan Fourier transform spectrometer for nanosecond time resolved spectroscopy [J]. Rev. Sci. Instrum., 1999, 70(1): 18-22.
    [99] M. Osawa, K. Yoshii, K. Ataka, T. Yotsuyanagi, Real-Time Monitoring of Electrochemical
    
    Dynamics by Submillisecond Time-Resolved Surface-Enhanced Infrared Attenuated-Total-Reflection Spectroscopy [J]. Langmuir, 1994, 10(3): 640-642.
    [100] R. G. Greenler, Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques [J]. J. Chem. Phys., 1966, 44(1): 310-&.
    [101] A. Bewick, K. Kunimatsu, Infrared-Spectroscopy of the Electrode-Electrolyte Interphase [J]. Surf. Sci., 1980, 101(1-3): 131-138.
    [102] A. Bewick, K. Kunimatsu, B. S. Pons, Infrared-Spectroscopy of the Electrode-Electrolyte Interphase [J]. Electrochim. Acta, 1980, 25(4): 465-468.
    [103] T. Iwasita, F. C. Nart, In situ infrared spectroscopy at electrochemical interfaces [J]. Prog. Surf. Sci., 1997, 55(4): 271-340.
    [104] A. Bewick, K. Kunimatsu, B. S. Pons, J. W. Russell, Electrochemically Modulated Infrared-Spectroscopy (Emirs)-Experimental Details [J]. J. Electroanal. Chem., 1984, 160(1-2): 47-61.
    [105] S. Pons, The Use of Fourier-Transform Infrared-Spectroscopy for Insitu Recording of Species in the Electrode Electrolyte Solution Interphase [J]. J. Electroanal. Chem., 1983, 150(1-2): 495-504.
    [106] S. Pons, T. Davidson, A. Bewick, Vibrational Spectroscopy of the Electrode Electrolyte Interface .4. Fourier-Transform Infrared-Spectroscopy - Experimental Considerations [J]. J. Electroanal. Chem., 1984, 160(1-2): 63-71.
    [107] D. S. Corrigan, L. W. H. Leung, M. J. Weaver, Single Potential-Alteration Surface Infrared-Spectroscopy - Examination of Adsorbed Species Involved in Irreversible Electrode-Reactions [J]. Anal. Chem., 1987, 59(18): 2252-2256.
    [108] 卢国强,厦门大学博士学位毕业论文[D],1997.
    [109] J. W. Russell, J. Overend, K. Scanlon, M. Severson, A. Bewick, Infrared-Spectrum of CO on a Platinum-Electrode in Acidic Solution [J]. J. Phys. Chem., 1982, 86(16): 3066-3068.
    [110] W. G. Golden, K. Kunimatsu, H. Seki, Application of Polarization-Modulated Fourier-Transform Infrared Reflection Absorption-Spectrtroscopy to the Study of Carbon-Monoxide Adsorption and Oxidation on a Smooth Platinum-Electrode [J]. J. Phys. Chem., 1984, 88(7): 1275-1277.
    [111] T. J. Johnson, A. Simon, J. M. Weil, G W. Harris, Applications of Time-Resolved Step-Scan and Rapid-Scan Ft-Ir Spectroscopy - Dynamics from 10 Seconds to 10 Nanoseconds [J]. Appl. Spectrosc., 1993, 47(9): 1376-1381.
    [112] R. A. Palmer, G. D. Smith, P. Y. Chen, Breaking the nanosecond barrier in FTIR time-resolved spectroscopy [J]. Vib. Spectrosc., 1999, 19(1): 131-141.
    [113] H. Neff, P. Lange, D. K. Roe, J. K. Sass, A Modulated Infrared-ATR Spectroscopic Study of Water in the Electric Double-Layer [J]. J. Electmanal. Chem., 1983, 150(1-2): 513-519.
    [114] P. Lange, V. Glaw, H. Neff, E. Piltz, J. K. Sass, Infrared Attenuated Total Reflection Spectroscopy at the Metal Electrolyte Interface [J]. Vacuum, 1983, 33(10-1): 763-766.
    [115] E. Kretschmann, Determination of Optical Constants of Metals by Excitation of Surface Plasmons [J]. Zeitschrift Fur Physik, 1971, 241(4): 313.
    
    
    [116] N. J. Harrick, Internal reflection spectroscopy [M]. New York: Interscience Publ, 1967.
    [117] S. W., Surface infrared and Raman spectroscopy: Methods and applications, Plenum press, New York, 1995. [J].
    [118] K. Kunimatsu, H. Seki, W. G. Golden, Polarization-Modulated FTIR-Spectra of Cyanide Adsorbed on a Silver Electrode [J]. Chem. Phys. Lett., 1984, 108(2): 195-199.
    [119] A. Hatta, Y. Sasaki, W. Suetaka, Polarization modulation infrared spectroscopic measurements of thiocyanate and cyanide at the silver electrode aqueous-electrolyte interface by means of kretschmann ATR prism configuration [J]. J. Electroanal. Chem., 1986, 215(1-2).
    [120] S. Pronkin, T. Wandlowski, Time-resolved in situ ATR-SEIRAS study of adsorption and 2D phase formation of uracil on gold electrodes [J]. J. Electroanal. Chem., 2003, 550:131-147.
    [121] A. Rodes, J. M. Orts, J. M. Perez, J. M. Feliu, A. Aldaz, Sulphate adsorption at chemically deposited silver thin film electrodes: time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy [J]. Electrochem. Commun., 2003, 5(1): 56-60.
    [122] M. Osawa, K. Yoshii, In situ and real-time surface-enhanced infrared study of electrochemical reactions [J]. Appl. Spectrosc., 1997, 51 (4): 512-518.
    [123] P. Christensen, A. Hamnett, In-situ techniques in electrochemistry - ellipsometry and FTIR [J]. Electrochim. Acta, 2000, 45(15-16): 2443-2459.
    [124] M. Osawa, K. Ataka, K. Yoshii, T. Yotsuyanagi, Surface-Enhanced Infrared ATR Spectroscopy for in-Situ Studies of Electrode-Electrolyte Interfaces [J]. J. Electron Spectrosc. Relat. Phenom., 1993, 64-5:371-379.
    [125] M. Osawa, Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS) [J]. Bull. Chem. Soc. Jpn., 1997, 70(12): 2861-2880.
    [126] M. Osawa, K. Ataka, K. Yoshii, Y. Nishikawa, Surface-Enhanced Infrared-Spectroscopythe Origin of the Absorption Enhancement and Band Selection Rule in the Infrared-Spectra of Molecules Adsorbed on Fine Metal Particles [J]. Appl. Spectrosc., 1993, 47(9): 1497-1502.
    [127] A. Miki, S. Ye, M. Osawa, Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions [J]. Chem. Commun., 2002(14): 1500-1501.
    [128] J. N. Chazalviel, B. H. Erne, F. Maroun, F. Ozanam, New directions and challenges in modern electrochemistry: in situ infrared spectroscopy of the semiconductor vertical bar electrolyte interface [J]. J. Electroanal. Chem., 2001, 502(1-2): 180-190.
    [129] J. G. Li, J. Daschbach, J. J. Smith, M. D. Morse, S. Pons, The infrared-spectra of surface metal atom vibrations - SNIFTIRS studies in the far infrared region using time resolved FTIR techniques [J]. J. Electroanal. Chem., 1986, 209(2): 387-390.
    [130] J. T. Lu, A. Bewick, Insitu Ir Spectroscopy with a Gas-Diffusion Cell - CO Adsorption and Oxidation on Pt [J]. J. Electroanal. Chem., 1989, 270(1-2): 225-235.
    [131] T. M. Vess, D. W. Wertz, Spectroelectrochemistry Using a Movable Electrode [J]. J.
    
    Electroanal. Chem., 1991, 313(1-2): 81-94.
    [132] R. J. Nichols, A. Bewick, Sniftirs with a Flow Cell - the Identification of the Reaction Intermediates in Methanol Oxidation at Pt Anodes [J]. Electrochim. Acta, 1988, 33(11): 1691-1694.
    [133] J. O. Bockris, B. Yang, A Thin-Layer Flow Cell for Insitu Infrared Reflection Absorption Spectroscopic Measurements of the Electrode Electrolyte Interphase [J]. J. Electroanal. Chem., 1988, 252(1): 209-214.
    [134] D. K. Roe, J. K. Sass, D. S. Bethune, A. C. Luntz, Prospects for Transient Ir Reflection Absorption-Spectroscopy of Adsorbed Species on Electrode Surfaces - Cell Design for a Laser Source [J]. J. Electroanal. Chem., 1987, 216(1-2): 293-301.
    [135] F. Kitamura, M. Takahashi, M. Ito, Adsorption site interconversion induced by electrode potential of CO on the Pt(100) single-crystal electrode [J]. J. Phys. Chem., 1988, 92: 3320-3323.
    [136] Y. K. S. Watanabe, F.Kitamura, M.Takahashi and M. Ito, An infrared study of CO adsorbed on Pt(100) and Pt(110) electrode:Dynamic aspects of CO at reconstructed surfaces, J. Electron Spectrosoc. Relat Phenom., 1990,54/55:1205-1214. [J].
    [137] M. Nakamura, H. Ogasawara, J. Inukai, M. Ito, CO Migration on Pt(100) and Pt(1111) Surfaces Studied by Time Resolved Infrared Reflection Absorption-Spectroscopy [J]. Surf. Sci., 1993, 283(1-3): 248-254.
    [138] S. Matsuda, F. Kitamura, M. Takahashi, M. Ito, Dynamic Aspects of Methanol Oxidation on Pt Electrodes by Time Resolved Infrared Reflection Absorption-Spectroscopy [J]. J. Electroanal. Chem., 1989, 274(1-2): 305-312.
    [139] G. D. Smith, R. A. Palmer, Fast time-resolved mid-infrared spectroscopy using an intefferometer [M]. Handbook of Vibrational Spectroscopy, Vol. 1, pp 625-640, edited by J. M. Chalmers and P.R. Griffiths, John Wiley and Sons, Ltd., 2002.
    [140] W. N. Richmond, P. W. Faguy, S. C. Weibel, An in situ infrared spectroscopic study of imidazole films on copper electrodes [J]. J. Electroanal. Chem., 1995, 448(2): 237-244.
    [141] T. Aastrup, M. Wadsak, C. Leygraf, M. Schreiner, In situ studies of the initial atmospheric corrosion of copper influence of humidity, sulfur dioxide, ozone, and nitrogen dioxide [J]. J. Electrochem. Soc., 2000, 147(7): 2543-2551.
    [142] M. Safi, J. N. Chazalviel, M. Cherkaoui, A. Belaidi, O. Gorochov, Etching of n-type silicon in (HF plus oxidant) solutions: in situ characterisation of surface chemistry [J]. Electrochim. Acta, 2002, 47(16): 2573-2581.
    [143] K. Marquez, R. Ortiz, J. W. Schultze, O. P. Marquez, J. Marquez, G. Staiker, In situ FTIR monitoring of Ag and Au electrodeposition on glassy carbon and silicon [J]. Electrochim. Acta, 2003, 48(6): 711-720.
    [144] M. Niwano, Y. Kondo, A. Kimura, In situ infrared observation of etching and oxidation processes on Si surfaces in NH4F solution [J]. J. Electrochem. Soc., 2000, 147(4): 1555-1559.
    [145] Y. Wang, S. F. Y. Li, J. H. Ye, In situ electrochemical ATR-FTIR spectroscopic investigation
    
    of hydrogen-terminated Si(111) surface in diluted NH4F solution [J]. J. Electrochem. Soc., 2001, 148(8): E336-E340.
    [146] J. N. Chazalviel, B. H. Erne, F. Maroun, F. Ozanam, New directions and challenges in modern electrochemistry: in situ infrared spectroscopy of the semiconductor vertical bar electrolyte interface [J]. J. Electroanal. Chem., 2001, 502(1-2): 180-190.
    [147] W. Haiss, P. Raisch, D. J. Schiffrin, L. a. Bitsch, R. J. Nichols, An FTIR study of the surface chemistry of the dynamic Si(100) surface during etching in alkaline solution [J]. Faraday Discuss., 2002, 121: 167~180.
    [148] V. Bellec, M. G. De Backer, E. Levillain, F. X. Sauvage, B. Sombret, C. Wartelle, In situ time-resolved FTIR spectroelectrochemistry: study of the reduction of TCNQ [J]. Electrochem. Commun., 2001, 3(9): 483-488.
    [149] L. W. H. Leung, A. Wieckowski, M. J. Weaver, Insitu Infrared-Spectroscopy of Well-Defined Single-Crystal Electrodes - Adsorption and Electrooxidation of CO on Pt(111) [J]. J. Phys. Chem., 1988, 92(24): 6985-6990.
    [150] W. F. Lin, P. A. Christensen, A. Hamnett, M. S. Zei, G. Ertl, The electro-oxidation of CO at the Ru(0001) single-crystal electrode surface [J]. J. Phys. Chem. B, 2000, 104(28): 6642-6652.
    [151] W. F. Lin, P. A. Christensen, A. Hamnett, In situ ftir studies of the effect of temperature on the adsorption and electrooxidation of CO at the Ru(0001) electrode surface [J]. J. Phys. Chem. B, 2000, 104(50): 12002-12011.
    [152] S. G. Sun, Y. Lin, Kinetic Aspects of Oxidation of Isopropanol on Pt Electrodes Investigated by in-Situ Time-Resolved Ftir Spectroscopy [J]. J. Electroanal. Chem., 1994, 375(1-2): 401-404.
    [153] Y. Y. Yang, S. G. Sun, Kinetics of irreversible reactions on platinum single crystal electrodes (Ⅲ) [J]. Acta Physico-Chimica Sinica, 1998, 14(10): 919-926.
    [154] N. H. Li, S. G. Sun, In situ FTIR spectroscopic studies of electrooxidation of C-4 alcohols on platinum electrodes in acid solutions - Part Ⅱ. reaction mechanism of 1,3-butanediol oxidation [J]. J. Electroanal. Chem., 1998, 448(1): 5-15.
    [155] Y. Y. Yang, Q. H. Wu, Z. Y. Zhou, M. S. Zheng, S. P. Chen, S. G. Sun, In situ time-resolved FTIR studies of HCOOH oxidation on Pt(100)/Sb electrodes [J]. Spectrosc. Spectr. Anal., 2000, 20(6): 765-767.
    [156] S. I. Yaniger, D. W. Vidrine, Dynamic FT-IR. Part Ⅰ: Rapid-scan mrthods in spectroelectrochemistry [J]. Appl. Spectrosc., 1986, 40(2): 174-180.
    [157] Y. Honda, M. B. Song, M. Ito, Current oscillations during the oxidation of formic acid on Pt(100) as studied by in situ time-resolved infrared reflection absorption spectroscopy [J]. Chem. Phys. Lett., 1997, 273(3.4): 141-146.
    [158] P. R. Griffiths, B. L. Hirsche, C. J. Manning, Ultra-rapid-scanning Fourier transform infrared spectrometry [J]. Vib. Spectrosc., 2000, 19: 165-176.
    [159] S. E. Molis, W. J. Macknight, S. L. Hsu, Deformation Studies of Polymers by Time-Resolved Infrared-Spectroscopy .4. A Modified Approach [J]. Appl. Spectrosc., 1984,
    
    38(4): 529-537.
    [160] J. Daschbach, D. Heisler, S. Pons, Time-resolved infrared spectroelectrochemistry [J]. Appl. Spectrosc., 1986, 40(4): 489-491.
    [161] R. Brudler, R. Rammelsberg, T. T. Woo, E. D. Getzoff, K. Gerwert, Structure of the Ⅰ-1 early intermediate of photoactive yellow protein by FTIR spectroscopy [J]. Nature Structural Biology, 2001, 8(3): 265-270.
    [162] A. R. Noble-Luginbnhl, R. M. Blanchard, R. G. Nuzzo, Surface effects on the dynamics of liquid crystalline thin films confined in nanoscale cavities [J]. J. Am. Chem. Soc., 2000, 122(16): 3917-3926.
    [163] A. V. Fedorov, E. O. Danilov, M. A. J. Rodgers, D. C. Neckers, Time-resolved step-scan Fourier transform infrared spectroscopy of alkyl phenylglyoxylates [J]. J. Am. Chem. Soc., 2001, 123(21): 5136-5137.
    [164] C. S. Colley, D. C. Grills, N. A. Besley, S. Jockusch, P. Matousek, A. W. Parker, M. Towrie, N. J. Turro, P. M. W. Gill, M. W. George, Probing the reactivity of photoinitiators for free radical polymerization: Time-resolved infrared spectroscopic study of benzoyl radicals [J]. J. Am. Chem. Soc., 2002, 124(50): 14952-14958.
    [165] A. R. Noble, H. J. Kwon, R. G. Nuzzo, Effects of surface morphology on the anchoring and electrooptical dynamics of confined nanoscale liquid crystalline films [J]. J. Am. Chem. Soc., 2002, 124(50): 15020-15029.
    [166] C. Koutsoupakis, T. Soulimane, C. Varotsis, Ligand binding in a docking site of cytochrome coxidase: A time-resolved step-scan Fourier transform infrared study [J]. J. Am. Chem. Soc., 2003, 125(48): 14728-14732.
    [167] K. Ataka, G. Nishina, W. B. Cai, S. G. Sun, M. Osawa, Dynamics of the dissolution of an underpotentially deposited Cu layer on Au(111): a combined time-resolved surface-enhanced infrared and chronoamperometric study [J]. Electrochem. Commun., 2000, 2(6): 417-421.
    [168] H. Noda, K. Ataka, L. J. Wan, M. Osawa, Time-resolved surface-enhanced infra-red study of molecular adsorption at the electrochemical interface [J]. Surf. Sci., 1999, 428: 190-194.
    [169] B. O. Budevska, P. R. Griffiths, Step-Scan FT-IR External Reflection Spectrometry of the Electrode-Electrolyte Interface by Potential Modulation [J]. Anal. Chem., 1993, 65(21): 2963-2971.
    [170] C. M. Pharr, P. R. Griffiths, Step-scan FT-IR spectroelectrochemical analysis of surface and - solution species in the ferricyanide/ferrocyanide redox couple [J]. Anal. Chem., 1997, 69(22): 4665-4672.
    [171] K. Ataka, Y. Hara, M. Osawa, A new approach to electrode kinetics and dynamics by potential modulated Fourier transform infrared spectroscopy [J]. J. Electroanal. Chem., 1999, 473(1-2): 34-42.
    [172] S. Bruckeus, R. Raogadde, Use of a porous electrode for in-situ mass spectrometric determination of volatile electrode reaction product [J]. J. Am. Chem. Soc., 1971, 93(3): 793.
    [173] O. Wolter, J. Heithaum, Differential Electrochemical Mass-Spectroscopy (Dems) - a New Method for the Study of Electrode Processes [J]. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys.,
    
    1984, 88(1): 2-6.
    [174] J. Willsau, O. Wolter, J. Heitbaum, Does the oxide layer take part in the oxygen evolution reaction on platinum: A DEMS study [J]. J. Electroanal. Chem., 1985, 195(2): 299-306.
    [175] G. M. Brisard, A. P. M. Camargo, F. C. Nart, T. Iwasita, On-line mass spectrometry investigation of the reduction of carbon dioxide in acidic media on polycrystalline Pt [J]. Electrochem. Commun., 2001, 3(11): 603-607.
    [176] Z. Jusys, H. Massong, H. Baltruschat, A new approach for simultaneous DEMS and EQCM: Electro-oxidation of adsorbed CO on Pt and Pt-Ru [J]. J. Electrochem. Soc., 1999, 146(3): 1093-1098.
    [177] S. P. E. Smith, E. Casado-Rivera, H. D. Abruna, Application of differential electrochemical mass spectrometry to the electrocatalytic oxidation of formic acid at a modified Bi/Pt electrode surface [J]. J. Solid State Electrochem., 2003, 7(9): 582-587.
    [178] Z. Jusys, J. Kaiser, R. J. Behm, Methanol electrooxidation over Pt/C fuel cell catalysts: Dependence of product yields on catalyst loading [J]. Langmuir, 2003, 19(17): 6759-6769.
    [179] E. Casado-Rivera, Z. Gal, A. C. D. Angelo, C. Lind, F. J. DiSalvo, H. D. Abruna, Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface [J]. ChemPhysChem, 2003, 4(2): 193-199.
    [180] J. P. I. de Souza, S. L. Queiroz, K. Bergamaski, E. R. Gonzalez, F. C. Nart, Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques [J]. J. Phys. Chem. B, 2002, 106(38): 9825-9830.
    [181] T. Iwasita, R. Dalbeck, E. Pastor, X. Xia, Progress in the Study of Electrocatalytic Reactions of Organic-Species [J]. Electrochim. Acta, 1994, 39(11-12): 1817-1823.
    [182] J. F. E. Gootzen, A. H. Wonders, W. Visscher, J. A. R. vanVeen, Adsorption of C-3 alcohols, 1-butanol, and ethene on platinized platinum as studied with FTIRS and DEMS [J]. Langmuir, 1997, 13(6): 1659-1667.
    [183] H. W. Lei, H. Hattori, H. Kita, Electrocatalysis by Pb adatoms of HCOOH oxidation at Pt(111) in acidic solution [J]. Electrochim. Acta, 1996, 41(10): 1619-1628.
    [184] Y. Z. Gao, H. Kita, H. Hattori, Dems Study of NO2- Reduction on Pt(100) Electrode in Alkaline-Solution [J]. Chem. Lett., 1994(11): 2093-2096.
    [185] J. Willsau, J. Herrbrum, Analysis od adsorption intermediates and determination of surface potential shifts by DEMS [J]. Electrochim. Acta, 1986, 31(8): 943-948.
    [186] R. K. Brandt, R. S. Sorbello, R. G. Greenler, Site-speific coupled-harmonic-oscillator model of carbon monoxide adsorbed on extended, single-crystal surfaces and on small crystals of platinum [J]. Surf. Sci., 1992, 271: 605-615.
    [187] D. K. Lambert, Vibrational Stark effects of adsorbates at electrochemical interfaces [J]. Electrochim. Acta, 1996, 41(5): 623-630.
    [188] S. Z. Zou, R. Gomez, M. J. Weaver, Nitric oxide and carbon monoxide adsorption on polycrystalline iridium electrodes: A combined Raman and infrared spectroscopic study [J]. Langmuir, 1997, 13(25): 6713-6721.
    [189] S. Z. Zou, M. J. Weaver, Potential-dependent metal-adsorbate stretching frequencies for
    
    carbon monoxide on transition-metal electrodes: chemical bonding versus electrostatic field effects [J]. J. Phys. Chem., 1996, 100: 4237-4242.
    [190] S. C. Chang, X. Jiang, J. D. Roth, M. J. Weaver, Influence of Potential on Metal-Adsorbate Structure-Solvent-Independent Nature of Infrared-Spectra for Pt(111)/CO [J]. J. Phys. Chem., 1991, 95(14): 5378-5382.
    [191] M. R. Anderson, J. M. Huang, The influence of catinn size upon the infrared spectrum of carbon monoxide adsorbed on platinum electrodes [J]. J. Electroanal. Chem., 1991, 318: 335-341.
    [192] S. C. Chang, L. W. H. Leung, M. J. Weaver, Comparisons between coverage-dependent infrared frequencies for carbon monoxide adsorbed on ordered Pt(111), Pt(100), and Pt(110) in Electrochemical and ultrahigh-vacuum environments [J]. J. Phys. Chem., 1989, 93: 5341-5345.
    [193] I. Villegas, M. J. Weaver, Infrared spectroscopy of model electrochemical interfaces in ultrahigh vacuum: roles of solvation in the vibrational stark effect [J]. J. Phys. Chem. B, 1997, 101: 5842-5852.
    [194] M. T. M. Koper, R. A. Santen, Electric field effects on CO and NO adsorption at the Pt(111) surface [J]. J. Electroanal. Chem., 1999, 476: 64-70.
    [195] S. A. Wasileski, M. J. Weaver, M. T. M. Koper, Potential-dependent chemisorption of carbon monoxide on platinum electrodes: new insight from quantum-chemical calculations combined with vibrational spectroscopy [J]. J. Electroanal. Chem., 2001, 500: 344-355.
    [196] G. Blyholder, Molecular orbital view of chemisorbed carbon monoxide [J]. J. Electroanal. Chem., 1964, 68: 2772-2778.
    [197] C. Korzeniewski, R. B. Shirts, S. Pons, Field-Induced Infrared Absorption in Metal Surface Spectroscopy: The Electrochemical Stark Effect [J]. J. Phys. Chem., 1985, 89: 2297-2298.
    [198] M. Morin, N. J. Levinos, A. L. Harris, Vibrational energy transfer of CO/Cu(100): Nonadiabatic vibration/electron coupling [J]. J. Chem. Phys., 1992, 96(5): 3950-3956.
    [199] J. M. Orts, A. Fernandezvega, J. M. Feliu, A. Aldaz, J. Clavilier, Electrochemical-Behavior of CO Layers Formed by Solution Dosing at Open Circuit on Pt(111)-Voltammetric Determination of CO Coverages at Full Hydrogen Adsorption Blocking in Various Acid-Media [J]. J. Electroanal. Chem., 1992, 327(1-2): 261-278.
    [200] J. Clavilier, R. Albalat, R. Gomez, J. M. Orts, J. M. Feliu, A. Aldaz, Study of the Charge Displacement at Constant Potential During CO Adsorption on Pt(110) and Pt(111) Electrodes in Contact with a Perchloric-Acid Solution [J]. J. Electroanal. Chem., 1992, 330(1-2): 489-497.
    [201] R. Ryberg, B. N. J. Persson, Vibrational interaction between molecules adsorbed on a metal surface:The dipole-dipole interaction [J]. Phys. Rev. B, 1981, 24: 6954-6970.
    [202] R. G. Greenler, R. K. Brandt, The origins of multiple bands in the infrared-spectra of carbon-monoxide adsorbed on metal-surfaces [J]. Colloid Surface A, 1995, 105: 19-26.
    [203] R. G. Greenler, F. M. Leibsle, R. S. Sorbello, One-dimensional and two-dimensional coupling of CO adsorbed on stepped platinum surfaces [J]. J. Electron Spectrosoc. Relat
    
    Phenom., 1986, 39: 195-203.
    [204] R. K. Brandt, R. G Greenler, The arrangement of CO adsorbed on a Pt(533) surface [J]. Chem. Phys. Lett., 1994, 221: 219-223.
    [205] M. W. Severson, M. J. Weaver, Nanoscale island formation during oxidation of carbon monoxide adlayers at ordered electrochemical interfaces: A dipole-coupling analysis of coverage-dependent infrared spectra [J]. Langmuir, 1998, 14(19): 5603-5611.
    [206] M. W. Seversona, I. Villegas, M. J. Weaver, Dipole-dipole coupling effects upon infrared spectroscopy of compressed electrochemical adlayers: Application to the Pt(111)/CO system [J]. J. Chem. Phys., 1995, 103: 9832-9843.
    [207] C. S. Kim, W. J. Tornquist, C. Korzeniewski, Site-dependent vibrational coupling of CO adsorbates on well-defined step and terrace sites of monocrystalline platinum: Mixed-isotope studies at Pt(335) and Pt(111) in the aqueous electrochemical environment [J]. J. Chem. Phys., 1994, 101: 9113-9121.
    [208] I. Villegas, M. J. Weaver, Carbon-Monoxide Adlayer Structures on Platinum(111) Electrodes-a Synergy between in-Situ Scanning-Tunneling-Microscopy and Infrared-Spectroscopy [J]. J. Chem. Phys., 1994, 101(2): 1648-1660.
    [209] S. C. Chang, M. J. Weaver, In-situ infrared spectroscopy of CO adsorbed at ordered Pt(100)/aqueous interfaces: double-layer effects upon the adsorbate binding geometry [J]. J. Phys. Chem., 1990, 94: 5095-5102.
    [210] S. C. Chang, M. J. Weaver, Coverage dependent dipole coupling for carbon monoxide adsorbed at ordered platinum(111)-aqueous interfaces: Structural and electrochemical implications [J]. J. Chem. Phys., 1990, 92: 4582-4594.
    [211] C. W. Olsen, R. I. Masel, An infrared study of CO adsorption on Pt(111) [J]. Surf. Sci., 1988, 201 (3): 444-460.
    [212] S. G. Sun, Studying electrocataytic oxidation of small organic molecules of small organic molecules with in-situ infrared spectroscopy [M]. Chapter 6 in Electrocatalysis, Vol. 4 of Frontiers in Electrochemistry, J. Lipkowski, P. N. Ross (Eds.) New York: Wiley-VCH, Inc., 1998, p. 243-290.
    [213] B. Beden, C. Lamy, N. R. D. Tacconi, A. J. Arvia, The electrooxidation of CO: a test reaction in electrocatalysis [J]. Electrochim. Acta, 1990, 35(4): 691-704.
    [214] N. P. Lebedeva, M. T. M. Koper, J. M. Feliu, R. A. van Santen, Mechanism and kinetics of the electrochemical CO adlayer oxidation on Pt(111) [J]. J. Electroanal. Chem., 2002, 524: 242-251.
    [215] N. P. Lebedeva, M. T. M. Koper, E. Herrero, J. M. Feliu, R. A. van Santen, CO oxidation on stepped Pt n(111) x (111) electrodes [J]. J. Electroanal. Chem., 2000, 487(1): 37-44.
    [216] N. P. Lebedeva, M. T. M. Koper, J. M. Feliu, R. A. van Santen, Role of crystalline defects in electrocatalysis: Mechanism and kinetics of CO adlayer oxidation on stepped platinum electrodes [J]. J. Phys. Chem. B, 2002, 106(50): 12938-12947.
    [217] N. P. Lebedeva, A. Redes, J. M. Feliu, M. T. M. Koper, R. A. van Santen, Role of crystalline defects in electrocatalysis: CO adsorption and oxidation on stepped platinum
    
    electrodes as studied by in situ infrared spectroscopy [J]. J. Phys. Chem. B, 2002, 106(38): 9863-9872.
    [218] A. Couto, A. Rincon, M. C. Perez, C. Gutierrez, Adsorption and electrooxidation of carbon monoxide on polycrystalline platinum at pH 0. 3-13 [J]. Electrochimica Acta, 2001, 46(9): 1285-1296.
    [219] T. J. Schmidt, P. N. Ross, N. M. Markovic, Temperature-dependent surface electrochemistry on Pt single crystals in alkaline electrolyte: Part 1: CO oxidation [J]. J. Phys. Chem. B, 2001, 105(48): 12082-12086.
    [220] J. M. Huang, C. Korzeniewski, A temperature controlled cell for in situ infrared spectroelectrochemical measurements and its use in the study of CO isothermal desorption [J]. J. Electroanal. Chem., 1999, 471(2): 146-150.
    [221] N. M. Markovic, C. A. Lucas, A. Rodes, V. Stamenkovi, P. N. Ross, Surface electrochemistry of CO on Pt(111): anion effects [J]. Surf. Sci., 2002, 499(2-3): L149-L158.
    [222] K. Kunimatsu, W. G. Golden, H. Seki, M. R. Philpott, Carbon monoxide adsorption on a platinum electrode studied by polarization modulated FT-IRRAS. 1. CO adsorbed in the double-layer potential region and its oxidation in acids [J]. Langmuir, 1985, 1: 245-250.
    [223] K. Kunimatsu, H. Seki, W. G. Golden, M. R. Philpott, Carbon monoxide adsorption on a platinum electrode studied by polarization modulated FT-IR reflection-absorption spectroscopy. 2. CO adsorbed at a potential in the hydrogen region and its oxidation in acids [J]. Langmuir, 1986, 2: 464-468.
    [224] A. M. El-Aziz, L. A. Kibler, Influence of steps on the electrochemical oxidation of CO adlayers on Pd(111) and on Pd films electrodeposited onto Au(111) [J]. Electroanal. Chem., 2002, 534(2): 107-114.
    [225] S. C. Chang, A. Hamelin, M. J. Weaver, Dependence of the Electrooxidation Rates of Carbon-Monoxide at Gold on the Surface Crystallographic Orientation-a Combined Kinetic-Surface Infrared Spectroscopic Study [J]. J. Phys. Chem., 1991, 95(14): 5560-5567.
    [226] W. F. Lin, P. A. Christensen, A. Hamnett, M. S. Zei, G Ertl, The electro-oxidation of CO at the Ru(0001) single-crystal electrode surface [J]. J. Phys. Chem. B, 2000, 104(28): 6642-6652.
    [227] C. Tang, S. Zou, M. W. Severson, M. J. Weaver, Coverage-dependent infrared spectroscopy of carbon monoxide on Iridium(111) in aqueous solution: A benchmark comparison between chemisorption in ordered electrochemical and ultrahigh-vacuum environments [J]. J. Phys. Chem. B, 1998, 102(44): 8796-8806.
    [228] E. M. Crabb, R. Marshall, D. Thompsett, Carbon monoxide electro-oxidation properties of carbon-supported PtSn catalysts prepared using surface organometallic chemistry [J]. J. Electrochem. Soc., 2000, 147(12): 4440-4447.
    [229] B. N. Grgur, G. Zhuang, N. M. Markovic, P. N. Ross, Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface [J]. J. Phys. Chem. B, 1997, 101(20): 3910-3913.
    [230] H. Massong, H. S. Wang, G. Samjeske, H. Baltruschat, The co-catalytic effect of Sn, Ru and
    
    Me decorating steps of Pt(111) vicinal electrode surfaces on the oxidation of CO [J]. Electrochim. Acta, 2000, 46(5): 701-707.
    [231] V. P. Zhdanov, B. Kasemo, Simulation of CO electrooxidation on nm-sized supported Pt particles: stripping voltammetry [J]. Chemical Physics Letters, 2003, 376(1-2): 220-225.
    [232] M. M. Maye, Y. B. Lou, C. J. Zhong, Core-shell gold nanoparticle assembly as novel electrocatalyst of CO oxidation [J]. Langmuir, 2000, 16(19): 7520-7523.
    [233] D. C. Azevedo, A. L. N. Pinheiro, R. M. Torresi, E. R. Gonzalez, Impedance study of the oxidation of CO on polycrystalline platinum [J]. J. Electroanal. Chem., 2002, 532(1-2): 43-48.
    [234] S. Z. Zou, I. Villegas, C. Stuhlmann, M. J. Weaver, Nanoscale phenomena in surface electrochemistry: some insights from scanning tunneling microscopy and infrared spectroscopy [J]. Electrochim. Acta, 1998, 43(19-20): 2811-2824.
    [235] K. Yoshimi, M. B. Song, M. Ito, Carbon monoxide oxidation on a Pt(111) electrode studied by in-situ IRAS and STM: Coadsorption of CO with water on Pt(111) [J]. Surf. Sci., 1996, 368: 389-395.
    [236] Y. Zhu, H. Uchida, M. Watanabe, Oxidation of carbon monoxide at a platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated total reflection technique [J]. Langmuir, 1999, 15(25): 8757-8764.
    [237] Y. Zhang, M. J. Weaver, The Electrooxidation of Carbon-Monoxide on Noble-Metal Catalysts as Revisited by Real-Time Surface-Enhanced Raman-Spectroscopy [J]. J. Electroanal. Chem., 1993, 354(1-2): 173-188.
    [238] J. J. Wu, J. B. Day, K. Franaszczuk, B. Montez, E. Oldfield, A. Wieckowski, P. A. Vuissoz, J. P. Ansermet, Recent progress in surface NMR-electrochemistry [J]. J. Chem. Soc.-Faraday Trans., 1997, 93(6): 1017-1026.
    [239] H. S. Wang, Electrocatalytic oxidation of CO, formaldehyde and methanol on Pt-Mo electrodes: A DEMS study [J]. Acta Chimica Sinica, 2002, 60(4): 606-611.
    [240] H. Uchida, H. Ozuka, M. Watanabe, Electrochemical quartz crystal microbalance analysis of CO-tolerance at Pt-Fe alloy electrodes [J]. Electrochim. Acta, 2002, 47(22-23): 3629-3636.
    [241] B. N. Grgur, N. M. Markovic, C. A. Lucas, P. N. Ross, Electrochemical oxidation of carbon monoxide: from platinum single crystals to low temperature fuel cells catalysts. Part Ⅰ: Carbon monoxide oxidation onto low index platinum single crystals [J]. J. Serb. Chem. Soc., 2001, 66(11-12): 785-797.
    [242] V. R. Stamenkovic, M. Arenz, C. A. Lucas, M. E. Gallagher, P. N. Ross, N. M. Markovic, Surface chemistry on bimetallic alloy surfaces: Adsorption of anions and oxidation of CO on Pt3Sn(111) [J]. J. Am. Chem. Soc., 2003, 125(9): 2736-2745.
    [243] C. Saravanan, M. T. M. Koper, N. M. Markovic, M. Head-Gordon, P. N. Ross, Modeling base voltammetry and CO electrooxidation at the Pt(111)-electrolyte interface: Monte Carlo simulations including anion adsorption [J]. Phys. Chem. Chem. Phys., 2002, 4(12): 2660-2666.
    
    
    [244] C. Korzeniewski, D. Kardash, Use of a dynamic Monte Carlo simulation in the study of nucleation-and-growth models for CO electrochemical oxidation [J]. J. Phys. Chem. B, 2001, 105(37): 8663-8671.
    [245] V. P. Zhdanov, B. Kasemo, One of the scenarios of electrochemical oxidation of CO on single-crystal Pt surfaces [J]. Surf. Sci., 2003, 545(1-2): 109-121.
    [246] P. Lin, A. Logadottir, J. K. Norskov, Modeling the electro-oxidation of CO and H-2/CO on Pt, Ru, PtRu and Pt3Sn [J]. Electrochimica Acta, 2003, 48(25-26): 3731-3742.
    [247] B. Love, J. Lipkowski, Effect of Surface Crystallography on Electrocatalytic Oxidation of Carbon-Monoxide on Platinum-Electrodes [J]. Acs Symposium Series, 1988, 378: 484-496.
    [248] C. McCallum, D. Pletcher, Investigation of Mechanism of Oxidation of Carbon-Monoxide Adsorbed onto a Smooth Pt Electrode in Aqueous Acid [J]. J. Electroanal. Chem., 1976, 70(3): 277-290.
    [249] M. Bergelin, E. Herrero, J. M. Feliu, M. Wasberg, Oxidation of CO adlayers on Pt(111) at low potentials: an impinging jet study in H2SO4 electrolyte with mathematical modeling of the current transients [J]. J. Electroanal. Chem., 1999, 467(1-2): 74-84.
    [250] M. T. M. Koper, A. P. J. Jansen, R. A. van Santen, J. J. Lukkien, P. A. J. Hilbers, Monte Carlo simulations of a simple model for the electrocatalytic CO oxidation on platinum [J]. J. Chem. Phys., 1998, 109(14): 6051-6062.
    [251] A. V. Petukhov, W. Akemann, K. A. Friedrich, U. Stimming, Kinetics of electrooxidation of a CO monolayer at the platinum/electrolyte interface [J]. Surf. Sci., 1998, 404(1-3): 182-186.
    [252] A. V. Petukhov, Effect of molecular mobility on kinetics of an electrochemical Langmuir-Hinshelwood reaction [J]. Chem. Phys. Lett., 1997, 277(5-6): 539-544.
    [253] M. T. M. Koper, A. P. J. Jansen, Lattice-gas modeling of electrochemical Langmuir-Hinshelwood surface reactions [J]. Electrochim. Acta, 1999, 45(4-5): 645-651.
    [254] O. M. Magnussen, Ordered Anion Adlayers on Metal Electrode Surfaces [J]. Chem. Rev., 2002, 102(3): 679-726.
    [255] J. T. Hupp, D. Larkin, M. J. Weaver, Specific Adsorption of Halide and Pseudohalide Ions at Electrochemically Roughened Versus Smooth Silver Aqueous Interfaces [J]. Surf. Sci., 1983, 125(2): 429-451.
    [256] K. Ashley, M. G. Samant, H. Seki, M. R. Philpott, Cation Effects on the Vibrational Frequencies of Adsorbed Thiocyanate on Platinum [J]. J. Electroanal. Chem., 1989, 270(1-2): 349-364.
    [257] K. Ashley, F. Weinert, D. L. Feldheim, Infrared-Spectroscopy to Probe the Electrochemical Double-Layer [J]. Electrochim. Acta, 1991, 36(11-12): 1863-1868.
    [258] M. Bron, R. Holze, The adsorption of thiocyanate ions at gold electrodes from an alkaline electrolyte solution: a combined in situ infrared and Raman spectroscopic study [J]. Electrochim. Acta, 1999, 45(7): 1121-1126.
    [259] B. Ren, Q. J. Huang, Y. Xie, Z. Q. Tian, Analyzing the adsorption behavior of thiocyanide on pure Pt and Ni electrode surfaces by confocal microprobe Raman spectroscopy [J]. Anal. Sci., 2000, 16(2): 225-230.
    
    
    [260] D. S. Corrigan, P. Gao, L. W. H. Leung, M. J. Weaver, Comparisons between Surface Infrared and Surface-Enhanced Raman Spectroscopies-Band Frequencies, Bandwidths, and Selection-Rules for Pseudohalide and Related Adsorbates at Gold and Silver Electrodes [J]. Langmuir, 1986, 2(6): 744-752.
    [261] D. S. Corrigan, M. J. Weaver, Coverage-Dependent Orientation of Adsorbates as Probed by Potential-Difference Infrared-Spectroscopy-Azide, Cyanate, and Thiocyanate at Silver Electrodes [J]. J. Phys. Chem., 1986, 90(21): 5300-5306.
    [262] P. Gao, M. J. Weaver, Metal Adsorbate Vibrational Frequencies as a Probe of Surface Bonding-Halides and Pseudohalides at Gold Electrodes [J]. J. Phys. Chem., 1986, 90(17): 4057-4063.
    [263] D. S. Corrigan, J. K. Foley, P. Gao, S. Pens, M. J. Weaver, Comparisons between Surface-Enhanced Raman and Surface Infrared Spectroscopies for Strongly Perturbed Adsorbates-Thiocyanate at Gold Electrodes [J]. Langmuir, 1985, 1(5): 616-620.
    [264] M. J. Weaver, E Barz, J. G. Gordon, M. R. Philpott, Surface-Enhanced Raman-Spectroscopy of Electrochemically Characterized Interfaces-Potential Dependence of Raman-Spectra for Thiocyanate at Silver Electrodes [J]. Surf. Sci., 1983, 125(2): 409-428.
    [265] A. Tadjeddine, P. Guyotsionnest, Spectroscopic Investigation of Adsorbed Cyanide and Thiocyanate on Platinum Using Sum Frequency Generation [J]. Electrochim. Acta, 1991, 36(11-12): 1849-1854.
    [266] T. H. Ong, P. B. Davies, C. D. Bain, Adsorption of thiocyanate on polycrystalline silver and gold electrodes studied in situ by sum-frequency spectroscopy [J]. J. Phys. Chem., 1993, 97(46): 12047-12050.
    [267] P. Cao, J. L. Yao, B. Ren, R. Gu, Z. Q. Tian, Potential dependence of the orientation of thiocyanate adsorbed on an iron electrode as probed by surface-enhanced Raman Spectroscopy [J]. J. Phys. Chem. B, 2002, 106(29): 7283-7285.
    [268] H. Luo, M. J. Weaver, Surface-enhanced Raman scattering as a versatile vibrational probe of transition-metal interfaces: Thiocyanate coordination modes on platinum-group versus coinage-metal electrodes [J]. Langmuir, 1999, 15(25): 8743-8749.
    [269] Z. Q. Tian, B. Ren, B. W. Man, Extending surface Raman spectroscopy to transition metal surfaces for practical applications. 1. Vibrational properties ofthiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces [J]. J. Phys. Chem. B, 1997, 101(8): 1338-1346.
    [270] X. Li, A. A. Gewirth, Potential-dependent reorientation of thiocyanate on Au electrodes [J]. J. Am. Chem. Soc., 2003, 125(38): 11674-11683.
    [271] Q. Y. Peng, J. J. Breen, In situ scanning tunneling microscopy studies of thiocyanate adlayers on Pt(111) single crystal electrode surfaces [J]. Electrochim. Acta, 1998, 43(18): 2619-2626.
    [272] M. J. Walters, C. M. Pettit, F X. Bock, D. P. Biss, D. Roy, Capacitance of a metal/liquid interface during anion adsorption: Phase-selective measurement in the presence of d. c. voltage sweep and finite solution resistance. [J]. Surf. Interface Anal., 1999, 27: 1027-1036.
    
    
    [273] L. J. Wan, S. L. Yau, K. Itaya, Structure of thiocyanate adlayers on Rh(111): an in situ STM study. [J]. J. Solid State Electrochem., 1997, 1: 45-52.
    [274] R. A. Bailey, S. L. Kozak, T. W. Michelsen, W. N. Hiills, Infrared spectra of complexes of the thiocyanate and related ions [J]. Coord. Chem. Rev., 1971, 6: 407-445.
    [275] C. Pecile, Infrared Studies of Planar and Tetrahedral Inorganic Thiocyanates [J]. Inorg. Chem., 1966, 5(2): 210-214.
    [276] S. Fronaeus, R. Larsson, Studies on metal complexes in aqueous solution by infrared spectrophotometry .3. Further investigations on thiocyanato complexes [J]. Acta Chem. Scand., 1962, 16(6): 1447.
    [277] J. Lewis, P. W. Smith, R. S. Nyholm, Structure of complex molybdenum(Ⅲ) thiocyanates [J]. J. Chem. Soc., 1961: 4590.
    [278] A. Sabatini, I. Bertini, Infrared spectra between 100 and 2500 cm-1 of some complex metal cyanates thiocyanates and selenocyanates [J]. Inorg. Chem., 1965, 4(7): 959.
    [279] S. Ahrland, J. Chart, N. R. Davies, The relative affinities of ligand atoms for acceptor molecules and ions [J]. Q. Rev. Chem. Soc., 1958, 12(3): 265-276.
    [280] M. Bron, R. Holze, Polarization sensitive in situ infrared spectroscopy: The adsorption of simple ions at platinum electrodes [J]. Fresenius Journal of Analytical Chemistry, 1998, 361(6-7): 694-696.
    [281] G. Q. Lu, S. G. Sun, L. R. Cai, S. P. Chen, Z. W. Tian, K. K. Shiu, In situ FTIR spectroscopic studies of adsorption of CO, SCN-, and poly(o-phenylenediamine) on electrodes of nanometer thin films of Pt, Pd, and Rh: Abnormal infrared effects (AIREs) [J]. Langmuir, 2000, 16(2): 778-786.
    [282] G. Q. Lu, S. G. Sun, S. P. Chen, N. H. Li, Y. Y. Yang, Z. W. Tian. Abnormal optical properties of dispersed platinum layer in FTIR relection spectroscopy for CO adsorption [C]. In A. Wieckowski, K. Itaya: in Electrochemical Society Processding,Vol 96: 436-445, Pennington, NJ: The Electrochemical Society, Inc., 1996.
    [283] S. G. Sun, S. J. Hong, S. P. Chen, G. Q. Lu, H. P. Dai, X. Y. Xiao, In situ scanning FTIR microscopy and IR imaging of Pt electrode surface to wards CO adsorption [J]. Sci. China Ser. B-Chem., 1999, 420): 261-267.
    [284] 贡辉,厦门大学博士学位论文[D],2003.
    [285] 陈友江,孙世刚,陈声培,贡辉,周志有,李君涛,纳米结构铂微电极阵列的特殊红外性能研究[J].第十二届全国电化学会议论文集,上海,2003:A042.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700