用户名: 密码: 验证码:
磁分散电弧等离子体的实验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电弧等离子体由于具有高温、高焓、高化学活性等优点而获得了广泛的应用,但其体积小、能量高度集中、参数梯度大等特点制约了它在化学沉积、材料制备等领域的发展,这些领域迫切需要一种体积大、参数梯度小的热等离子体,以提高生产效率、改善产品质量。
     本文提出了利用磁旋转分散电弧产生大体积均匀等离子体的研究思路,设计制作了一套磁旋转电弧发生器装置。该发生器由80mm内径的管形石墨阳极与棒状石墨阴极组成,外磁场则由绕制在阳极外壁上的螺线管线圈产生。试验结果表明,利用强外磁场高速旋转的方法可以有效地促进收缩电弧分散。在完全分散状态下,弧室截面上的等离子体光强分布趋于均匀,电弧电压的波动幅度显著降低。
     利用高速CCD与ICCD连续拍摄了弧室截面上的电弧图像,发现了磁旋转电弧分散发展过程中的多种电弧形态:不断发展的螺旋结构、并联电弧、多阴极弧根、扩散型电弧根、完全扩散的电弧等离子体等。利用电弧图像与电弧电压、电流信号的同步采集,分析了电弧分散过程中的动态特性,研究了外磁场、电弧电流、工质气流量、电极热状况等对电弧形态、电压特性、弧根附着状态等的影响,对并联电弧的稳定、破裂等给出了定性分析。
     以商用CFD软件FLUENT为平台,开发并验证了模拟热电弧传热与流动的计算程序,进而对三种不同条件下的磁作用电弧等离子体进行了二维数值模拟研究:
     (1)数值研究了轴向外磁场、工质进气速度对完全分散电弧等离子体中传热与流动规律的影响。外磁场高速旋转电弧引起的离心力促使等离子体从发生器中轴线附近向阳极壁转移,引起该区域的压力降低,发生器喷口外的环境气体回流进入发生器内,电弧等离子体在轴向上回缩,而在径向上扩张。这种独特的分布形状是在喷口外拍摄磁旋转电弧等离子体时,其光强分布比较均匀的根本原因。
     (2)数值研究了发生器喷口外是空气环境时,空气回流对磁旋转氩电弧等离子体特性的影响。空气混合极大地提高了电弧电压,而进口氩气流量的增加可以有效地抑制空气回流,因而在发生器内,电弧电压反而是随着氩气流量的增加而降低的,与实验测量结果定性相符。
     (3)数值研究了磁控焊接电弧中的传热与流动规律。磁控电弧表现为中空钟罩形状,其阳极表面的温度、压力、电流密度呈现双峰分布。磁作用后,电弧加热阳极的范围更大,传递给阳极的热量也增强。然而,利用强外磁场并不能无限制地径向扩张电弧,外磁场强度超过临界值后,会转而引起电弧径向压缩。
     实验和数值模拟研究表明:由于高速旋转,电弧等离子体产生了强烈的周向与径向流动,促使电弧等离子体在周向与径向上分散,从而产生了大体积、参数相对均匀的等离子体,并维持其稳定。
Direct-current arc plasmas at atmospheric pressure have many diverse industrial uses nowadays as their special properties of high temperature, enthalpy and chemical activity. The majority of arc plasmas presently in industrial use are usually of small volume, concentrated energy, and inhomogeneous parameters as a direct result of their inherent shrinkage. However, in some application areas, especially for the chemical synthesis, material processing/preparation and etc, a large-volume with uniformity in plasma parameters is one of the most important requirements that the arc plasma source should satisfy to advance the product quality and production efficiency. With this motivation, a large-scale magnetically rotating arc plasma generator is designed and utilized to obtain diffuse plasma in this study. The generator consists of an 80mm diameter graphite anode chamber and a concentric graphite cathode. A solenoid coil wrapping the anode is used to produce an AMF (axial magnetic field).
     Rotation induced by the AMF results in improved stability and drastic changes in plasma structure. With the increase in arc current and AMF strength, the arc plasma in the chamber is observed in various configurations, it temporally and spatially evolves from a contractive column to fully diffuse plasma cloud which fills the entire chamber cross section. The fully diffuse plasma is distributed throughout the electrode gap and no anode attachment can be seen in the chamber cross-section, the diffuse anode root is symmetrically distributed over the electrode. Furthermore, this diffuse plasma runs more steadily and its voltage fluctuation is significantly reduced. The diffuse plasma consumes more power but its emission is weaker, which implies that the volume of the fully diffuse plasma should have been greatly enlarged.
     An axisymmetric-swirl model based on the commercial CFD code FLUENT is also used to qualitatively discuss the AMF effects on the flow and heat transfer of the fully diffuse plasma inside an assumed magnetron arc torch. The AMF induces a low pressure region around the torch axis and a strong backflow at its spout. So as that the AMF plasma is significantly retracted axially and expanded radially and as a result, the arc shape seems to be a flag dancing windward. The plasma is of high temperature at the flagpole but cooling a little at the banner and this is responsible for the plasma intensity distribution on the chamber cross-section is more uniform.
     When the ambient gas outside the chamber is air, the air backflow induced by the AMF mixes with the argon inflow and significantly heightens the arc voltage. The air quantity depends on both the AMF strength and the inlet gas velocity, i.e., it increases with the former but decreases with the latter. An increase in the amount of the argon inflow restrains the quantity of the air backflow, and this should be responsible for a lower arc voltage in such an AMF torch when a larger gas inflow is used.
     Finally, we simulate the plasma flow inside an AMF welding argon arc and the heat transfer from the arc to its anode at the atmospheric pressure. Numerical results indicate that the imposed AMF induces most of the plasmas flowing by the arc mantel which leads to the appearance of a low-pressure region at the arc core. The AMF arc significantly retracts axially and presents a hollow bell shape. The characteristics of temperature, overpressure and current density distributions on the arc-anode interface are also discussed. Using a small AMF is contributive to expand the arc attachment on the anode, however, strengthening the AMF can't excessively expand the arc radially but pinch it finally.
引文
[1]过增元,赵文华.电弧与热等离予体.北京:科学出版社,1986
    [2]陈熙.高温电离气体的传热与流动.北京:科学出版社,1993
    [3]G.Gross,B.Grycz,and K.Miklossy.等离子体技术,过增元,傅维标 译.北京:科学出版社,1980
    [4]P.Fauchais and A.Vardelle.Thermal plasmas.IEEE Trans.Plasma Sci.Vol.25,1997:1258-1280
    [5]E.Pfender.Thermal plasma technology:where do we stand and where are we going?.Plasma Chem.& Plasma Process.,Vol.19,1999:1-31
    [6]P.Fauchais and A.Vardelle.Pending Problems in thermal plasmas and actual development.Plasma Phys.Control.Fusion,Vol.42,2000:B365-B383
    [7]U.Kogelschatz.Atmospheric-pressure plasma technology.Plasma Phys.Control.Fusion,Vol.46,2004:B63-B75
    [8]D.Bernardi,V.Colombo,E.Ghedini,A.Mentrelli,and T.Trombetti.3-D Numerical analysis of powder injection in inductively coupled plasma torches.IEEE Trans.Plasma Sci.,Vol.33,2005:424-425
    [9]D.Bernardi,V.Colombo,E.Ghedini,and A.Mentrelli.Three dimensional effects in the modeling of ICPTs-Part Ⅰ:Fluid dynamics and electromagnetics;Part Ⅱ:Induction coil and torch geometry.Eur.Phys.J.D,Vol.25,2003:271-285
    [10]D.Bernardi,V.Colombo,E.Ghedini,and A.Mentrelli.Three-dimensional modeling of inductively coupled plasma torches.Eur.Phys.d.D,Vol.22,2003:119-125
    [11]S.Xue,P.Proulx,and M.I.Boulos.Effect of the coil angle in an inductively coupled plasma torch:a novel two-dimensional model.Plasma Chem.& Plasma Process.,Vol.23,2003:245-263
    [12]C.R.Jones and M.T.C.Fang.The physics of high-power arcs.Rep.Prog.Phys.,Vol.43,1980:1415-1465
    [13]M.φ.茹科夫,A.C.科罗捷耶夫,Б.A.乌柳科夫.热等离子体实用动力学,赵文华,周力行 译.北京:科学出版社,1981
    [14]D.R.Macrae.Plasma arc process systems,reactors,and applications.Plasma Chem.&Plasma Process.,Vol.9,1989:S85-S118
    [15]M.Kelkar and J.Heberlein.Physics of and arc in cross flow.J.Phys.D:Appl.Phys.,Vol.33,2000:2172-2182
    [16]C.Fanara and L.Vilarinho.Electrical characterization of atmospheric pressure arc plasmas.Eur.Phys.J.D,Vol.28,2004:241-251
    [17]H.G.Fan and R.Kovacevic.A unified model of transport phenomena in gas metal arc welding including electrode,arc plasma and molten pool.J.Phys.D:Appl.Phys.,Vol.37,2004:2531-2544
    [18]P.K.Ghosh,L.Dorn,M.Hubner,and V.K.Goyal.Arc characteristics and behavior of metal transfer in pulsed current GMA welding of aluminium alloy.J.Mater.Process.Technol.,Vol.194,2007:163-175
    [19]J.Hu and H.L.Tsai.Effects of current on droplet generation and arc plasma in gas metal arc welding,J.Appl.Phys.,Vol.100,2006:053304
    [20]H.G.Fan,S.J.Na,and Y.W.Shi.Mathematical model of arc in pulsed current gas tungsten arc welding.J.Phys.D:Appl.Phys.,Vol.30,1997:94-102
    [21]J.Hu and H.L.Tsai.Metal transfer and arc plasma in gas metal arc welding,J.Heat.Transf,Vol.129,2007:1025-1035
    [22]F.G.Lu,X.H.Tang,H.L.Yu,and S.Yao.Numerical simulation on interaction between TIG welding arc and weld pool.Comput.Mater.Sci.,Vol.35,2006:458-465
    [23]J.Dowden,and P.Kapadia.Plasma arc welding:a mathematical model of the arc.J.Phys.D:Appl.Phys.,Vol.27,1994:902-910
    [24]M.Goodarzi,R.Choo,and J.M.Toguri.The effect of the cathode tip angle on the GTAW arc and weld pool:Ⅰ.Mathematical model of the arc.J.Phys.D:Appl.Phys.,Vol.30,1997:2744-2756
    [25]M.Tanaka,H.Terasaki,M.Ushio,J.J.Lowke.A unified numerical modeling of stationary Tungsten-Inert-Gas welding process.Metall.& Mater.Trans.A,Vol.33A,2002:2043-52
    [26]P.G.Jonsson,R.C.Westhoff,and J.Szekely.Arc characteristics in gas-metal arc welding of aluminum using argon as the shielding gas.J.Appl.Phys.,Vol.74,1993:5997-6006
    [27]P.G.Jonsson,J.Szekely,R.T.C.Choo,and T.P.Quinn.Mathematical models of transport phenomena associated with arc-welding processes:a survey.Modelling Simul.Mater.Sci.Eng.,Vol.2,1994:995-1016
    [28]P.G.Jonsson,T.W.Eagar,and J.Szekely.Heat and metal transfer in gas metal arc welding using argon and helium.Metall.& Mater.Trans.B,Vol.26B,1995:383-395
    [29]M.Tanaka,M.Ushio,and J.J.Lowke.Numerical analysis for weld formation using a free burning helium arc at atmospheric pressure.JSME Int.J.,Vol.48,2005:397-404
    [30]J.Haidar.A theoretical model for gas metal arc welding and gas tungsten arc welding.I.J.Appl.Phys.,Vol.84,1998:3518-3529
    [31]芦凤桂.TIG焊接电弧与熔池动态交互作用三维数值模拟:[博士学位论文].上海:上海交通大学,2004
    [32]W.Bach and A.Gruchow.Plasma cutting in atmosphere and under water.Pure & Appl.Chem.,Vol.64,1992:665-670
    [33]V.A.Nemchinsky.Plasma flow in a nozzle during plasma arc cutting.J.Phys.D:Appl.Phys.,Vol.31,1998:3102-3107
    [34]H.Kelly,B.Mancinelli,L.Prevosto,F.O.Minotti,and A.Marquez.Experimental characterization of a low current cutting torch.Braz.J.Phys.,Vol.34,2004:1518-1522
    [35]P.Freton,J.J.Gonzalez,A.Gleizes,F.C.Peyret,G.Caillibotte,M.Delzenne.Numerical and experimental study of a plasma cutting torch.J.Phys.D:Appl.Phys.,Vol.35,2002:3102-3107
    [36]H.Kelly,F.O.Minotti,L.Prevosto,B.Mancinelli.Hydrodynamic model for the plasma gas flow in a cutting torch nozzle.Braz.J.Phys.,Vol.34,2004:1531-1537
    [37]B.L.Bemis and G.S.Settles.Ultraviolet imaging of the anode attachment in transferred arc plasma cutting.IEEE Trans.Plasma Sci.,Vol.27,1999:44-45
    [38]G.A.Jose,S.P.Cecilia,R.Y.Antonio,and A.G.C.Miguel.A theoretical study of a cutting air plasma torch.IEEE Trans.Plasma Sci.,Vol.27,1999:264-271
    [39]M.Jankovie,J.Mostaghimi.A new nozzle design for dc plasma spray guns.Plasma Chem.& Plasma Process.,Vol.15,1995:607-628
    [40]J.Mostaghimi,M.Pasandideh-Fard,and S.Chandra.Dynamics of splat formation in plasma spray coating process.Plasma Chem.& Plasma Process.,Vol.22,2002:59-84
    [41]H.B.Xiong,L.L.Zheng,S.Sampath,R.L.Williamson,J.R.Fincke.Three dimensional simulation of plasma spray:effects of carrier gas flow and particle injection on plasma jet and entrained particle behavior.Int.J.Heat & Mass Transf.,Vol.47,2004:5189-5200
    [42]P.Fauchais.Understanding plasma spraying.J.Phys.D:Appl.Phys.,Vol.37,2004:R86-R108
    [43]N.Venkatramani.Industrial plasma torches and applications.Current Sci.,Vol.83,2002:254-262
    [44]M.Kelkar,J.Heberlein.Wire-are spray modeling.Plasma Chem.& Plasma Process.,Vol.22,2002:1-25
    [45]P.Fauchais,G.Montavon,M.Vardelle,and J.Cedelle.Developments in direct current plasma spraying,Surf.& Coat.Technol.,Vol.201,2006:1908-1921
    [46]E.Pfender.Advances in modeling of the thermal spray process.J.Therm.Spray Technol.,Vol.6,1997:126-128
    [47]R.L.Williamson,J.R.Fincke,and C.H.Chang.A computational examination of the sources of statistical variance in particle parameters during thermal plasma spraying.Plasma Chem.& Plasma Process.,Vol.20,2000:299-324
    [48]P.Fauchais,G.Montavon,M.Vardelle,and J.Cedelle.Developments in direct current plasma spraying.Surf.& Coat.Technol.,Vol.201,2006:1908-1921
    [49]P.Fauchais and A.Vardelle.Heat,mass and momentum transfer in coating formation by plasma spraying.Int.J.Therm.Sci.,Vol.39,2000:852-870
    [50]P.Fauchais and A.Vardelle.Plasma spraying:present and future.Pure & Appl.Chem.,Vol.66,1994:1247-1258
    [51]朱应波,宋东亮,曾昭生.直流电弧炉炼钢技术.北京:冶金工业出版社,1997
    [52]A.Mclean.The science and technology of steelmaking-measurements,models,and manufacturing.Metall.& Mater.Trans.B,Vol.37B,2006:319-332
    [53]F.H.Wang,Z.J.Jin,and Z.S.Zhu.Fluid flow modeling of arc plasma and bath circulation in DC electric arc furnace.J.Iron & Steel Res.Int.,Vol.13,2006:7-13
    [54]F.Qian,B.Farouk and R.Mutharasan.Modeling of fluid flow and heat transfer in the plasma region of the DC electric arc furnace.Metall.& Mater.Trans.B,Vol.26B,1995:1057-1067
    [55]J.Szekely,J.Mckelliget,and M.Choudhary.Heat transfer fluid flow and bath circulation in electric arc furnace and DC plasma furnaces.Ironmak.& Steelmak,Vol.10,1983:169-179
    [56]J.Alexis,M.Ramirez,G.Trapaga,and P.Jonsson.Modeling of a DC electric arc furnace heat transfer from the arc.ISIJ Int.,Vol.40,2000:1089-1097
    [57]J.Alexis,P.Jonsson,and L.Jonsson.Heating and electromagnetic stirring in a ladle furnace simulation model.ISIJ Int.,Vol.40,2000:1098-1104
    [58]M.Ramirez,J.Alexis,G.Trapaga,P.Jonsson,and J.Mckelliget.Modeling of a DC electric arc furnace-mixing in the bath.ISIJ Int.,Vol.41,2001:1146-1155
    [59]A.Douce,C.Delalondre,H.Biausser,and J.B.Guillot.Numerical Modelling of an anodic metal bath heated with an argon transferred arc.ISIJ Int.,Vol.43,2003:1128-1135
    [60]王丰华.电弧炉建模研究及其应用:[博士学位论文].上海:上海交通大学,2006
    [61]田原宇,黄伟,鲍为仁,谢克昌.煤等离子体热解制乙炔工艺的工程探讨.现代化工,Vol.22,2002:7-10
    [62]关有俊,庞先勇,吕永康.氧对等离子体热解煤中乙炔收率的影响.煤炭转化,Vol.26,2003:36-39
    [63]郭伟,鲍卫仁,曹青,吕永康,谢克昌.等离子体热解煤制乙炔工程化过程中的关键 问题.煤化工,Vol.34,2006:25-28
    [64]K.C.Xie,Y.L.Lv,Y.J.Tian,and D.Z.Wang.Study of coal conversion in arc plasma jet.Energy Sources,Vol.24,2002:1093-1098
    [65]X.J.He,T.C.Ma,J.S.Qiu,T.J.Sun,Z.B.Zhao,Y.Zhou,and J.L.Zhang.Mechanism of coal gasification in a steam medium under are plasma conditions.Plasma Sources Sci.& Technol.,Vol.13,2004:446-453
    [66]戴波.氢等离子体裂解煤制乙炔的研究:[博士学位论文].北京:清华大学,2000
    [67]钟国舫.大功率直流等离子体喷射金刚石膜大面积高速沉积工艺研究:[硕士学化论文].北京:北京科技大学,1994
    [68]陈旭宏,赵立合,吕反修.直流等离子体喷射镀膜设备的传热数学模拟.北京科技大学学报,Vol.21,1999:67-71
    [69]邹学柏.高功率直流电弧等离子体喷射流动传热过程的数值模拟与实验研究:[博士学位论文].北京:北京科技大学,2000
    [70]宋建华.强电流直流伸展电弧CVD法大面积沉积硬质合金-金刚石涂层工具的研究:[博士学位论文].北京:北京科技大学,2003
    [71]陈光华,张阳.金刚石薄膜的制备与应用.北京:化学工业出版社,2004
    [72]M.A.Birkan.Arcjets and heaters:an overview of research status and needs,J.Propul.Power,Vol.12,1996:1011-1017
    [73]M.S.Manuel and S.A.Miller.Arcjets modeling:status and prospect.J.Propul.Power,Vol.12,1996:1035-1043
    [74]汤海滨.电弧喷射推力器数值模拟与实验研究:[博士学位论文].北京:北京航空航天大学,2001
    [75]廖宏图,吴铭岚,汪南豪.超声速电弧喷射器内等离子体流场的数值模拟.推进技术,Vol.20,1999:52-58
    [76]P.Ronsheim,A.Mazza,and A.N.Christensen.Thermal plasma synthesis of transition metal nitrides and alloys.Plasma Chem.& Plasma Process.,Vol.1,1980:135-147
    [77]A.Inoue,B.G.Kim,K.Nosaki,T.Yamaguchi,and T.Masumoto.Production of ultrafine aluminum nitride particles by plasma-alloy reaction and their microstructure and morpho -logy.J.Appl.Phys.,Vol.71,1992:4025-4029
    [78]F.Gitzhofer.Induction plasma synthesis of ultrafine SiC.Pure & Appl.Chem.,Vol.68,1996:1113-1120
    [79]H.D.Li,H.B.Yang,G.T.Zou,and S.Yu.Ultrafine AlN and Al-AlN powders:preparation by DC arc plasma and thermal treatment.Advanced Mater.,Vol.9,1997:156-159
    [80]Z.P.Lu and E.Pfender.DC plasma synthesis of aluminum nitride ceramic powders.Mater. Res.Soc.Symp.,Vol.180,1990:857-860
    [81]H.Ageorges,S.Megy,K.Chang,J.M.Baronnet,J.K.Williams,and C.Chapman.Synthesis of aluminum nitride in transferred arc plasma furnaces.Plasma Chem.& Plasma Process.,Vol.13,1993:613-632
    [82]G.Shanmugavelayutham and V.Selvarajan.Plasma spheroidization of nickel powders in a plasma reactor.Bull.Mater.Sci.,Vol.27,2004:453-457
    [83]M.Iwata,K.Adachi,S.Furukawa,and T.Amakawa.Synthesis of purified AlN nano powder by transferred type arc plasma.J.Phys.D:Appl.Phys.,Vol.37,2004:1041-1047
    [84]S.M.Oh and D.W.Park.Preparation of AlN fine powder by thermal plasma processing.Thin Solid Films,Vol.316,1998:189-194
    [85]R.J.Munz,T.Addona,and A.C.Cruz.Application of transferred arcs to the production of nanoparticles.Pure & Appl.Chem.,Vol.71,1999:1889-1897
    [86]Q.Y.Han,J.Heberlein,and E.Pfender.Feasibility study of thermal plasma destruction of toxic wastes in a counter-flow liquid injection plasma reactor.J.Mater.Synth.Process.,Vol.1,1993:25-32
    [87]T.Watanabeo Recent Development of waste treatment by reactive thermal plasmas in Japan.Proc.16~(th)Int.Symp.Plasma Chem.,Taorumina,Italy,2003
    [88]J.Heberlein and A.B.Murphy.Thermal plasma waste treatment.J.Phys.D:Appl.Phys.,Vol.41,2008:053001
    [89]P.G.Rutberg.Some plasma environmental technologies developed in Russia.Plasma Source Sci.Technol.,Vol.11,2002:A159-A165
    [90]A.B.Murphy and T.McAllister.Modeling of the physics and chemistry of thermal plasma waste destruction.Phys.Plasmas,Vol.8,2001:2565-2571
    [91]T.Iwao,H.Miyazaki,T.Ishida,Y.F.Liu,and T.Inaba.Proposal of treatment for hazardous wastes using the highly concentrated radiation from torch plasma.ISIJ Int.,Vol.40,2000:275-279
    [92]E.Pfender and Y.C.Lee.Particle dynamics and particle heat and mass transfer in thermal plasmas,I.The motion of a single particle without thermal effects.Plasma Chem.&Plasma Process.,Vol.5,1985:211-237
    [93]S.P.Polyakov and M.G.Rozenberg.Study and generalization of volt-ampere and thermal characteristics of a two-jet plasmotron.J.Eng.Phys.Thermophys.,Vol.32,1977:675-682
    [94]S.P.Polyakov and V.I.Pechenkin.Electrical and thermal structure of the argon arc of a two-jet plasmatron.J.Eng.Phys.Thermophys.,Vol.43,1982:1293-1296
    [95]N.V.Livitan and S.P.Polyakov.Interaction of the electric arc in a two-jet plasmatron with the surface of a solid body.J.Eng.Phys.Thermophys.,Vol.50,1986:452-456
    [96]O.Yasko.Review of plasma development in the former Soviet Union.Pure & Appl.Chem.,Vol.68,1994:1215-1222
    [97]J.K.Williams and M.J.Cusick.The twin remotely coupled DC arc system.Proc.11~(th)Int.Symp.Plasma Chem.,Loughborough,England,1993
    [98]S.Megy,S.Bousrih,J.M.Baronnet,E.A.Ershov-Pavlov,J.K.Williams,D.M.Iddles.Characterization of a twin-torch transferred DC are.Plasma Chem.Plasma Process.,Vol.15,1995:309-331
    [99]W.Z.Yan,Z.Duan,and C.K.Wu.Characteristics of a dual-jet arc plasma generator.Proc.2~(nd)Asia-Pacific Conf Plasma Sci.Technol.,Seoul,Korea,1994
    [100]端正.双射流等离子体加热器的研制:[硕士学位论文].北京:中国科学院力学研究所,1994
    [101]游晖.用双射流电弧等离子体发生器进行粉体材料加工中的一些问题的研究:[博士学位论文].北京:中国科学院力学研究所,1998
    [102]H.You,W.Z.Yan,and C.K.Wu.Numerical investigation of flow field of a dual-jet plasma generator.Plasma Sci.& Technol.Vol.2,2000:141-149
    [103]T.Iwao,H.Takizawa,T.Inaba,and M.Yumoto.Heating efficiency of twin torch plasma arc.ISIJ Int.,Vol.45,2005:1084-1087
    [104]T.Iwao and M.Yumoto.Portable application of thermal plasma and arc discharge for waste treatment,thermal spraying and surface treatment.IEEJ Trans.Electric.& Electron.Eng.,Vol.1,2006:163-170
    [105]B.Liu,M.Kikuchi,H.P.Li,T.Iwao,and T.Inaba.Dual torch plasma arc furnace for medical waste treatment.Plasma Sci.& Technol.,Vol.9,2007:709-712
    [106]Z.P.Lu and E.Pfender.Synthesis of aluminum powder in a triple torch plasma reactor.Proc.9~(th)Int.Symp.Plasma Chem.,Pugnoehiuso,Italy,1989
    [107]Z.P.Lu,J.Heberlein,and E.Pfender.Process study of thermal plasma chemical vapor deposition of diamond.Part Ⅰ:substrate material,temperature,and methane concentration.Plasma Chem.Plasma Process.,Vol.12,1992:35-53
    [108]H.C.Chen,E.Pfender,and J.Heberlein.Plasma-sprayed ZrO_2 thermal barrier coatings doped with an appropriate amount of SiO_2.Thin Solid Films,Vol.315,1998:159-169
    [109]M.Asmann,A.Wank,H.Kim,J.Heberlein,E.Pfender.Characterization of the converging jet region in a triple torch plasma reactor.Plasma Chem.Plasma Process.,Vol.21,2001:37-63
    [110]K.D.Landes,M.Dzulko,E.Theophile,and J.Zierhut.New developments in DC-plasma torches,High Temp.Mater.Process.,Vol.6,2002:339-345
    [111]K.Ramachandran and H.Nishiyama.Structural analysis of converging jets in a triple torch plasma system,J.Phys.D:Appl.Phys.,Vol.36,2003:1198-1203
    [112]J.E.Harry,R.Knight.Production of a large volume discharge using a multiple arc system.IEEE Trans.Plasma Sci.,Vol.Ps-7,1979:157-162
    [113]J.E.Harry,R.Knight.Simultaneous operation of electric arcs from the same supply.IEEE Trans.Plasma Sci.,Vol.Ps-9,1981:248-254
    [114]J.E.Harry,R.Knight.Investigation of the intensity distribution of large volume multiple arc discharges,J.Phys.D:Appl.Phys.,Vol.17,1984:343-350
    [115]J.E.Harry,A.A.Yahya.Conditions for coalescence of multiple electric discharges.IEEE Proc.A,Vol.139,1992:210-212
    [116]D.Gold,C.Bonet,G.Chauvin,A.C.Mathieu,G.Geirnaert,and J.Millet.A 100-kW three phase AC plasma furnace for spheroidization of aluminum silicate particles.Plasma Chem.Plasma Process.,Vol.1,1981:161-178
    [117]R.Benjamin,F.Laurent,A.B.Joe,F.Gilles,F.Frederic.Influence of the electromagnetic forces on momentum and heat transfer in a 3-Phase AC plasma reactor.Plasma Chem.Plasma Process.,Vol.19,1999:69-89
    [118]W.D.Xia,F.Laurent,G.A.Jose,H.Li,and M.G.Thomas.Characterization of a 3-Phase AC free burning arc plasma.Plasma Sci.& Technol.,Vol.8,2006:156-163
    [119]S.Kittaka,S.Wakida,T.Sato,and M,Miyashita.Twin-torch type tundish plasma heater "NS-Plasma Ⅱ" for continuous caster.Nippon Steel Technical Report,No.92,2005:16-21
    [120]X.S.Leng,G.J.Zhang,and L.Wu.The characteristic of twin-electrode TIG coupling arc pressure,J.Phys.D:Appl.Phys.,Vol.39,2006:1120-1126
    [121]王树保,张海宽,冷雪松,吴林.双钨极氩弧焊工艺及焊缝成型机理分析.焊接学报,Vol.28.2007:21-24
    [122]冷雪松,张广军,吴林.双钨极氩弧焊耦合电弧压力分析.焊接学报,Vol.27,2007:13-16
    [123]X.S.Leng,G.J.Zhang,H.M.Gao,and L.Wu.A study on twin-tungsten TIG welding method.China Weld,Vol.15,2006:49-52
    [124]Q.Su.The high efficiency double are plasma spraying gun.Proc.3~(rd)China-Japan Symp.Plasma Chem.,Nanjing,China,1992
    [125]R.M.Young,E.Pfender.A novel approach for introducing particulate matter into thermal plasma:The triple-cathode are.Plasma Chem.Plasma Process.,Vol.9,1989:465-481
    [126]K.U.Maske and J.Moore.The application of plasma to high temperature reduction metallurgy.High Temp.Technol.,Vol.1,1982:51-63
    [127]S.David and S.Richard.Structure and dynamics of a magnetron DC arc plasma.Appl.Spectro.Vol.44,1990:76-83.
    [128]S.David and S.Richard.A magnetron DC arc plasma for aerosol analysis.Appl.Spectro.Vol.44,1990:83-90
    [129]L.Lin,Z.Sun,B.Y.Wang,and C.K.Wu.A thermionic cathode with diffused arc roots for plasma generators.Proc.12~(th)Int.Symp.Plasma Chem.,Minneapolis,USA,1995
    [130]L.Lin,Z.Sun,B.Y.Wang,and C.K.Wu.The effects of magnetic field on arc roots behavior and arc characteristics.Proc.3~(nd)Asia-Pacific Conf.Plasma Sci.Technol.,Tokyo,Japan,1996
    [131]A.E.Guile,A.H.Hitchcock.The effect of rotating arc velocity on copper cathode erosion.J.Phys.D:Appl.Phys.,Vol.7,1974:597-606
    [132]R.N.Szente,R.J.Munz,and M.G.Drouet.Effect of the arc velocity on the cathode erosion rate in argon-nitrogen mixtures.J.Phys.D:Appl.Phys.,Vol.20,1987:754-756
    [133]R.N.Szente,R.J.Munz,and M.G.Drouet.Arc velocity and cathode erosion rate in a magnetically driven arc burning in nitrogen.J.Phys.D:Appl.Phys.,Vol.21,1988:909-913
    [134]R.N.Szente,R.J.Munz,and M.G.Drouet.Electrode erosion in plasma torches.Plasma Chem.Plasma Process.,Vol.12,1992:327-343
    [135]A.M.Essiptchouk.On the effect of arc current,arc velocity and electrode temperature on cold electrode erosion.High.Temp.Mater.Process.,Vol.7,2003:29-36
    [136]A.M.Essiptchouk,A.Marotta,and L.I.Sharakhovsky.The effect of arc velocity on cold electrode erosion.Phys.Plasmas,Vol.11,2004:1214-1219
    [137]S.W.Chau,K.L.Hsu,D.L.Lin,and C.C.Tzeng.Experimental study on copper cathode erosion rate and rotational velocity of magnetically driven arcs in a well-type cathode nontransferred plasma torch operating in air.J.Phys.D:Appl.Phys.,Vol.40,2007:1944-1952
    [138]李和平.直流电弧等离子体发生器与射流中传热与流动的研究:[博士学位论文].北京:清华大学,2001
    [139]李辉.电弧等离子体中的阴极区模型及辅助加热电弧等离子体发生器的研究:[博士学位论文].合肥:中国科学技术大学,2001
    [140]H.Li,Q.Ma,L.C.Li,and W.D.Xia.Imaging of behavior of multiarc roots of cathode in a DC arc discharge.IEEE Trans.Plasma Sci.,Vol.33,2006:404-405
    [141]V.M.Adams.The influence of gas streams and magnetic fields on electric discharges,Part Ⅱ.The shape of an are rotating round an annular gap.Tech.Note,No.Aero 2915,Brit.R. A.E.,1963
    [142]J.Lawton.Arc motion in magnetic fields in presence of gas flow.J.Phys.D:Appl.Phys.,Vol.4,1971:1946-1958
    [143]H.Minoo,A.Arsaoui,A.Bouvier.An analysis of the cathode region of a vortex stabilized arc plasma generator.J.Phys.D:Appl.Phys.,Vol.28,1995:1630-1648
    [144]杜百合,黎林村,马强,陈俭,赵宇含,夏维东.磁驱动旋转电弧运动图像及弧电压脉动的实验研究.核技术,Vol.28,2005:745-750
    [145]杜百合.大尺度旋转电弧等离子发生器研究:[硕士学位论文].合肥:中国科学技术大学,2005
    [146]L.I.Sharakhovsky.Experimental investigation of an electric arc motion in annular ventilated gap under the action of electromagnetic force.J.Eng.Phy.,Vol.20,1971:306-313
    [147]A.M.Essiptchouk,L.I.Sharakhovsky,and A.Marotta.A new formula for the rotational velocity of magnetically driven arcs.J.Phys.D:Appl.Phys.,Vol.33,2000:2591-2597
    [148]E.D.Blix and A.E.Guile.Column control in the magnetic deflection of a short arc.Brit.J.Appl.Phys.,Vol.16,1965:857-864
    [149]J.M.Park,K.S.Kim,T.H.Hwang,and S.H.Hong.Three-dimensional modeling of arc root rotation by external magnetic field in non-transferred thermal plasma torches.IEEE Trans.Plasma.Sci.,Vol.32,2004:479-487
    [150]M.D.Li,W.W.Deng,Y.S.Fan,J.Y.Yang,X.L.Liu.Study on arc movement in hollow electrode plasma generators with impressed double magnetic fields.Plasma Chem.Plasma Process.,Vol.24,2004:73-84
    [151]K.Frank and L.Manfred.Simulation of the gasdynamic and electromagnetic processes in low voltage switch arcs.IEEE Trans.Compon.Pack.Technol.,Vol.21,1998:96-103
    [152]L.Manfred and S.Matthias.Three-dimensional-simulation of arc motion between arc runners including the influence of ferromagnetic material.IEEE Trans.Compon.Pack.Technol.,Vol.25,2002:409-414
    [153]D.A.Scott,P.Kovitya,and G.N.Haddad.Temperatures in the plume of a dc plasma torch.J,Appl.Phys.,Vol.66,1989:5232-5239
    [154]M.P.Planehe,J.F.Coudert,and P.Fauchais.Velocity Measurements for Arc Jets Produced by a DC Plasma Spray Torch.Plasma Chem.Plasma Process.,Vol.18,1998:263-283
    [155]A.B.Murphy,P.Kovitya.Mathematical model and laser scattering temperature measurements of a direct-current plasma torch discharging into air.J.Appl.Phys.,Vol.73,1993:4759-4769
    [156]N.Singh,M.Razafinimanana and J.Hlina.Characterization of a de plasma torch through its light and voltage fluctuations. J. Phys. D: Appl. Phys., Vol. 33,2000: 270-274
    [157] L. Lin, B. Y. Wang, and C. K. Wu. Characteristics of plasma spraying torch with a hollow cathode. Plasma Sci. & Tech., Vol. 3,2001: 749-754
    [158] P. R. P. Barreto, E. D. Bosco, and S W Simpson. Arc rotation measurement in a low-power plasma torch. J. Phys. D: Appl. Phys., Vol. 32, 1999: 2630-2635
    [159] M. Hut, K. S. Kim, and S. H. Hong. Operational features and air plasma characteristics of a thermal plasma torch with hollow electrodes. Plasma Source Sci. Technol., Vol. 12, 2003:255-264
    [160] R. Ramasamy, V. Selvarajan. Current-voltage characteristics of a non-transferred plasma spray torch. Eur. Phys. J. D, Vol. 8,2000:125-129
    [161] S. Ghorui, S. N. Sahasrabudhe, P. S. S. Murthy, A. K. Das, and N. Venkatramani. Dynamic characteristics of a hollow copper electrode plasma torch through measurement & analysis of acoustic, optical, and voltage fluctuations. IEEE Trans. Plasma Sci., Vol.28,2000: 2179-2186
    [162] Y. Gao, L. T. An, C. Q. Sun and Y. Q. Fu. Effect of anode arc root position on the behavior of the DC non-transferred plasma jet at field free region. Plasma Chem. Plasma Process.,Vol. 25,2005:215-226
    [163] R. Benocci, R. Florio, A. Galassi, M. Paolicchio, M. Piselli, C. Sala, M. Sciascia, and E. Sindoni. Experimental study for the optimization of plasma torch operations. Eur. Phys. J.D, Vol. 6, 1999: 269-279
    
    [164] W. H. Zhao, K. Tian, H. Z. Tang, D. Liu, and G Z. Zhang. Experimental studies on the unsteadiness of atmospheric pressure plasma jet. J. Phys. D: Appl. Phys., Vol. 35, 2002: 2815-2822
    [165] W. X. Pan, X. Meng, and C. K. Wu. Arc voltage fluctuation in DC laminar and turbulent plasma jets generation. Plasma Sci. & Technol., Vol. 8,2006: 416-421
    [166] J. L. Dorier, M. Gindrat, C. Hollenstein, A. Salito, M. Loch, G. Barbezat. Time-rosolved imaging of anodic arc root behavior during fluctuations of a DC plasma spraying torch.IEEE nans. Plasma Sci., Vol. 29,2001: 494-501
    [167] W. X. Pan, T. Li, X. Meng, X. Chen, C. K. Wu. Arc root attachment on the anode surface of arc plasma torch observed with a novel method. Chin. Phys. Lett., Vol. 22, 2005: 2895-8
    [168] W. X. Pan, X. Meng, T. Li, X. Chen, C. K. Wu. Comparative observation of Ar, Ar-H_2 and Ar-N_2 DC arc plasma jets and their arc root behavior at reduced pressure. Plasma Sci. & Technol., Vol. 9,2007: 152-157
    [169] A. Gleizes, J. J. Gonzalez, and P. Freton. Thermal plasma modeling. J. Phys. D: Appl. Phys.,Vol.38,2005:R153-R183
    [170]K.C.Hsu,K.Etemadi,and E.Pfender.Study of the free-buming high-intensity argon arc.J.Appl.Phys.,Vol.54,1983:1293-1301
    [171]W.H.Kim,H.G.Fan,and S.J.Na.A mathematical model of gas tungsten arc welding considering the cathode and the free surface of the weld pool.Metall.& Mater.Trans.B,Vol.28B,1997:679-686
    [172]J.Menart,S.Malik,and L.Lin.Coupled radiative,flow and temperature-field analysis of a free-burning arc.J.Phys.D:Appl.Phys.,Vol.33,2000:257-269
    [173]K.Etemadi,G.Y.Zhao,and J.Mostaghimi.Impact of cathode evaporation on a free burn -ing arc.J.Phys.D:Appl.Phys.,Vol.22,1989:1692-1696
    [174]A.Gleizes,M.Bouaziz,J.J.Gonzalez,and M.Razafinimanana.Influence of the anode material on an argon arc.IEEE Trans.Plasma Sci.,Vol.25,1997:891-896
    [175]J.J.Gonzalez and A.Gleizes.Mathematical modeling of a free-burning arc in the presence of metal vapor.J.Appl.Phys.,Vol.74,1993:3065-3070
    [176]M.Tanaka,H.Terasaki,M.Ushio,J.J.Lowke.Numerical study of a free burning argon arc with anode melting.Plasma Chem.Plasma Process.,Vol.23,2003:585-606
    [177]J.Menart,L.Lin.Numerical study of a free-burning argon arc with copper contamination from the anode.Plasma Chem.Plasma Process.,Vol.19,1999:153-170
    [178]M.T.C.Tang,J.L.Zhang,and J.D.Yan.On the use of langmuir probes for the diagnosis of atmospheric thermal plasmas.IEEE Trans.Plasma Sci.,Vol.33,2005:1431-1442
    [179]J.Menart,L.Lin.Numerical study of high-intensity free-burning arc.J.Thermophys.Heat Transl.,Vol.12,1998:500-506
    [180]李和平,陈熙.自由燃烧电弧中传热与流动的数值模拟.工程热物理学报,Vol.22,2001:78-81
    [181]J.J.Lowke,R.Morrow,J.Haidar.A simplified unified theory of arcs and their electrodes.J.Phys.D:Appl.Phys.,Vol.30,1997:2033-2042
    [182]A.R.Marco,T.Gerardo,and M.John.A comparison between two different numerical formations of welding arc simulation.Modelling Simul.Mater.Sci.Eng.,Vol.11,2003:675-696
    [183]L.Sansonnens,J.Haidar,and J.J.Lowke.Prediction of properties of free burning arcs including effects of ambipolar diffusion,J.Phys.D:Appl.Phys.,Vol.33,2000:148-157
    [184]F.Lago,J.J.Gonzalez,P.Freton and A.Gleizes.A numerical modeling of an electric arc and its interaction with the anode:Ⅰ.The two-dimensional model.J.Phys.D:Appl.Phys.,Vol.37,2004:883-897
    [185]F.Lago,J.J.Gonzalez,P.Freton and A.Gleizes.Numerical modeling of an electric arc and its interaction with the anode:Ⅱ.The three-dimensional model-influence of external forces on the arc column.J.Phys.D:Appl.Phys.,Vol.38,2005:306-318
    [186]P.Freton,J.J.Gonzalez,A.Gieizes.Comparison between a two-and a three-dimensional arc plasma configuration.J.Phys.D:Appl.Phys.,Vol.33,2000:2442-2452
    [187]V.Colombo,E.Ghedini,A.Mentrelli.Time dependent 3D numerical simulation of transfer -red arc plasma treatment.Proc.17~(th)Int.Symp.Plasma Chem.,Toronto,Canada,2005
    [188]R.Bini,M.Monno,M.I.Boulos.Numerical and experimental study of transferred arcs in argon.J.Phys.D:Appl.Phys.,Vol.39,2006:3253-3266
    [189]R.Bini,M.Monno,and M.I.Boulos.Effects of cathode nozzle geometry and process parameters on the energy distribution for an argon transferred arc.Plasma Chem.Plasma Process.,Vol.27,2007:359-380
    [190]A.Blais,P.Prouix,M.I.Boulos.Three-dimensional numerical modeling of a magnetically deflected DC transferred arc in argon.J.Phys.D:Appl.Phys.,Vol.36,2003:488-496
    [191]D.Bernardi,V.Colombo,E.Ghedini,S.Melini,and A.Mentrelli.Three-dimensional timedependent modeling of magnetically deflected transferred arc.IEEE Trans.Plasma Sci.,Vol.33,2005:428-429
    [192]K.C.Hsu and E.Pfender.Two-temperature modelling of the free-burning,high-intensity arc.J.Appl.Phys.,Vol.54,1983:4359-4366
    [193]J.Haidar.Departures from local thermodynamic equilibrium in high-current free burning arcs in argon.J.Phys.D:Appl.Phys.,Vol.30,1997:2737-2743
    [194]J.Haidar.Non-equilibrium modelling of transferred arcs.J.Phys.D:Appl.Phys.,Vol.32,1999:263-272
    [195]R.Westhoff and J.Szekely.A model of fluid,heat flow,and electromagnetic phenomena in a non-transferred arc plasma torch.J.Appl.Phys.,Vol.70,1991:3455-3466
    [196]A.B.Murphy,P.Kovitya.Mathematical model and laser-scattering temperature measurements of a direct-current plasma torch discharging into air.J.Appl.Phys.,Vol.73,1993:4759-4769
    [197]J.M.Bauchire,J.J.Gonzalez,and A.Gleizes.Modeling of a DC plasma torch in laminar and turbulent flow.Plasma Chem.& Plasma Process.,Vol.17,1997:409-432
    [198]H.X.Wang and X.Chen.Numerical modeling of high-intensity transferred arc with a water-cooled constrictor tube.Plasma Sci.& Technol.,Vol.7,2005:3051-3056
    [199]C.M.Dixon,J.D.Yan,and M.T.C.Fang.A comparison of three radiation models for the calculation of nozzle arcs.J.Phys.D:Appl.Phys.,Vol.37,2004:3309-3318
    [200]M.Hur and S.H.Hong.Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod-and well-type cathodes,J.Phys.D:Appl.Phys.,Vol.35,2002:1946-1954
    [201]P.Han,X.Chen.Modeling of the subsonic-supersonic flow and heat transfer in a DC are plasma torch.Plasma Chem.& Plasma Process.,Vol.21,2001:249-264
    [202]X.Q.Yuan,H.Li,T.Z.Zhao,F.Wang,W.K.Guo,and P.Xu.Comparative study of flow characteristics inside plasma torch with different nozzle configurations.Plasma Chem.Plasma Process.,Vol.24,2004:585-601
    [203]X.Q.Yuan,H.Li,T.Z.Zhao,W.K.Guo,and P.Xu.Effect of nozzle configuration on flow characteristics inside DC plasma torch.Jpn.J.Appl.Phys.,Vol.43,2004:7249-7253
    [204]K.D.Kang and S.H.Hong.Arc plasma jets of non-transferred plasma torch.IEEE Trans.Plasma Sci.,Vol.24,1996:89-90
    [205]J.J.Gonzalez,P.Freton and A.Gleizes.Comparisons between two-and three-dimensional models:gas injection and arc attachment,J.Phys.D:Appl.Phys.,Vol.35,2002:3181-91
    [206]L.Klinger,J.B,Vos,and K.Appert.A simplified gradient evaluation on non-orthogonal meshes;application to a plasma torch simulation method.Comput.Fluids,Vol.33,2004:643-654
    [207]J.P.Trelles,E.Pfender,J.Heberlein.Multiseale finite element modeling of arc dynamics in a DC plasma torch.Plasma Chem.Plasma Process,,Vol.26,2006:557-575
    [208]J.P.Trelles,E.Pfender,and J.V.R.Heberlein.Modelling of the arc reattachment process in plasma torebes.J.Phys.D:Appl.Phys.,Vol.40,2007:5635-5648
    [209]J.P.Trelles,J.V.R.Heberlein,and E.Pfender.Non-equilibrium modeling of arc plasma torches,J.Phys,D:Appl.Phys.,Vol.40,2007:5937-5952
    [210]P.J.Bhuyan and K.S.Goswami.Two-dimensional and three-dimensional simulation of dc plasma torches.IEEE Trans.Plasma Sci.,Vol.35,2007:1781-1786
    [211]H.P.Li and E.Pfender.Three dimensional modeling of the plasma spray process.J.Therm.Spray Technol.,Vol.16,2007:245-260
    [212]H.P.Li,E.Pfender.Three-dimensional effects inside a de arc plasma torch.IEEE Trans.Plasma Sci,,Vol.33,2005:400-401
    [213]H.P.Li,X.Chen.Three-dimensional modeling of a de non-transferred arc plasma torch.J.Phys.D:Appl.Phys.,Vol.34,2001:L99-L102
    [214]H.P.Li,and X.Chen.Three-dimensional modeling of the flow and heat transfer in a laminar non-transferred arc plasma torch.Chin.Phys.,Vol.11,2002:44-49
    [215]H.P.Li,E.Pfender,and X.Chen.Application of Steenbeck's minimum principle for three dimensional modelling of DC arc plasma torches,J.Phys.D:Appl.Phys.,Vol.36,2004:1084-1096
    [216]H.P.Li,J.Heberlein,and E.Pfender.Three-dimensional,non-equilibrium effects in a high intensity blown arc.IEEE Trans.Plasma Sci.,Vol.33,2005:402-403
    [217]W.D.Xia,L.C.Li,Y.H.Zhao,Q.Ma,B.H.Du,Q.Chen,L.Cheng.Dynamics of large scale magnetically rotating arc plasmas.Appl.Phys.Lett.,Vol.88,2006:211501-3
    [218]N.Desaulniers-Soucy,J.L.Meunier.A study of magnetically rotating arc stability using fluctuations in voltage,velocity and emission line intensity.J.Phys.D:Appl.Phys.,Vol.28,1995:2505-2513
    [219]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004
    [220]H.W.Emmons.Arc measurement of high-temperature gas transport properties.Phys.Fluids,Vol.10,1967:1125-1136
    [221]韩隆恒,岳兵,杨富荣.高温氩气传导特性实验研究.空气动力学学报,Vol.15,1997:444-450
    [222]陈熙,韩鹏,李和平.关于氩等离子体热导率的测量.空气动力学学报,Vol.17,1999:472-476
    [223]R.S.Devoto.Transport properties of ionized monatomic gases.Phys.Fluids,Vol.9,1966:1230-1240
    [224]R.S.Devoto.Transport coefficients of partially ionized argon.Phys.Fluids,Vol.10,1967:354-365
    [225]R.S.Devoto.Transport coefficients of ionized argon.Phys.Fluids,Vol.16,1973:616-623
    [226]J.O.Hirsehfelder,C.F.Curtiss,R.B.Bird.Molecular theory of gases and liquids.New York:Wiley,1966
    [227]S.Chapman and T.G.Cowling.The mathematical theory of non-uniform gases.2~(nd)edition,London:University of Cambridge Press,1970
    [228]A.B.Murphy.Diffusion in equilibrium mixtures of ionized gases.Phys.Rew.E,Vol.48,1993:3594-3603
    [229]A.B.Murphy and C.J.Arundell.Transport coefficients of argon,nitrogen,oxygen,argonnitrogen,and argon-oxygen plasmas.Plasma Chem.Plasma Process.,Vol.14,1994:451-490
    [230]A.B.Murphy.Transport coefficients of air,argon-air,nitrogen-air,and oxygen-air plasmas.Plasma Chem.Plasma Process.,Vol.15,1995:279-307
    [231]J.D.Ramshaw and C.H.Chang.Ambipolar diffusion in two-temperature multicomponent plasma.Plasma Chem.Plasma Process.,Vol.13,1993:489-498
    [232]J.D.Ramshaw.Hydrodynamic theory of multicomponent diffusion and thermal diffusion in multitemperature gas mixtures.J.Non-equilib.Thermodyn.,Vol.18,1993:121-134
    [233]J.D.Ramshaw and C.H.Chang.Multicomponent diffusion in two-temperature magnetohydrodynamics.Phys.Rew.E,Vol.53,1996:6382-6388
    [234]R.C.Bianchini,R.C.Favalli,M.M.Pimenta,and R.N.Szente.An improvement on the modeling of non-transferred plasma torches,J.Phys.D:Appl.Phys.,Vol.33,2000:134-40
    [235]刘学悫.阴极电子学.北京:科学出版社,1980
    [236]L.Z.Schlitz.Simulation of gas dynamics and electromagnetic processes in high-current arc plasmas.[PhD Thesis],Milwaukee:University of Wisconsin,1998
    [237]陶文铨.数值传热学.西安:西安交通大学出版社,1988
    [238]Fluent Inc.FLUENT6.0 User's Guide,2001
    [239]芦凤桂,姚舜,钱伟方.钨极氩弧焊焊接电弧数值分析.上海交通大学学报,Vol.37,2003:1862-1865
    [240]罗键.外加纵向磁场GTAW焊接熔池流体流动与传热行为的研究.西安:西安交通大学,1999
    [241]P.Kotalik and H.Nishiyama.Effect of external magnetic field on arc plasma flow.Proc.15~(th)Int.Symp.Plasma Chem.,Orleans,France,2001
    [242]P.Kotalik and H.Nishiyama.An effect of magnetic field on arc plasma flow.IEEE Trans.Plasma Sci.,Vol.30,2002:160-161
    [243]袁行球.直流电弧等离子体发生器的数值模拟及电子束离子阱物理研究:[博士学位论文].上海:复旦大学,2005
    [244]A.H.Dilawari,J.Szekely,and R.Westhoff.A comparison of experimental measurements and theoretical predictions regarding the behavior of a turbulent argon plasma jet discharge -ing into air.Plasma Chem.Plasma Process.,Vol.10,1990:501-513
    [245]C.H.Chang and J.D.Ramshaw.Numerical simulations of argon plasma jets flowing into cold air.Plasma Chem.Plasma Process.,Vol.13,1993:189-209
    [246]G.K.Hicken and C.E.Jackson.The effects of applied magnetic fields on welding ares.Weld J.,Vol.45,1966:S515-S524
    [247]V.N.Selyanenkov.Formation of the weld in a longitudinal magnetic field in argon-arc welding.Weld Prod.,Vol.22,1975:7-10
    [248]G.K.Hicken,N.D.Stucki,and H.W.Randall.Application of magnetically controlled welding ares.Weld.J.,Vol.55,1976:264-267
    [249]张九海,王其隆.韦伟平.小电流TIG焊电弧磁控特性的研究.焊接学报,Vol.11,2001:43-49
    [250]吴丰顺,王士元,史耀武,孙守礼,孙智富.纵向磁场作用下电弧的运动机制.武汉汽车工业大学学报,Vol.19,1997:43-46
    [251]罗键,贾昌中,王雅生,薛锦,吴毅雄.外加纵向磁场GTAW焊接机理.金属学报,Vol.37,2001:212-220
    [252]Y.B.Li,Z.Q.Lin,G.L.Chen,Y.S.Wang,and S.Y.Xi.Study on moving GTA weld pool in an externally applied longitudinal magnetic field with experimental and finite element methods.Modelling Simul.Mater.Sci.Eng.,Vol.10,2002:781-798
    [253]Z.Q.Lin,Y.B.Li,Y.S.Wang,G.L.Chin.Numerical analysis of a moving gas tungsten arc weld pool with an external longitudinal magnetic field applied.Int.J.Adv.Manuf.Technol.,Vol.27,2005:288-295

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700