用户名: 密码: 验证码:
CO_2在螺旋管内流动与传热特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋管因其传热效率高、结构紧凑、加工方便等优点,在高效蒸汽发生器和冷却器、电站锅炉、核反应堆、石油化工、以及制冷空调等领域得到广泛应用。自然工质CO2作为CFCs和HCFCs的替代工质已成为人们研究的热点,在制冷、热泵及低温余热发电系统中,CO2跨临界循环系统具有广阔的应用前景。研究螺旋管内CO2的流动与换热问题对于新型高效换热器的设计与应用具有重要的科学意义和实用价值。在充分考虑超临界以及亚临界状态下、尤其是准临界温度附近C02特殊的热物性变化基础上,本文自行设计并搭建了高压C02流动传热实验研究平台,通过热平衡、阻力与换热校正,验证了实验系统的可靠性,可以在宽广参数范围内深入开展螺旋管内CO2流动换热与阻力特性研究。
     在螺旋管内超临界压力C02传热特性研究方面,采用低压大电流加热方式,研究了恒热流密度条件下螺旋管内超临界压力C02的传热特性,获取了运行压力、质量流速和热流密度对换热特性的影响规律。结果表明沿程换热系数总体呈先上升后下降的趋势且极大值发生在主流平均温度小于准临界温度而壁温大于准临界温度条件下。通过理论分析,深入揭示了螺旋管中超临界压力C02热边界层发展、工质变物性以及浮升力和离心力的耦合作用规律,并对不同实验工况下的沿程及周向壁温和传热系数分布特性给出机理解释。基于实验获取的2346个实验数据,以准临界温度为界限,分别拟合出适用于低焓值和高焓值区间螺旋管内超临界CO2换热实验关联式。
     对螺旋管内超临界压力CO2的阻力特性开展研究,分析改变质量流速和热流密度时,摩擦压降、加速压降、重位压降以及摩擦压降与总压降比值的变化情况。发现摩擦因子随着热流密度呈先缓慢降低后升高的趋势。深入揭示浮升力对螺旋管内超临界压力下C02阻力特性影响机理,并提出基于实验数据的摩擦压降关联式。
     为揭示CO2在螺旋管内流动沸腾时的换热机理,对不同压力以及不同加热功率时,沿管长和横截面周向壁温分布规律进行研究。深入分析CO2流动沸腾时的干度、质量流速、系统J压力以及热流密度对局部沸腾换热的影响。发现螺旋管内壁温周向分布不均匀,指出浮升力和离心力的相对大小是导致周向壁温分布差异的主要原因。局部平均换热系数随热流密度以及进口压力的增加而显著增加,但增大质量流速对换热系数的影响不大,表明核态沸腾是CO2在螺旋管内流动沸腾的主要传热模式而强制对流效应较弱;发现了随着热流密度增加所引起的核态沸腾强度变化以及干涸和再润湿使得换热系数随出口干度的变化可分为三种变化趋势。并发展了本实验参数范围内C02立式螺旋管内流动沸腾传热系数计算关联式。
     研究了C02在螺旋管内的沸腾阻力特性,结果表明,亚临界压力C02在螺旋管内的摩擦压降随热流密度的升高而增大,而在不同加热功率下随质量流速会有不同变化趋势,整体呈上升而在小功率或较高质量流速出现下降趋势。压力升高时液相和气相之间的密度比减小,进而导致两相相对速度降低、摩擦压降减小。通过对实验数据回归分析,得到全液相摩擦乘子两相阻力关系式。
     本研究将为高效换热器的发展以及制冷空调领域相关设备的更新换代与新设备的设计开发提供参考依据。
Helically coiled tubes are widely used in a variety of practical applications such as steam generators and coolers, power plant boilers, nuclear reactors, petrochemical industry as well as refrigeration and air conditioning systems, due to their practical importance of high efficiency in heat transfer, compactness in structure and easiness in manufacturing. The investigation on natural refrigerant of carbon dioxide as an alternative refrigerant for CFCs and HCFCs was turned out to be a hot research topic, transcritical carbon dioxide cycle has a promising prospect of application in the areas of refrigeration, heat pump and low-grade waste recovery. The research on flow and heat transfer characteristics for CO2flowing through helically coiled tube has important scientific and practical significance for the design and application of new efficient heat exchangers. In full consideration of physical properties for CO2at supercritical and subcritical pressures especially near the pseudo-critical temperature, an experimental setup for CO2flow and heat transfer investigation was built up and the reliability of the setup was verified by flow resistance, heat transfer coefficients and thermal balance calibrations in this paper, experiments can be widely conducted on flow and heat transfer characteristics for CO2in the helically coiled tube in this experimental setup.
     Experimental investigation was conducted on the heat transfer characteristics of CO2at supercritical pressures under the uniform heat flux boundary conditions, the influences of operating pressure, mass flux and heat flux on heat transfer characteristics were investigated experimentally. It was found that the heat transfer coefficients first increased and then decreased. The maximum values of heat transfer coefficients always occurred at the temperature range of Tb     Research about the flow resistance for CO2heated at supercritical pressures in the helically coiled tube was conducted. Effects of mass flux and heat flux on the variations of frictional pressure drop, acceleration pressure drop, gravitational pressure drop and the ratio of the frictional pressure drop to the total pressure drop were identified and analyzed. The friction factor was found to decrease gradually and then increase with heat flux. The mechanism of buoyancy force effect on the flow resistance is analyzed. A new correlation of friction factor is presented based on the experimental data.
     As for flow boiling heat transfer of CO2through the helically coiled tube, experiments were conducted on inner wall temperature distributions along the flow direction and the circumference at different pressures and different heat fluxes. The effects of vapor quality, mass flux, heat flux and operating pressure on heat transfer coefficient distribution were discussed. The experimental results show that inner wall temperature distributions along the circumference were non-uniform, and it was pointed out that the relative significance of the buoyancy force and centrifugal is the main reason for this phenomenon. The local average heat transfer coefficient increases with increasing heat flux and inlet pressure, but the increment of mass flux has no effect on the heat transfer, suggesting that the nucleate boiling is the dominant mechanism while the forced convection effect is weak. The intensity of nucleate boiling changes with increasing heat flux and the variation of heat transfer coefficient with outlet vapor quality can be divided into three different trends, which is induced by the alternative of wall dry-out and rewetting. A new correlation of local average heat transfer coefficient has been proposed based on the data points.
     Research on the flow resistance for CO2flow boiling at the subcritical pressure in the helically coiled tube was studied. The results show that the frictional pressure drop for flow boiling increases with increasing heat flux, it shows different trends with the mass flux at different heating power, the results show totally increasing trend but decreasing at low heat flux or high mass flux. The frictional pressure drop decreased with increasing operating pressure because of the ratio of density between liquid and gas decreasing. A new correlation of two-phase frictional pressure drop is presented based on the experimental data.
     This research work can provide useful knowledge and a reference for the development of high efficiency heat exchanger and improvement of the equipment for refrigeration and air-conditioning applications.
引文
[I]Perkins J. Apparatus for producing ice and cooling fluids[P]. United Kingdom patent 1834,6662
    [2]Downing R. C. History of the organic fluorine industry[J]. Kirk-Othmer Encyclopedia of Chemical Technology,1966,9:704-707
    [3]Molina M. J., Rowland F. S. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone[J]. Nature,1974,249(5460): 810-12
    [4]Riffat S. B., Afonso C. F., Oliveira A. C., et al. Natural refrigerants for refrigeration and air-conditioning systems[J]. Applied Thermal Engineering, 1997,17(1):33-42
    [5]Lorentzen G. Revival of carbon dioxide as a refrigerant[J]. International Journal of Refrigeration,1994,17(5):292-301
    [6]Lorentzen G. The use of natural refrigerants:a complete solution to the CFC/HCFC predicament[J]. International Journal of Refrigeration,1995,18(3): 190-197
    [7]Guo L., Feng Z., Chen X. An experimental investigation of the frictional pressure drop of steam-water two-phase flow in helical coils[J]. International Journal of Heat and Mass Transfer,2001,44(14):2601-2610
    [8]Lin C. X., Zhang P., Ebadian M A. Laminar forced convection in the entrance region of helical pipes[J]. International journal of heat and mass transfer,1997, 40(14):3293-3304
    [9]李隆键,辛明道.自然对流对螺旋管内湍流对流换热影响[J].大连理工大学学报,2003,41(1):50-54
    [10]Cioncolini A., Santini L. An experimental investigation regarding the laminar to turbulent flow transition in helically coiled pipes[J]. Experimental Thermal and Fluid Science,2006,30(4):367-380
    [11]Huttl T. J., Friedrich R. Influence of curvature and torsion on turbulent flow in helically coiled pipes[J]. International Journal of Heat and Fluid Flow,2000, 21(3):345-353
    [12]Dickinson N. L., Welch C. P. Heat transfer to supercritical water[J]. Trans. Am. Soc. Mech. Engrs.,1958,80
    [13]Hess H. L., Kunz H. R. A study of forced convection heat transfer to supercritical hydrogen[J]. Journal of Heat Transfer,1965,87(1):41-46
    [14]Giarratano P. J., Arp V. D., Smith R. V. Forced convection heat transfer to supercritical helium[J]. Cryogenics,1971,11(5):385-393
    [15]Yamagata K., Nishikawa K., Hasegawa S., et al. Forced convective heat transfer to supercritical water flowing in tubes[J]. International Journal of Heat and Mass Transfer,1972,15(12):2575-2593
    [16]Pitla S. S., Robinson D. M., Groll E. A., et al. Heat transfer from supercritical carbon dioxide in tube flow:a critical review[J]. Hvac&R Research,1998,4(3) 281-301
    [17]He S., Kim W. S., Jackson J. D. A computational study of convective heat transfer to carbon dioxide at a pressure just above the critical value[J]. Applied Thermal Engineering,2008,28(13):1662-1675
    [18]Duffey R. B., Pioro I. L. Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005,235(8):913-924
    [19]Pioro I. L., Khartabil H. F., Duffey R. B. Heat transfer to supercritical fluids flowing in channels-empirical correlations (survey)[J]. Nuclear Engineering and Design,2004,230(1):69-91
    [20]Bringer R. P, Smith J. M. Heat transfer in the critical region[J]. AIChE Journal, 1957,3(1):49-55
    [21]Hall W. B., Jackson J. D. Heat transfer near the critical point[J]. Advances in Heat Transfer,1971,7(1):86
    [22]Bourke P. J., Pulling D. J., Gill L. E., et al. Forced convective heat transfer to turbulent CO2 in the supercritical region[J]. International Journal of Heat and Mass Transfer,1970,13(8):1339-1348
    [23]Adebiyi G. A., Hall W. B. Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe[J]. International Journal of Heat and Mass Transfer,1976,19(7):715-720
    [24]Kurganov V. A., Kaptilnyi A. G. Flow structure and turbulent transport of a supercritical pressure fluid in a vertical heated tube under the conditions of mixed convection. Experimental data[J]. International journal of heat and mass transfer,1993,36(13):3383-3392
    [25]Liao S. M., Zhao T. S. Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels[J]. Journal of Heat Transfer,2002,124(3):413-420
    [26]Liao S. M., Zhao T. S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer,2002,45(25):5025-5034
    [27]Bae Y. Y. Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel[J]. Nuclear Engineering and Design,2011,241(8):3164-3177
    [28]Yoon S. H., Kim J. H., Hwang Y. W., et al. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region[J]. International Journal of Refrigeration,2003,26(8): 857-864
    [29]Dang C., Hihara E. In-tube cooling heat transfer of supercritical carbon dioxide. Part 1. Experimental measurement[J]. International journal of refrigeration,2004,27(7):736-747
    [30]Dang C., Hihara E. In-tube cooling heat transfer of supercritical carbon dioxide. Part 2. Comparison of numerical calculation with different turbulence models[J]. International journal of refrigeration,2004,27(7):748-760
    [31]Dang C, Hihara E. Numerical study on in-tube laminar heat transfer of supercritical fluids[J]. Applied Thermal Engineering,2010,30(13):1567-1573
    [32]Dang C, Iino K, Fukuoka K, et al. Effect of lubricating oil on cooling heat transfer of supercritical carbon dioxide[J]. International journal of refrigeration,2007,30(4):724-731
    [33]Jiang P., Shi R.F., Zhao C.R., et al. Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures in vertical porous tubes[J]. International Journal of Heat and Mass Transfer,2008,51(25): 6283-6293
    [34]Jiang P. X., Xu Y. J., Lv J., et al. Experimental investigation of convection heat transfer of CO2 at super-critical pressures in vertical mini-tubes and in porous media[J]. Applied Thermal Engineering,2004,24(8):1255-1270
    [35]Kim J. K., Jeon H. K., Lee J. S. Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes[J]. Nuclear Engineering and Design,2007,237(15): 1795-1802
    [36]Kim J. K., Jeon H. K., Lee J. S. Wall temperature measurements with turbulent flow in heated vertical circular/non-circular channels of supercritical pressure carbon-dioxide[J]. International journal of heat and mass transfer,2007,50(23): 4908-4911
    [37]Bruch A., Bontemps A., Colasson S.. Experimental investigation of heat transfer of supercritical carbon dioxide flowing in a cooled vertical tube[J]. International Journal of Heat and Mass Transfer,2009,52(11):2589-2598
    [38]Fang X., Xu Y. Modified heat transfer equation for in-tube supercritical CO2 cooling[J]. Applied Thermal Engineering,2011,31(14):3036-3042
    [39]Kim D. E., Kim M. H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design,2010,240(10):3336-3349
    [40]Huai X. L., Koyama S., Zhao T. S. An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions[J]. Chemical Engineering Science,2005,60(12): 3337-3345
    [41]Schnurr N. M., Sastry V. S., Shapiro A. B. A numerical analysis of heat transfer to fluids near the thermodynamic critical point including the thermal entrance region[J]. Journal of heat transfer,1976,98(4):609-615
    [42]Van der Kraan M., Peeters M. M. W., Cid M. V., et al. The influence of variable physical properties and buoyancy on heat exchanger design for near-and supercritical conditions[J]. The Journal of supercritical fluids,2005, 34(1):99-105
    [43]McEligot D. M., Jackson J. D. "Deterioration" criteria for convective heat transfer in gas flow through non-circular ducts[J]. Nuclear engineering and design,2004,232(3):327-333
    [44]Mehrabi M, Pesteei S. M. Adaptive neuro-fuzzy modeling of convection heat transfer of turbulent supercritical carbon dioxide flow in a vertical circular tube[J]. International Communications in Heat and Mass Transfer,2010, 37(10):1546-1550
    [45]Cao X. L., Rao Z. H., Liao S. M. Laminar convective heat transfer of supercritical CO2 in horizontal miniature circular and triangular tubes[J]. Applied Thermal Engineering,2011,31(14):2374-2384
    [46]Zhang Y., Zhang C., Jiang J. Numerical simulation of heat transfer of supercritical fluids in circular tubes using different turbulence models[J]. Journal of nuclear science and technology,2011,48(3):366-373
    [47]Bazargan M., Mohseni M. Effect of turbulent Prandtl number on convective heat transfer to turbulent up flow of supercritical carbon dioxide[A]. ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences[C]. American Society of Mechanical Engineers,2009:295-302
    [48]Du Z., Lin W., Gu A. Numerical investigation of cooling heat transfer to supercritical CO2 in a horizontal circular tube[J]. The Journal of Supercritical Fluids,2010,55(1):116-121
    [49]Bredesen A. M., Hafner A., Pettersen J., et al. Heat transfer and pressure drop for in-tube evaporation of CO2[J]. Science et technique du froid,1997:35-49
    [50]Park C. Y., Hrnjak P. S. Flow boiling heat transfer of CO2 at low temperatures in a horizontal smooth tube[J]. Journal of heat transfer,2005,127(12): 1305-1312
    [51]Park C. Y., Hrnjak P. S. C02 and R410A flow boiling heat transfer, pressure drop, and flow pattern at low temperatures in a horizontal smooth tube[J]. International Journal of Refrigeration,2007,30(1):166-178
    [52]Jang J. Condensation of R744 at low temperatures[D]. University of Illinois at Urbana-Champaign,2004
    [53]Cavallini A., Col D. D., Doretti L., et al. Condensation in horizontal smooth tubes:a new heat transfer model for heat exchanger design[J]. Heat Transfer Engineering,2006,27(8):31-38
    [54]Park C. Y., Hrnjak P. CO2 flow condensation heat transfer and pressure drop in multi-port microchannels at low temperatures[J]. International Journal of Refrigeration,2009,32(6):1129-1139
    [55]Son C. H., Oh H. K. Condensation heat transfer characteristics of carbon dioxide in a horizontal smooth tube[J]. Experimental Thermal and Fluid Science,2012,36:233-241
    [56]Cho J. M., Kim M. S. Experimental studies on the evaporative heat transfer and pressure drop of CO2 in smooth and micro-fin tubes of the diameters of 5 and 9.52 mm[J]. International Journal of Refrigeration,2007,30(6):986-994
    [57]Cheng L., Mewes D. Review of two-phase flow and flow boiling of mixtures in small and mini channels[J]. International Journal of Multiphase Flow,2006, 32(2):183-207
    [58]Cheng L., Ribatski G., Thome J. R. New prediction methods for CO2 evaporation inside tubes:Part Ⅱ-An updated general flow boiling heat transfer model based on flow patterns[J]. International Journal of Heat and Mass Transfer,2008,51(1):125-135
    [59]Cheng L., Ribatski G., Wojtan L., et al. New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes[J]. International Journal of Heat and Mass Transfer,2006,49(21):4082-4094
    [60]Cheng L., Thome J. R. Cooling of microprocessors using flow boiling of CO2 in a micro-evaporator:Preliminary analysis and performance comparison[J]. Applied Thermal Engineering,2009,29(11):2426-2432
    [61]Thome J. R., El Hajal J. Flow boiling heat transfer to carbon dioxide:general prediction method[J]. international Journal of Refrigeration,2004,27(3): 294-301
    [62]Pettersen J. Flow vaporization of CO2 in microchannel tubes[J]. Experimental Thermal and Fluid Science,2004,28(2):111-121
    [63]Hihara E., Dang C. Boiling heat transfer of carbon dioxide in horizontal tubes[A]. ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference[C]. American Society of Mechanical Engineers,2007:843-849
    [64]Thome J. R., Ribatski G. State-of-the-art of two-phase flow and flow boiling heat transfer and pressure drop of CO2 in macro-and micro-channels[J]. International Journal of Refrigeration,2005,28(8):1149-1168
    [65]Yoon S. H., Cho E. S., Hwang Y. W., et al. Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development[J]. International Journal of refrigeration,2004,27(2):111-119
    [66]Yun R., Kim Y., Soo Kim M., et al. Boiling heat transfer and dryout phenomenon of CO2 in a horizontal smooth tube[J]. International Journal of Heat and Mass Transfer,2003,46(13):2353-2361
    [67]Yun R., Kim Y., Kim M. S. Convective boiling heat transfer characteristics of CO2 in microchannels[J]. International Journal of Heat and Mass Transfer, 2005,48(2):235-242
    [68]Yun R., Kim Y, Soo Kim M. Flow boiling heat transfer of carbon dioxide in horizontal mini tubes[J]. International Journal of Heat and Fluid Flow,2005, 26(5):801-809
    [69]Yun R., Kim Y. Post-dryout heat transfer characteristics in horizontal mini-tubes and a prediction method for flow boiling of CO2[J]. International Journal of Refrigeration,2009,32(5):1085-1091
    [70]Ducoulombier M., Colasson S., Bonjour J., et al. Carbon dioxide flow boiling in a single microchannel-Part II:Heat transfer[J]. Experimental Thermal and Fluid Science,2011,35(4):597-611
    [71]Ozawa M., Ami T., Umekawa H., et al. Forced flow boiling of carbon dioxide in horizontal mini-channel[J]. International Journal of Thermal Sciences,2011, 50(3):296-308
    [72]丁国良,黄冬平,张春路.跨临界二氧化碳汽车空调特性分析[J].制冷学报,2003(3):17-23
    [73]梁贞潜,丁国良.二氧化碳汽车空调器仿真与优化[J].上海交通大学学报,2002,36(10):1396-1400
    [74]黄冬平,丁国良,张春路.不同跨临界二氧化碳制冷循环的性能比较[J].上海交通大学学报,2003,37(7):1094-1097
    [75]赵丹,吴志刚,丁国良.超临界C02热力性质及迁移性质快速计算方法[J].上海交通大学学报,2008,42(8):1269-1273
    [76]石润富,姜培学,邓建强,等.超临界C02在烧结多孔圆管中换热的实验研究[J].工程热物理学报,2008(2):13-16
    [77]石润富,姜培学,张宇.细圆管内超临界二氧化碳对流换热的实验研究[J].工程热物理学报,2007,28(6):995-997
    [78]李志辉,姜培学.超临界压力C02在垂直管内对流换热数值模拟[J].原子能科学技术,2009,43(3):247-251
    [79]李志辉,姜培学.超临界压力C02在垂直管内对流换热准则关联式[J].核动力工程,2010(5):72-75
    [80]林高平.跨临界C02制冷循环性能的研究[J].西安交通大学学报,1998,32(8):35-38
    [81]饶政华,廖胜明.超临界C02水平细微管内层流流动与换热的数值模拟[J].热科学与技术,2005,4(2):113-117
    [82]马一太,王侃宏.带膨胀机的C02跨(超)临界逆循环的热力学分析[J].工程热物理学报,1999,20(6):661-665
    [83]淮秀兰.微通道内超临界二氧化碳的压降与传热特性[J].工程热物理学报,2004,25(5):843-845
    [84]Williams G. S., Hubbell C. W., Fenkell G. H. Experiments at Detroit, Mich., on the effect of curvature upon the flow of water in pipes[J]. Transactions of the American Society of Civil Engineers,1902,47(1):1-196
    [85]Eustice J. Experiments on stream-line motion in curved pipes[J]. Proceedings of the Royal Society of London. Series A,1911,85(576):119-131
    [86]Dean W. R. XVI. Note on the motion of fluid in a curved pipe[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1927, 4(20):208-223
    [87]Mori Y., Nakayama W. Study of forced convective heat transfer in curved pipes (2nd report, turbulent region)[J]. International journal of heat and mass transfer, 1967,10(1):37-59
    [88]Ito H. Friction factors for turbulent flow in curved pipes[J]. J. Basic Eng,1959, 81(2):123-134
    [89]Schmidt E. F. Warmeubergang und druckverlust in rohrschlangen[J]. Chemie Ingenieur Technik,1967,39(13):781-789
    [90]Srinivasan P.S., Nandapurkar S.S., Holland F.A. Pressure drop and heat transfer in coils[J]. Transactions of the Institution of Chemical Engineers and the Chemical Engineer,1968,46(4):113-119
    [91]Janssen L. A. M., Hoogendoorn C. J. Laminar convective heat transfer in helical coiled tubes[J]. International Journal of Heat and Mass Transfer,1978, 21(9):1197-1206
    [92]Cioncolini A., Santini L. On the laminar to turbulent flow transition in diabatic helically coiled pipe flow[J]. Experimental thermal and fluid science,2006, 30(7):653-661
    [93]White C. M. Streamline flow through curved pipes[J]. Proceedings of the Royal Society of London. Series A,1929,123(792):645-663
    [94]Mishra P., Gupta S. N. Momentum transfer in curved pipes.1. Newtonian fluids[J]. Industrial & Engineering Chemistry Process Design and Development,1979,18(1):130-137
    [95]Dravid A. N., Smith K. A., Merrill E. W., et al. Effect of secondary fluid motion on laminar flow heat transfer in helically coiled tubes[J]. AIChE Journal,1971,17(5):1114-1122
    [96]Singh S. P. N., Bell K. J. Laminar flow heat transfer in a helically-coiled tube[A]. Int. Heat Transfer Conference[C], Tokyo.1974
    [97]Lee J. B., Simon H. A., Chow J. C. F. Buoyancy in developed laminar curved tube flows[J]. International journal of heat and mass transfer,1985,28(3): 631-640
    [98]Yang G., Dong Z. F., Ebadian M. A. Laminar forced convection in a helicoidal pipe with finite pitch[J]. International Journal of Heat and Mass Transfer,1995, 38(5):853-862
    [99]Ali M. E. Laminar natural convection from constant heat flux helical coiled tubes[J]. International journal of heat and mass transfer,1998,41(14): 2175-2182
    [100]Shokouhmand H., Salimpour M. R. Optimal Reynolds number of laminar forced convection in a helical tube subjected to uniform wall temperature[J]. International communications in heat and mass transfer,2007,34(6):753-761
    [101]Ghorbani N., Taherian H., Gorji M., et al. Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers [J]. Experimental Thermal and Fluid Science,2010,34(7):900-905
    [102]Moawed M. Experimental study of forced convection from helical coiled tubes with different parameters[J]. Energy Conversion and Management,2011, 52(2):1150-1156
    [103]Berg R. R., Bonilla C. F. Section of Mathematics and Engineering:Heating of Fluids in CoiIs[J]. Transactions of the New York Academy of Sciences,1950, 13(1 Series II):12-18
    [104]Seban R. A., McLaughlin E. F. Heat transfer in tube coils with laminar and turbulent flow[J]. International journal of heat and mass transfer,1963,6(5): 387-395
    [105]Rogers G. F. C., Mayhew Y. R. Heat transfer and pressure loss in helically coiled tubes with turbulent flow[J]. International Journal of Heat and Mass Transfer,1964,7(11):1207-1216
    [106]Chavez M., Zhixue W., Sen M. Turbulent convection in helicoidal tubes[J]. Warme-und Stoffubertragung,1988,22(1-2):55-60
    [107]Yamamoto K., Akita T., Ikeuchi H., et al. Experimental study of the flow in a helical circular tube[J]. Fluid Dynamics Research,1995,16(4):237-249
    [108]Yamamoto K., Aribowo A., Hayamizu Y., et al. Visualization of the flow in a helical pipe[J]. Fluid Dynamics Research,2002,30(4):251-267
    [109]Ju H., Huang Z., Xu Y., et al. Hydraulic performance of small bending radius helical coil-pipe[J]. Journal of Nuclear Science and Technology,2001,38(10): 826-831
    [110]Rippel G. R., Eidt Jr C. M., Jordan Jr H. B. Two-Phase Flow in a Coiled Tube. Pressure Drop, Holdup, and Liquid Phase Axial Mixing[J]. Industrial & Engineering Chemistry Process Design and Development,1966,5(1):32-39
    [111]Owhadi A., Bell K. J., Crain Jr B. Forced convection boiling inside helically-coiled tubes[J]. International Journal of Heat and Mass Transfer, 1968,11(12):1779-1793
    [112]Akagawa K., Sakaguchi T., Ueda M. Study on a gas-liquid two-phase flow in helically coiled tubes[J]. Bulletin of JSME,1971,14(72):564-571
    [113]Kasturi G., Stepanek J. B. Two phase flow-Ⅰ. Pressure drop and void fraction measurements in concurrent gas-liquid flow in a coil[J]. Chemical Engineering Science,1972,27(10):1871-1880
    [114]Stepanek J. B., Kasturi G. Two phase flow-Ⅱ. Parameters for void fraction and pressure drop correlations[J]. Chemical Engineering Science,1972,27(10): 1881-1891
    [115]Cumo M., Farello G. E., Ferrari G. The influence of curvature in post dry-out heat transfer[J]. International Journal of Heat and Mass Transfer,1972,15(11): 2045-2062
    [116]Whalley P. B. Air-water two-phase flow in a helically coiled tube[J]. International Journal of Multiphase Flow,1980,6(4):345-356
    [117]Chen X. J., Zhou F. D. Forced convection boiling and post-dryout heat transfer in helical coiled tube[J]. Volume,1986,5:2221-2226
    [118]Czop V., Barbier D., Dong S. Pressure drop, void fraction and shear stress measurements in an adiabatic two-phase flow in a coiled tube[J]. Nuclear engineering and design,1994,149(1):323-333
    [119]Awwad A., Xin R C., Dong Z. F., et al. Measurement and correlation of the pressure drop in air-water two-phase flow in horizontal helicoidal pipes[J]. International journal of multiphase flow,1995,21(4):607-619
    [120]Xin R. C., Awwad A., Dong Z. F., et al. An investigation and comparative study of the pressure drop in air-water two-phase flow in vertical helicoidal pipes[J]. International journal of heat and mass transfer,1996,39(4):735-743
    [121]Kang H. J., Lin C. X., Ebadian M. A. Condensation of R134a flowing inside helicoidal pipe[J]. International journal of heat and mass transfer,2000,43(14): 2553-2564
    [122]Wongwises S., Polsongkram M. Evaporation heat transfer and pressure drop of HFC-134a in a helically coiled concentric tube-in-tube heat exchanger[J]. International journal of heat and mass transfer,2006,49(3):658-670
    [123]Chingulpitak S., Wongwises S. Two-phase flow model of refrigerants flowing through helically coiled capillary tubes[J]. Applied thermal engineering,2010, 30(14):1927-1936
    [124]Chingulpitak S., Wongwises S. Effects of coil diameter and pitch on the flow characteristics of alternative refrigerants flowing through adiabatic helical capillary tubes[J]. International Communications in heat and mass transfer, 2010,37(9):1305-1311
    [125]徐峰,郭烈锦.超临界压力下水在螺旋管内的混合对流换热[J].西安交通大学学报,2006,39(9):978-981
    [126]崔文智,廖全.R134a在螺旋管内的流动沸腾传热[J].重庆大学学报:自然科学版,2001,24(4):118-121
    [127]韩吉田.R-134a在三种不同放置方式螺旋管内凝结换热的实验研究[J].制冷学报,2004,25(2):1-6
    [128]王林,崔廷,孙翠霞,等.微型螺旋管蒸发器的沸腾换热与阻力特性实验研究[J].节能,2006,25(6):4-6
    [129]陈华军,章本照,麻剑锋,等.旋转螺旋管道中的非定常周期流动[J].自然科学进展,2003,13(8):851-858
    [130]Taler J., Zima W. Solution of inverse heat conduction problems using control volume approach[J]. International Journal of Heat and Mass Transfer,1999, 42(6):1123-1140
    [131]Son C. H., Park S. J. An experimental study on heat transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a horizontal tube[J]. International Journal of Refrigeration,2006,29(4):539-546
    [132]Li X., Zhong F., Fan X., et al. Study of turbulent heat transfer of aviation kerosene flows in a curved pipe at supercritical pressure[J]. Applied Thermal Engineering,2010,30(13):1845-1851
    [133]Mastrullo R., Mauro A. W., Rosato A., et al. Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube[J]. International Journal of Heat and Mass Transfer,2009,52(19):4184-4194
    [134]Padovan A., Del Col D., Rossetto L. Experimental study on flow boiling of R134a and R410A in a horizontal microfin tube at high saturation temperatures[J]. Applied Thermal Engineering,2011,31(17):3814-3826
    [135]Xin R. C., Ebadian M. A. The effects of Prandtl numbers on local and average convective heat transfer characteristics in helical pipes[J]. Journal of heat transfer,1997,119(3):467-473
    [136]Merkel F., Die Grundlagen der Warmeubertragung. Advances in Engineering Fluid Mechanics Multiphase Reactor[J]. Advances in Engineering Fluid Mechanics 1927,4:397-408
    [137]Jackson J. D., Hall W. B. Forced convection heat transfer to fluids at supercritical pressure[J]. Turbulent forced convection in channels and bundles, 1979,2:563-611
    [138]Huang S. F., Ma Y. T., Gu H. Y., et al. Heat Transfer Analysis in Mixed Convection[J].18th International Conference on Nuclear Engineering[C]. American Society of Mechanical Engineers,2010:101-105
    [139]唐人虎,尹飞,陈听宽.超临界变压运行直流锅炉内螺纹管螺旋管圈水冷壁的传热特性研究[J].中国电机工程学报,2005,25(16):90-95
    [140]Jackson J. D. Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors[J]. Proceedings of the 13th Pacific basin nuclear conference[C]. Shenzhen City, China.2002:21-25
    [141]Jackson J. D., Fewster J. Forced convection data for supercritical pressure fluids[M]. Simon Engineering Laboratory, University of Manchester,1975
    [142]Meyer J. P., Olivier J. A. Transitional flow inside enhanced tubes for fully developed and developing flow with different types of inlet disturbances:Part Ⅱ-heat transfer[J]. International Journal of Heat and Mass Transfer,2011, 54(7):1598-1607
    [143]Tarbell J. M., Samuels M. R. Momentum and heat transfer in helical coils[J]. The Chemical Engineering Journal,1973,5(2):117-127
    [144]Hasson D. Streamline flow resistance in coils[J]. Res. Corresp,1955,1(1)
    [145]Hart J., Ellenberger J., Hamersma P. J. Single-and two-phase flow through helically coiled tubes[J]. Chemical engineering science,1988,43(4):775-783
    [146]Gnielinski V. Heat transfer and pressure drop in helically coiled tubes[J]. Proceeding of international meeting on reactor heat transfer[D], Karlsruhe. 1986:351-372
    [147]Santini L., Cioncolini A., Lombardi C., et al. Two-phase pressure drops in a helically coiled steam generator[J]. International Journal of Heat and Mass Transfer,2008,51(19):4926-4939
    [148]Prasad B., Das D. H., Prabhakar A. K. Pressure drop, heat transfer and performance of a helically coiled tubular exchanger[J]. Heat Recovery Systems and CHP,1989,9(3):249-256
    [149]Yanase S., Goto N., Yamamoto K. Dual solutions of the flow through a curved tube[J]. Fluid dynamics research,1989,5(3):191
    [150]Ruffell A. E. The application of heat transfer and pressure drop data to the design of helical coil once-through boilers[J]. IChemE. Symp. Ser.1974,38: 1-22
    [151]Filonenko G. K. Hydraulic resistance in pipes[J]. Teploenergetika,1954,1(4): 40-44
    [152]Mastrullo R., Mauro A. W., Rosato A., et al. Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube[J]. International Journal of Heat and Mass Transfer,2009,52(19):4184-4194
    [153]郭萌,赵亮,毛宇飞,等.高质量流速下立式螺旋管内汽液两相传热特性研究[J].工程热物理学报,2008,29(3):423-428
    [154]Liu Z., Winterton R. H. S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation[J]. International Journal of Heat and Mass Transfer,1991,34(11):2759-2766
    [155]Fang X. A new correlation of flow boiling heat transfer coefficients for carbon dioxide[J]. International Journal of Heat and Mass Transfer,2013,64: 802-807
    [156]Choi K. I., Pamitran A. S., Oh J. T. Two-phase flow heat transfer of CO2 vaporization in smooth horizontal minichannels[J]. International Journal of Refrigeration,2007,30(5):767-777
    [157]Chen J. C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development,1966,5(3):322-329
    [158]林宗虎.气液两相流和沸腾传热[M].西安:西安交通大学出版社.1987
    [159]徐济鋆.沸腾传热和气液两相流[M].北京:原子能出版社.2001
    [160]林瑞泰.沸腾换热[M].北京:科学出版社.1988
    [161]Tran T. N., Chyu M. C., Wambsganss M. W., et al. Two-phase pressure drop of refrigerants during flow boiling in small channels:an experimental investigation and correlation development[J]. International Journal of Multiphase Flow,2000,26(11):1739-1754
    [162]Lockhart R. W. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chem. Eng. Prog.,1949,45(1):39-48
    [163]Chisholm D. Two-phase flow in pipelines and heat exchangers[M]. London and New York:G. Godwin,1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700