用户名: 密码: 验证码:
微结构低损耗太赫兹光纤及光纤传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与石英光纤相似,太赫兹(Terahertz, THz)光纤及定向耦合器件是THz波传输和传感检测系统的一个重要部件。由于常用的光纤材料对THz波的本征吸收系数较大,设计具有低损耗、免受外界环境干扰和便于控制的THz光纤及光纤定向耦合器件非常困难。
     微结构光纤表面等离子体共振传感器具有灵敏度高、免标记及检测快速等优点,但基于微结构光纤制备的表面等离子体共振传感器往往存在纤芯模式与表面模不易匹配、表面等离子体模透入分析液的深度低的缺点,从而限制了传感器灵敏度的提高。
     针对光纤传感器存在的以上难题,本文运用数值分析方法,重点研究了基于微结构的太赫兹光纤及偏振分束器、光纤表面等离子体共振传感器以及单偏振单模光纤等关键器件。主要研究内容归纳如下:
     1.低损耗悬挂空芯THz光纤
     亚波长THz光纤可实现THz低损耗传输,但传输过程易受外界环境干扰。本文提出一种新型悬挂芯光纤,以等宽度介质层为组成结构,组成以空气为主体的简单结构THz光纤,利用高平均折射率区形成纤芯,低平均折射率区形成包层。这种结构通过调整介质层间距即可实现对THz传输损耗的调节,克服了之前悬挂芯光纤必须通过减小支撑条宽度及纤芯尺寸来调整传输损耗的缺点。这种悬挂空芯THz光纤还具有可以获得高双折射传输及组成双芯光纤的优点。保持横向介质层厚度不变,调节纵向介质层厚度即可获得低损耗高双折射THz波传输,双折射可达10-2量级。以传统方法设计的THz偏振分束器存在器件尺寸大,损耗高的缺点。我们发现以悬挂空芯结构组成的双芯THz光纤,其耦合特性具有强的偏振相关性,基于此原理可实现低损耗的THz偏振分束。
     2.低损耗十字架型THz光纤
     传统的全内反射型微结构光纤其纤芯尺寸均大于包层支撑条宽度,以形成全内反射传导机制。本文首次提出了一种纤芯与包层无明显划分区域的新型光纤,即十字架型THz光纤,分析并证实了其传光原理是基于光纤径向等效折射率从中心向外呈递减趋势,从而形成等效的全内反射传导。在同样的损耗要求下,这种光纤可采用比典型悬挂芯THz光纤厚一倍的介质层和更大的介质圆环内直径,且具有光纤结构简单,便于制作,易获得宽带THz波传输的特点。简单改变其中一个介质层的厚度,即可实现低损耗、高双折射传输的目的,增加一个介质层即可获得双芯结构。研究表明:双芯十字架型THz光纤呈现出单偏振耦合特性,即其中一个偏振模可以完全不发生耦合,而另一偏振产生低损耗耦合,呈现出与一般双芯光纤完全不同的耦合特性。
     3.单偏振单模光纤
     研究发现十字架型光纤同样可以应用近红外波段,通过简单地改变十字架型光纤横向和纵向介质层的夹角就可以用使光纤两偏振模的损耗差别增大。基于此现象可以实现单偏振单模的光传输。这种结构不存在偏振耦合现象,具有大的空气占空比,有利于传感应用时,进行液体、气体填充,并与传输光产生强的相互作用,实现高精度的传感应用。
     4.基于双层环形孔包层的微结构光纤表面等离子体共振传感器
     本文首次提出了一种双层环形孔包层的微结构光纤表面等离子体共振传感器,采用小纤芯结构,使纤芯基模的部分能量扩展到包层的第一层空气孔中,降低了纤芯基模有效折射率,实现了将共振波长调节到C+L波段,增加了所激发的表面等离子体波透入分析液的深度,提高了传感灵敏度。由于在第一层空气孔包层中加入了扇环形支撑臂,扇环形支撑臂沿径向是逐渐增宽的,控制支撑臂对应的圆心角的大小,在确保实现纤芯基模与表面等离子体模有一定耦合深度的同时纤芯基模仍为高斯型模场分布,便于普通高斯光源激发。
The terahertz (THz) propagation fibers and directional coupling devices are important components in THz propagation and sensing system which is similar to silica optical fiber. However, almost all materials are highly absorbent in the THz region making designs of the low-loss, isolated from disturbing of surrounding and easy operating THz fibers and fiber directional coupling devices challenging.
     The Surface Plasmon Resonance (SPR) sensors based on microstructured optical fiber (MOF) have advantages of high sensitivity, label-free, and rapid detection. Nevertheless, there are usually two principal difficulties in the development of the highly-sensitive MOF-based SPR sensors. One of the problems is that it is hard to realize phase matching between the core-guided mode and surface plasmon mode. The second problem is the difficulty to increase plasmon penetration depth into the analyte.
     In this dissertation, based on the simulation analyzing method, we focus on the research of several kinds of key sensing devices based on microstructure, including THz fiber, polarization splitter, SPR sensor and single-polarization single-mode fiber. The main contents of this dissertation are as follows:
     1. The low-loss suspended hollow-core THz fiber
     Low-loss transmission of THz waves can be realized in the sub-wavelength THz fiber, while the THz propagation is susceptible to high perturbation from any environmental contact on the surface. To conquer this difficulty, a suspended hollow-core THz fiber is designed in this dissertation, the dielectric strips with equal width are used to construct the fiber, and the majority space in the fiber is filled with air. The suggested configuration forms an effectively high-index core and low-index cladding. The transmission loss of the THz fiber can be tuned by adjusting the period of the dielectric strips, which is in contrast to the original suspended core THz fiber, where the low loss transmission can only be achieved by reducing the strip width and core size. The proposed suspended hollow-core THz fiber can also be applied to achieve highly-birefringent operation and two-core operation. By preserving the thickness of horizontal dielectric strips while tuning the thickness of the vertical dielectric strips, low-loss highly-birefringent operation can be achieved, the birefringence of the fiber can be on the order of10-2. The previously reported THz polarization splitters generally have long device length, and high transmission loss. The proposed suspended hollow-core can be applied to construct two-core THz fiber, which shows strong polarization-dependent coupling characteristics. Low-loss THz polarization splitter can be achieved based on the configuration.
     2. The low-loss crossed structure THz fiber
     The microstructured optical fiber based on total-reflection theory generally requires the core size larger than the cladding strips to supply light guiding mechanism. We reported in here a novel kind of THz fiber which does not have evident core and cladding regions. The refraction indexes along the radial direction in the so called cross-structure THz fiber shows an effectively gradient reduction, which is why the effectively total-reflection guidance can be achieved. Compared to the suspended core THz fiber with the same transmission loss, the thickness of the dielectric strip of this fiber can be twice thick and the inner diameter of the dielectric cirque can be even larger. The configuration also shows the merits of simple structure, easy fabrication and wide operational bandwidth. By simply adjusting the thickness of one direction, highly-birefringent transmission with loss loss can be achieved. Two-core THz fiber can be constructured by increasing the strips at one direction. It's found the proposed two-core THz fiber shows single-polarized coupling characteristics, that is, one of the polarization state do not coupling with each other, whereas another state show low loss coupling. Such phenomenon is totally different with the conventional two-core optical fibers.
     3. The single polarization and single mode fiber
     By simply adjusting the angle between the two dielectric layers crossed in the cross-structure fiber, it's found the difference between the losses of the two polarizations can be increased, which is applied to achieve single-polarization optical fiber working at the near-infrared band. The structure avoids the polarization coupling in conventional optical fiber and contains high air-filling fraction, which will be advantageous for sensing application to ensure strong interaction with liquid or gas filled in the air-holes, as a result, high sensitivity can be achieved.
     4. The SPR sensor based on MOF with two layers of annular-shaped holes
     In this dissertation, we propose for the first time a novel SPR sensor design based on MOF with two layers of annular-shaped holes. In the proposed structure, a small fiber core is applied to extending the energy of the core mode to the first air-hole layer, so that the effective refractive index of the core-guided mode can be reduced. The resonance wavelength can be tuned across the C+L-band and the low operation frequency of the sensor increases plasmon penetration depth into the analyte, thus enhancing sensor sensitivity. In the first layer of holes, the sector ring arms, used as supporting stripes, with increased wideness along the radius can tune the resonance depth and guarantee the Gaussian intensity distribution of a core-guided mode, which facilitating the excitation by standard Gaussian laser sources.
引文
[1]王华泽,吴晗平,吕照顺等.太赫兹成像系统分析及其相关技术研究.红外技术,2013,35(7):391-397.
    [2]李昕磊,李飚.实时太赫兹探测与成像技术新进展.激光与光电子学进展,2012,49(9):090008.
    [3]T. Loffler, K. Siebert, S. Czasch, et al. Visualization and classification in biomedical terahertz pulsed imaging. Phys. Med. Biol.,2002,47(21):3847-3852.
    [4]M. R. Scarfi, M. RomanO, R. Di Pietro, et al. THz exposure of whole blood for the study of biological effects on human lymphocytes. J. Biol. Phys.,2003, 29(2-3):171-176.
    [5]Y. C. Shen, T. Lo, P. F. Taday, et al. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett.,2005, 86(24):241116-241116-3.
    [6]R. J. Foltynowicz, R. E. Allman, E. Zuckerman. Terahertz absorption measurement for gas-phase 2.4-dinitrotoluene from 0.05 THz to 2.7 THz. Chem. Phys. Lett.,2006,431(1-3):34-38.
    [7]B. M. Fischer, M. Walther, P. Uhd Jepsen. Far-infrared vibrational modes of DNA components studies by terahertz time-domain spectroscopy. Physics in Medicine and Biology,2002,47(21):3807-3814.
    [8]M. Nagel, F. Richter, P. Haring-Bolivar, et al. A functionalized THz sensor for marker-free DNA analysis. Phys. Med. Biol.,2003,48(22):3625-3636.
    [9]V. Weide, W. Daniel, J. Murakowski, et al. Gas-absorption spectroscopy with electronic terahertz techniques. Microwave Theory and Techniques, IEEE,2000, 48(4):740-743.
    [10]F. Hindle, A. Cuisset, R. Bocquet, et al. Continuous-wave terahertz by photomixing:applications to gas phase pollutant detection and quantification. C. R. Physique,2008,9(2):262-275.
    [11]F. Rutz, R. Wilk, T. Kleine-Ostmann, et al. Experimental and theoretical study of the THz absorption spectra of selected tripeptides. Proc. SPIE,2005,5727:12-19.
    [12]P. H. Siegel, Terahertz technology in biology and medicine, Microwave Theory and Techniques, IEEE,2004,52(10):2438-2447.
    [13]J. Cunningham, M. B. Byrne, C. D. Wood, et al. On-chip terahertz systems for spectroscopy and imaging. Electron. Lett.2010,46(26):s34-s37.
    [14]R. M. Woodward, V. P. Wallace, D. D. Arnone, et al. Terahertz pulsimaging of skin cancer in the time and frequency domain. J. Biolphys,2003,29(2-3):257-259.
    [15]E. P. J. Parrott, S. Sy, T. Blu. Terahertz pulsed imaging in vivo:measurements and processing methods. Journal of Biomedical Optics,2011, 16(10):106010-106010-8.
    [16]E. Pickwell, M. Pepper, A. J. Fitzgerald, et al. Simulating the response of terahertz radiation to basal cell carcinoma using ex vivo spectroscopy measurements. J. Biomed. Opt.,2005,10(6):064021.
    [17]Q. Chen, Z. P. Jiang, X. C. Zhang. The interaction between terahertz radiation and biological tissue. Pro. SPIE,1999,3616:98-105.
    [18]M. Schirmer, M. Fujio, M. Minami, et al. Biomedical applications of a real-time terahertz color scanner. Biomedical optics express,2010,1(2):354-366.
    [19]V. P.Wallace, A. J. Fitzgerald, S. Shankar, et al. Terahertz pulsed imaging of basal cell carcinoma ex-vivo and in-vivo. Brit. J. Dermatol.,2004, 151(2):424-432.
    [20]张振伟,牧凯军,张存林.太赫兹科学技术的军事应用.科学技术,2009,08:11-16.
    [21]邓富胜,沈京玲,用两种不同测量技术对毒品THz光谱的研究.红外,2011,32(11):33-38.
    [22]J. F. Federici, B. Schulkin, F. Huang, et al. THz imaging and sensing for security applications-explosives, weapons and drugs. Semicond. Sci. Technol.,2005,20(7): s266-s280.
    [23]R. W. McMillan, C. W. Trussell, R. A. Bohlander, et al. An experimental 225 GHz pulsed coherent radar. IEEE Trans. Microwave Theory Techn.,1991,39(3): 555-562.
    [24]A. Hirata, T. Kosugi, H. Takahashi, et al.120-GHz-Band millimeter-wave photonic wireless link for 10-Gb/s Data transmission. Microwave Theory and Techniques, IEEE,2006,54(5):1937-1944.
    [25]T. Nagatsuma, A. Hirata.10-Gbit/s wireless link technology using the 120-GHz band. NTT Technical Review,2004,2 (11):58-62.
    [26]R. Yamaguchi, A. Hirata, T. Kosugi, et al.10-Gbit/s MMIC wireless link exceeding 800 meters. Radio and Wireless Symposium, IEEE,2008:695-698
    [27]M. J. Fitch, R. Osiander. Terahertz waves for communications and sensing. Johns Hopkins APL Technical Digest,2004,25(4):348-355.
    [28]姚建铨,钟凯,徐德刚.太赫兹空间应用研究与展望.空间电子技术,2013,10(2):1-16.
    [29]S. P. Jamison, R. W. McGowan, D. Grischkowsky. Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers. Appl. Phys. Lett.,2000,76(15):1987-1989.
    [30]R. Mendis, D. Grischkowsky. Plastic ribbon THz waveguides. J. Appl. Phys., 2000,88(7):4449-4451.
    [31]L. J. Chen, H. W. Chen, T. F. Kao, et al. Low-loss subwavelength plastic fiber for terahertz waveguiding. Opt. Lett.2006,31(3):308-310.
    [32]B. You, T. A. Liu, J. L. Peng, et al. A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection. Opt. Express,2009,17(23): 20675-20683.
    [33]B. W. You, J. Y. Lu, T. A. Liu, et al. Subwavelength plastic wire terahertz time-domain spectroscopy. Appl. Phys. Lett.,2010,96(5):051105-051105-3.
    [34]H. W. Chen, C. M. Chiu, C. H. Lai, et al. Subwavelength dielectric-fiber-based THz coupler. J. Lightwave Technol.,2009,27(11):1489-1495.
    [35]J. Y. Lu, C. C. Kuo, C. M. Chiu, et al. THz interferometric imaging using subwavelength plastic fiber based THz endoscopes. Opt. Express, 2008,16(4):2494-2501.
    [36]M. Nagel, A. Marchewka, H. Kurz. Low-index discontinuity terahertz waveguides. Opt. Express,2006,14(21):9944-9954.
    [37]S. Atakaramians, S. Afshar Vahid, B. M. Fischer. Porous fibers:a novel approach to low loss THz waveguides. Opt.Express,2008,16(12):8845-8854.
    [38]S. Atakaramians, S. Afshar Vahid, B. M. Fischer et al. Porous fibers:low loss, low dispersion waveguides for terahertz transmission. Pasadena, CA:Infrared, Millimeter and Terahertz Waves,2008.33rd International Conference,2008:1-2.
    [39]A. Hassani, A. Dupuis, M. Skorobogatiy. Porous polymer fibers for low-loss Terahertz guiding. Opt.Express,2008,16(9):6340-6351.
    [40]A. Hassani, A. Dupuis, M. Skorobogatiy. Low loss porous terahertz fibers containing multiple subwavelength holes. Appl. Phys. Lett.,2008, 92(7):071101-071101-3.
    [41]A. Dupuis, A. Hassani, M. Skorobogatiy. Design of porous polymer THz fibers, Proc.of SPIE,2008,6892:51-63
    [42]J. J. Bai, J. N. Li, H. Zhang, et al. A porous terahertz fiber with randomly distributed air holes. Appl. Phys. B,2011,103(2):381-386.
    [43]A. Dupuis, A. Mazhorova, F. Desevedavy, et al. Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique. Opt. Express,2010,18(13):13813-13828.
    [44]A. Dupuis, J. F. Allard, D. Morris, et al. Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method. Opt. Express, 2009,17(10):8012-8028.
    [45]S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, THz porous fibers: design, fabrication and experimental characterization. Opt. Express,2009.17(16): 14053-14062.
    [46]M. Roze, B. Ung, A.Mazhorova, et al. Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance. Opt. Express,2011, 19(10):9127-9138.
    [47]X. G. Jiang, D. Chen, G. F. Hu. Suspended hollow core fiber for terahertz wave guiding. Applied Optics,2013,52(4):770-774.
    [48]T. Hidaka, H. Minamide, H. Ito, et al. Ferroelectric PVDF cladding THz waveguide. Proc. SPIE 2003,5135:70-77.
    [49]T. Hidaka, H. Minamide, H. Ito, et al. Ferroelectric PVDF cladding terahertz waveguide. J. Lightwave Technol.,2005,23(8):2469-2473.
    [50]J. A. Harrington, R. George, P. Pedersen, et al. Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation. Opt. Express,2004,12(21):5263-5268.
    [51]T. Ito, Y. Matsuura, M. Miyagi, et al. Flexible terahertz fiber optics with low bend-induced losses. J. Opt. Soc. Am. B,2007,24(5):1230-1235.
    [52]B. Bowden, J. A. Harrington, O. Mitrofanov. Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett.2007, 32(20):2945-2947.
    [53]Y. Matsuura, E. Takeda. Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy. J. Opt. Soc. Am. B,2008, 25(12):1949-1954.
    [54]C. H. Lai, Y. C. Hsueh, H. W. Chen et al. Low-index terahertz pipe waveguides, Opt. Lett.,2009,34(21):3457-3459.
    [55]J. T. Lu, Y. C. Hsueh, Y. R. Huang. Bending loss of terahertz pipe waveguides. Opt. Express,2010,18, (25):26332-26338.
    [56]R. J. Yu, Y. Q. Zhang, B. Zhang, et al. New cobweb-structure hollow Bragg optical fibers. Optoelectronics Lett.,2007,3(1):10-13.
    [57]J. Y. Lu, C. P. Yu, H. C. Chang, et al. Terahertz air-core microstructure fiber. Appl. Phys. Lett.,2008,92(6):064105-064105-3.
    [58]C. S. Ponseca, Jr., R. Pobre, et al. Transmission of terahertz radiation using a microstructured polymer optical fiber. Opt. Lett.,2008,33(9):902-904.
    [59]Z. Wu, W. R. Ng, M. E. Gehm, et al. Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping. Opt. Express, 2011,19(5):3962-3972.
    [60]J. Anthony, R. Leonhardt, S. G. Leon-Saval, et al. THz propagation in kagome hollw-core microstructured fibers. Opt. Express,2011,19(19):18470-18478.
    [61]A. Dupuis, K. Stoeffler, B. Ung, et al. Transmission measurements of hollow-core THz Bragg fibers. J. Opt. Soc. Am. B,2011,28(4):896-907.
    [62]R. W. Wood. On a remarkable case of uneven distribution of light in adiffraction grating spectrum. Phil. Mag.,1902,4:269-275.
    [63]U. Fano. The theory of anomalous diffraction gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld's Waves). J. Opt. Soc. Am.,1941.31(3): 213-222.
    [64]T. Turbadar, Complete absorption of light by thin metal films. Proc. Phys. Soc. London,1959,73(1):40-44.
    [65]A. Otto. Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection. Zeit. Phys.,1968,216(4):398-410.
    [66]E. A. Stern, R. A. Ferrell. Surface plasma oscillations of a degenerate electron gas. Phys. Rev.,1960,120:130-136.
    [67]H. Raether. Sueface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag,1988,111:136.
    [68]C. Ny land era, B. Liedberga, T. Linda. Gas detection by means of surface plasmon resonance. Sensors and Actuators,1982,3:79-88.
    [69]B. Liedberga, C. Nylandera, I. Lunstroma. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators,1983,4:299-304.
    [70]D. Zhang, P. Wang, X. Jiao. Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis. Applied Physics A,2007.89(2):407-411.
    [71]F.C. Chien, S. J. Chen. Direct determination of the refractive index and thickness of a biolayer based on coupled waveguide-surface plasmon resonance mode. Opt. Lett..2006,31(2):187-189.
    [72]S. Patskovsky, A.V. Kabashin, M. Meunier. Near-infrared surface plasmon resonance sensing on a silicon platform. Sensors and Actuators B,2004,97: 409-414.
    [73]R. Slavik, J. Homola. Ultrahigh resolution long range surface plasmon-based sensor. Sensors and Actuators B,2007,123(1):10-12.
    [74]R. C. Jorgenson, S. S. Yee. A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B,1993,12(3):213-222.
    [75]E. Fontana, H. D. Dulman, D. E. Doggett. Surface plasmon resonance on a single mode optical fiber. IEEE Trans. on Iinstrum. Meas.,1998,47(1):168:173.
    [76]C. Ronot-Trioli, A. Trouillet, C. Veillas, et al. Fibre optic chemical sensor based on surface plasmon monochromatic excitation. Anal. Chim. Acta,1996,319 (1-2):121-127.
    [77]W. J. H. Bender, R. E. Dessy. Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition. Anal. Chem.,1994,66(7):963-970.
    [78]A. Hassani, M. Skorobogatiy. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express, 2006,14(24):11617-11621.
    [79]A. Hassani, M. Skorobogatiy. Design criteria for microstructured-optical-fiber based surface-plasmon-resonance sensors. J. Opt. Soc. Am. B,2007, 24(6):1423-1429.
    [80]X. Yu, Y. Zhang, S. S. Pan. A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J. Opt.,2010,12(1):015005.
    [81]A. Hassani, M. Skorobogatiy. Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. J. Opt. Soc. Am. B,2009,26(8):1550-1557.
    [82]M. Hautakorpi, M. Mattinen, H. Ludvigsen. Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Express,2008, 16(12):8427-8432.
    [83]B. Gauvreau, A. Hassani, M. F. Fehri, et al. Photonic bandgap fiber-based Surface Plasmon Resonance sensors, Opt. Express,2007,15(18):11413-11426.
    [84]J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett.,1996,21(19):1547-1549.
    [85]J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All-silica single-mode optical fiber with photonic crystal cladding:errata. Opt. Lett.,1997,22(7):484-485.
    [86]J. Broeng, D. Mogilevstev, S. E. Barkou, et al. Photonic crystal fibers:a new class of optical waveguides. Opt. Fiber Technol.1999,5(3):305-330.
    [87]K. Saitoh, Y. Tsuchida, M. Koshiba, et al. Endlessly single-mode holey fibers: the influence of core design. Opt. Express,2005,13(26):10833-10839.
    [88]A. Yariv. Optical electronics in modern communications.第五版.北京:电子工业出版社,2002:83-95.
    [89]R. Ghosh, A. Kumar, J. P. Meunier. Waveguiding properties of holey fibres and effective-V model. Electron. Lett.,1999,35(21):1873-1875.
    [90]J. C. Knight, T. A. Birks, P. S. J. Russell, et al. All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett.,1996,21 (19):1547-1549.
    [91]J. K. Ranka, R. S. Windeler, A. J. Stentz. Optical properties of high-delta air-silica microstructure optical fibers. Opt. Lett.,2000,25(11):796-798.
    [92]J. C. Knight, T. A. Birks, P St. J. Russell, et al. Properties of photonic crystal fiber and the effective index model. J. Opt. Soc. Am. A.1998,15(3):748-752.
    [93]J. Broeng, D. Mogilevstev, S. E. Barkou, et al. Photonic crystal fibers:a new class of optical waveguides. Opt. Fiber Technol.,1999,5:305-330.
    [94]J. C. Knight, T. A. Birks, R. F. Cregan, et al. Large mode area photonic crystal fiber. Electron. Lett.1998,34(13):1347-1348.
    [95]J. C. Baggett, T. M. Monro, K. Furusawa, et al. Comparative study of large-mode holey and conventional fibers. Opt. Lett.,2001,26(14):1045-1047.
    [96]M. D. Nielsen, J. R. Folkenberg, N. A. Mortensen. Single-mode photonic crystal fiber with an effective area of 600 square-microns and low bending loss, Electron. Lett.2003,39:1802-1803.
    [97]J. C. Knight, J. Arriaga, T. A. Birks, et al. Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology Letters,2000,12(7):807-809.
    [98]A. Ferrando, E. Silvestre, P. Andres. Designing the properties of dispersion-flattened photonic crystal pibers. Opt. Express,2001,9(13):687-697.
    [99]A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al. Highly birefringent photonic crystal fibers. Opt. Lett.,2000,25(18):1325-1327.
    [100]M. J. Steel, R. M. Osgood. Elliptical-hole photonic crystal fibers. Opt. Lett., 2001,26(4):229-231.
    [101]N. A. Wolchover, F. Luan, A. K. George, et al. High nonlinearity glass photonic crystal nanowires. Opt. Express,2007,15(3):829-833.
    [102]P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, et al. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Opt. Express, 2003,11(26):3568-3573.
    [103]P. Petropoulos, T. M. Monro, W.Belardi, et al.2R-regenerative all-optical switch based on a High nonlinear fiber. Opt. Lett.,2001,26(16):16-18.
    [104]R. F. Cregan, B. J. Mangan, J. C. Knight, et al. Single-mode photonic band gap guidance of light in air. Science,1999,285(5433):1537-1539.
    [105]A. Peyrilloux, S. Fevrier, J. Marcou, et al. Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres. J. Opt. A:Pure Appl. Opt., 2002,4(3):257-262.
    [106]V. Rastogi, K. S. Chiang. Holey optical fiber with circularly distributed holes analyzed by the radial effective-index method. Opt. Lett.,2003,28(24): 2449-2451.
    [107]K. M. Ho, C. T. Chan, C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett.,1990,65(17):3152-3155.
    [108]R. D. Meade, A. M. Rappe, K. D. Brommer, et al. Accurate theoretical analysis of photonic band-gap materials. Phys. Rev. B,1993,48(11):8434-8437.
    [109]S. G. Johnson, J. D. Joannopoulos. Block-iterative frequency-domain methods for maxwell's equations in a planewave basis. Opt. Express,2001,8(3):173-190.
    [110]T. P. White, B. T. Kuhlmey, R. C. McPhedran, et al. Multipole method for microstructured optical fibers. I. Formulation. J. Opt. Soc. Am. B,2002,19(10): 2322-2330.
    [111]B. T. Kuhlmey, T. P. White, G. Renversez, et al. Multipole method for microstructured optical fibers. Ⅱ. implementation and results. J. Opt. So. Am. B, 2002,19(10):2331-2340.
    [112]T. P. White, R. C. McPhedran, C. M. D. Sterke. Confinement losses in microstructured optical fibers. Opt. Lett.,2001,26(21):1660-1662.
    [113]Z. Zhu, T. G. Brown. Full-vectorial finite-difference analysis of microstructured optical fibers. Opt. Express,2002,10(17):853-864.
    [114]Y. Z. He, F. G. Shi. Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers. Optics Communications,2003,225(1-3):151-156.
    [115]F. Fogli, L.Saccomandi, P. Bassi, et al. Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers. Opt. Express,2002,10(1): 54-59.
    [116]T. A. Birks, J. C. Knight, P. St. J. Russell. Endlessly single-mode photonic crystal fiber. Opt. Lett,1997,22(13):961-963.
    [117]B. Ung, A. Mazhorova, A. Dupuis, et al. Polymer microstructured optical fibers for terahertz wave guiding. Opt. Express,2011,19(26):B848-B861.
    [118]K. M. Kiang, K. Frampton, T. M. Monro, et al. Extruded single mode non-silica glass holey optical fibres. Electron. Lett.,2002,38(12):546-547.
    [119]K. Nielsen, H. K. Rasmussen, J. L. Aurele, et al. Bendable, low-loss Topas fibers for the terahertz frequency range. Opt. Express,2009,17(10):8592-8601.
    [120]W. Yuan, L. Khan, D. J. Webb, et al. Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt. Express,2011,19(20):19731-19739.
    [121]I. P. Johnson, W. Yuan, A. Stefani,et al. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer. Electron. Lett.,2011,47(4):271-272.
    [122]G. Emiliyanov, P. E. H(?)iby, L. H. Pedersen, et al. Selective serial multi-antibody biosensing with TOP AS microstructured polymer optical fibers. Sensors,2013,13(3):3242-3251.
    [123]G. Emiliyanov, J. B. Jensen, O. Bang, et al. Localized biosensing with Topas microstructured polymer optical fiber, Opt. Lett.,2007,32(5):460-462.
    [124]A. W. Snyder, J. D. Love, Optical Waveguide Theory (Kluwer academic publisher, London,2000).
    [125]H. B. Chen, D. Chen, Z. Hong. Squeezed lattice elliptical-hole terahertz fiber with high birefringence. Applied Optics,2009,48(20):3943-3947.
    [126]D. Chen, H. Y. Tam. Highly birefringent terahertz fibers based on super-cell structure. Journal of lightwave technology,2010,28(12):1858-1863.
    [127]S. Atakaramians, S. Afshar V., B. M. Fischer, et al. Low loss, low dispersion and highly birefringent terahertz porous fibers. Opt. Communications,2009, 282(1):36-38.
    [128]付晓霞,陈明阳.用于太赫兹波传输的低损耗、高双折射光纤研究.物理学报,2011,60(7):074222.
    [129]M. Cho, J. Kim, H. Park, et al. Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers. Opt. express,2007,16(1):7-12.
    [130]M. Y. Chen, X. X. Fu, Y. K. Zhang, et al. Design and analysis of a low-loss terahertz directional coupler based on three-core photonic crystal fibre configuration. J. Phys. D:Appl. Phys,2011,44(40):405104.
    [131]J. T. Lu, C. H. Lai, T. F. Tseng, et al. Terahertz pipe-waveguide-based directional couplers. Opt. Express,2011,19(27):26883-26890.
    [132]J. Saulnier, C. Ramus, F. Huet, et al. Optical polarization-diversity receiver integrated on titaniumdiffused lithium niobate. IEEE Photon. Technol. Lett., 1991,3(10):926-928.
    [133]J. V. Galan, P. Sanchis, J. Garcia, et al. Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes. Appl. Opt.,2009, 48(14):2693-2696.
    [134]Y. W. Lee, K. J. Han, B. Lee, et al. Polarization independent all-fiber multiwavelength-switchable filter based on a polarization-diversity loop configuration. Opt. Express,2003, 11(25):3359-3364.
    [135]D. K. C.Wu, B. T. Kuhlmey, B. J. Eggleton, Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett.,2009,34(3):322-324.
    [136]S. Kunimasa, S. Yuichiro, K. Masanori. Coupling characteristics of dual-core photonic crystal fiber couplers. Opt. Express,2003,11(24):3188-3195.
    [137]L. Zhang, C. Yang. Polarization splitter based on photonic crystal fibers. Opt. Express,2003,11(9):1015-1020.
    [138]M. Y. Chen, R. J. Yu. Coupling characteristics of dual-core rectangular lattice photonic crystal fibres. J. Opt. A,2004,6(8):805-808.
    [139]D. Mao, C. Guan, L. Yuan. Polarization splitter based on interference effects in all-solid photonic crystal fibers. Appl. Opt.,2010,49(19):3748-3752.
    [140]N. Florous, K. Saitoh, M. Koshiba. A novel approach for designing photonic crystal fiber splitters with polarization independent propagation characteristics. Opt. Express,2005,13(19):7365-7373.
    [141]J. Li, Y. Mao, C. Lu, et al. Polarization splitting of photonic crystal fiber with hybrid guidance mechanisms. IEEE Photon. Technol. Lett.,2011, 23(18):1358-1360.
    [142]佘守宪.导波光学物理基础.北京:北方交通大学出版社,2002:3-5,345-351,400-407.
    [143]R. X. Guo, K. Akiyama, H. Minamide. All-solid-state, narrow linewidth, wavelength-agile terahertz-wave generator. App. Phys. Lett.,2006,88(9): 091120-091120-3.
    [144]J. R. Paul, M. Scheller, A. Laurain, et al. Narrow linewidth single-frequency terahertz source based on difference frequency generation of vertical-external-cavity source-emitting lasers in an external resonance cavity. Opt. Lett.,2013,38(18):3657-3654.
    [145]A. R. Zakharian, J. V. Moloney. M. Mansuripur. Surface plasmon polaritons on metallic surfaces. Opt. Express,2007,15(1):183-197.
    [146]K. Kurihara, K. Nakamura, E. Hirayama, et al. An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode method. Anal. Chem.,2002,74(24):6323-6329.
    [147]I. M. White, X. D. Fan. On the performance quantification of resonant refractive index sensors. Opt. Express,2008,16(2):1020-1028.
    [148]B. B. Shuai, L. Xia, Y. T. Zhang, et al. A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt. Express,2012, 20(6):5974-5986.
    [149]M. Erdmanis, D. Viegas, M. Hautakorpi, et al. Comprehensive numerical analysis of a surface-plasmon-resonance sensor basedon an H-shaped optical fiber. Opt. Express,2011,19(5):13980-13988.
    [150]D. Monzon-Hernandez, J. Villatoro, D. Talavera, et al. Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks. Appl. Opt., 2004,43(6):1216-1220.
    [151]S. Singh, K. Verma, B. D. Gupta. Surface plasmon resonance based fiber optic sensor with symmetric and asymmetric metallic coatings:a comparative study. Sens. Transducers J.,2009,100(1):116-124.
    [152]T. P. Hansen, J. Broeng, S. E. B. Libori, et al. Highly birefrigent index-guiding photonic crystal fibers. IEEE Photon. Technol. Lett.,2001,13(6):588-590.
    [153]K. Suzuki, H. Kubota, S. Kawanishi, et al. Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Opt. Express,2001, 9(13):676-680.
    [154]M. Y. Chen, R. J. Yu, A. P. Zhao. Confinement losses and optimization in rectangular-lattice photonic-crystal fibers. J. Lightwave Technol.,2005, 23(9):2707-2712.
    [155]W. B. Liang, N. L. Liu, Z. H. Li, et al. Highly birefringent elliptical-hole microstructure fibers with low confinement loss. J. Lightwave Technol.,2012, 30(21):3381-3386.
    [156]Z. Y. Liu, C. Wu, M. Leung, et al. Ultrahigh birefringence index-guiding photonic crystal fiber and its application for pressure and temperature discrimination. Opt. Lett.,2013,38(9):1385-1387.
    [157]Y. S. Sun, Y. F. Chou Chau, W. Yang, et al. Numerical analysis on birefringence of photonic crystal fiber by tuning patterns and infiltrating materials of innermost air holes. Jpn. J. Appl. Phys.,2013,52(6R):062502
    [158]S. Saitoh, M. Koshiba. Single-polarization single-mode photonic crystal fibers. IEEE Photon. Technol. Lett.,2003,15(10):1384-1386.
    [159]H. Kubota, S. Kawanishi, S. Koyanagi, et al. Absolutely single polarization photonic crystal fiber. IEEE Photon. Technol. Lett.,2004,16(1):182-184.
    [160]J. R. Folkenberg, M. D. Nielsen, C. Jakobsen. Broadband single polarization photonic crystal fiber. Opt. Lett.,2005,30(12):1446-1448.
    [161]T. Schreiber, F. Roser, O. Schmidt, et al. Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity. Opt. Express, 2005,13(9):7621-7630.
    [162]X. Chen, M. J. Li, J. Koh, et al. Wide band single polarization and polarization maintaining fibers using stress rods and air holes. Opt. Express,2008. 16(16):12060-12068.
    [163]延风平,李一凡,王琳.近椭圆内包层高双折射偏振稳定光子晶体光纤设计及特性分析.物理学报,2008,57(9):5735-5741.
    [164]M. Y. Chen, Y. K. Zhang. Improved design of polarization-maintaining photonic crystal fibers. Opt. Lett.,2008,33(21):2542-2544.
    [165]M.Y. Chen, B. Sun, Y. K. Zhang. Broadband single-polarization operation in square-lattice photonic crystal fibers. J. Lightw. Technol.,2010, 28(10):1443-1446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700