用户名: 密码: 验证码:
含分布式发电的电力系统分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为集中式发电的补充,分布式发电(Distributed Generation,简称DG)能起到削峰填谷,改善电压水平,减少网络损耗,延缓或减少输配电设备扩建,以及减轻环境污染等作用,近年来在全球范围内引起了人们极大的关注。由于DG自身的一些特殊性,含DG的系统分析方法与传统方法不完全一致,结合DG的特点研究DG并网系统的相关分析方法是当前电力研究领域的热点之一。本文致力于对该领域的关键技术问题进行研究,其内容涉及到DG系统的稳态分析、规划分析、优化分析以及动态分析等方面。
     在稳态分析方面,本文首先建立了不同类型的DG在潮流计算中的数学模型,提出了包含多种DG的配电网潮流双层迭代算法和灵敏度补偿算法,对两种算法的收敛性能进行了分析和比较,算例测试表明基于灵敏度补偿的算法具有收敛快、对迭代初值不敏感的优点;接着,利用提出的算法分析了DG对配网电压分布的影响,发现不同类型的DG对系统电压支撑能力不一样;然后,在灵敏度补偿算法的基础上,结合配电网电压稳定指标定量地研究了不同类型和不同安装位置的DG对配网静态电压稳定性的影响,得到了若干重要结论。
     在规划分析方面,根据电压稳定分析的结论提出了一种快速的、启发式的DG选址方法,该方法具有简单实用的特点,对实际电力系统中的DG规划具有较好的参考意义。另外,本文还研究了DG位置和容量的综合规划方法,建立了考虑经济性和安全性的DG多目标规划模型,其中目标函数由DG投资成本最小、系统网损最小和静态电压稳定裕度最大三个子目标构成,由于DG的并网增大了系统的短路电流,为了防止规划方案出现短路电流超标现象,在建立的模型中还考虑了短路电流约束。在求解方法上,引入模糊理论将不同量纲的多目标优化问题转化为单一目标的优化问题。43节点系统的测试结果表明在DG规划模型中计及短路电流约束是必要的,且按本文模型得到的DG规划方案较大地改善了系统的静态电压稳定性,使得系统能在较高的电压稳定水平下承受更大的负荷增长,这对解决规划过程中因负荷的不确定性引起的问题具有较大的意义。
     在优化分析方面,主要结合DG中发展较为成熟的风力发电技术开展了研究。首先研究了含大型风电场的电力系统多时段动态优化潮流问题。为了考虑风电场风速随机变化的特点,在风速预测的基础上提出了分时段策略,结合异步发电机的无功电压特性,提出了风电系统最优潮流的改进内点算法。IEEE30节点系统的测试结果表明提出的多时段动态优化潮流对风速的随机性和间歇性具有一定的适应性。接着,研究了风电系统的经济调度问题,为了解决风速预测误差较大带来的困难,引入了模糊理论,采用模糊梯形隶属度函数来表示风电场输出功率的不确定性,在此基础上建立了风电系统动态经济调度的模糊模型。在求解方法方面,通过引入下降搜索算子对传统的粒子群优化算法(PSO)进行了改进,算例结果表明提出的改进PSO算法收敛性优于传统PSO算法,在搜索过程中具有跳出局部最优解的潜力。然后,考虑到风速具有统计特征,应用基于概率的场景决策法建立了含风电的配网无功优化模型,结合风电机组输出功率特性提出了风电系统典型场景的选取策略,并采用基于自适应权重的遗传算法来求解提出的问题,算例表明基于场景的无功优化模型在风速随机变化的条件下能够获得期望值意义上的最优方案。
     最后,设计了若干典型仿真算例,通过这些算例分析了不同类型、不同穿透水平的DG对系统暂态稳定性和小扰动稳定性的影响,得到了一些有价值的结论,可以为工程实际提供参考。
As the complementarity of centralized generation, distributed generation (DG) has been widely concerned in the world in recent years because it can be reducing power losses and on-peak operating costs, improving voltage profiles, deferring or eliminating for system upgrades, and mitigating environment pollution. Due to some particularities of DG, analysis methods in power systems with DG are not completely consistent with traditional methods. Therefore, study on analysis methods for power grids connected DG is one of the hotspots in the power engineering research field. This thesis concentrates on studying critical problems in this field, including the steady-state and dynamic stability analysis methods for the systems with DG, optimal planning methods for DG, optimal operation methods under the condition of uncertain DG output.
     In the aspect of the steady-state analysis for the system with DG, at first the models of various kinds of DGs are developed in power flow calculations, and two algorithms available to calculate the power flow of distribution system with multi-type DGs are presented. One includes a two-layer iterance process, and the other is based on constructing a sensitivity matrix. The convergence characteristics of the two algorithms is compared and analyzed. An example of 90-node system gives an illustration of the feasibility of the presented method. After that, the impacts of DG on voltage profiles of distributed network are analyzed using the presented algorithm based a sensitivity matrix. Then, two main scenarios are investigated to evaluate the impacts of DGs on the system static voltage stability. These impacts are quantified by a voltage stability index introduced in this thesis. Some important conclusions are obtained.
     In the aspect of the optimal planning for DG, a heuristic method for selecting the sites of DG is presented according to the above obtained conclusions. This method is easy to be applied in practice, which is in favor of the planning engineers to site DGs in distribution systems. In addition, this thesis also studies the integrated planning method for siting and sizing of DG. A multi-objective fuzzy optimal model is proposed that takes into account minimizing the investment cost of DG and the power loss of distribution networks and maximizing the static voltage stability margin. The multi-objective planning is transformed into single objective planning by employing the fuzzy optimization theory. Owing to an increase of short-circuit current level (SCL) due to DG, the maximum SCL limit is taken into account in the constraints. The fault calculation principle in the distribution network with DG is analyzed. As DG has the intermission characteristic, a spinning reserve constraint is included in the model, that is, the distribution substation can supply sufficient power to meet load demands should any DG unit quit. The feasibility of the method proposed is shown by an example of a 43-bus distribution system.
     Wind power generation is one of DG technologies. Large wind farms connected to power grid bring new challenges to optimal operation of power systems. In this thesis, the optimal power flow (OPF) problems in wind power integrated systems are researched and a multi-period dynamic OPF model is presented. In order to consider the wind speed random behavior, a dividing-stage strategy is developed. Based on the Q-V equation of the induction generator, an improved interior point method for the multi-period dynamic OPF is presented. The effectiveness and computation performance of the proposed method are verified in the IEEE 30-bus system.
     However, wind speed is difficult to be forecasted accurately. In order to overcome the difficulty, fuzzy theory is applied to represent the random variation of wind power output. The dynamic economic dispatch (DED) problem including wind farms is discussed and a fuzzy modeling for DED is then presented, which could make the dispatch result reflect the willingness of decision-makers and hereby adapt the random wind power output better. Moreover, the conventional particle swarm optimization (PSO) is improved by using the descending search and then adopted to solve the proposed dynamic economic dispatch. The example testing result indicates the feasibility of the proposed method.
     Reactive power optimization problem in distribution system with wind power generators is also analyzed. A compositive index based on scenario analysis is presented. Power loss and static voltage stability margin are taken into considered in this index. A new model including the index for reactive power optimization is proposed. The strategy for selecting typical scenarios of wind power output is discussed from the view point of probability. A genetic algorithm based on self-adaptive weight is proposed and applied to solve the reactive power optimization problem. The samples show that the proposed method is feasible.
     Finally, influences of DG on the dynamic stability are discussed in some scenarios. A comparison between the network performance with different sites and different contributions of DG is made. Some important conclusions are obtained, which provides a reference value for the operation of practical system.
引文
[1] Dugan, R.C., McDermott T.E. Distributed generation. IEEE Industry Applications Magazine, 2002, 8(2): 19-25.
    [2] Palma-Behnke R, A J.L.C, Vargas L.S, etal. A distribution company energy acquisition market model with integration of distributed generation and load curtailment options. IEEE Transactions on Power Systems, 2005, 20(4): 1718-1727.
    [3] Ochoa L.F, Padiha-Feltrin A, Harrison G.P. Evaluating distributed generation impacts with a multiobjective index. IEEE Transactions on Power Delivery, 2006, 21(3): 1452-1458.
    [4] Keane A, Denny E, O’Malley M. Quantifying the impact of connection policy on distributed generation. IEEE Transactions on Energy Conversion, 2007, 22(1): 189-196.
    [5]梁才浩,段献忠.分布式发电及其对电力系统的影响.电力系统自动化, 2001, 25(12): 53-56
    [6]王建,李兴源,丘晓燕.含有分布式发电装置的电力系统研究综述.电力系统自动化, 2005, 29(24): 90-97
    [7] Brown R.E, Jiuping Pan, Xiaoming Feng et al. Siting distributed generation to defer T&D expansion. IEEE Transmission and Distribution Conference and Exprosition, 2001, USA, vol.2, pp: 622-627.
    [8] Carpinelli G, Celli G, Mocci S, etal. Optimisation of embedded generation sizing and siting by using a double trade-off method. IEE Proceedings-Generation, Transmission and Distribution, 2005, 152(4): 503-513.
    [9] Hadjsaid N, Canard J.F, Dumas F. Dispersed generation impact on distribution networks. IEEE Computer Application in Power, 1999, 12(2): 22-28.
    [10] See: http://www.zeri.org.cn/meeting/2004chp_11.pdf
    [11] Pathomthat Chiradeja, R.Ramakumar. An approach to quantify the technical benefits of distributed generation. IEEE Transactions on energy conversion, 2004, 19(4): 764-773.
    [12] IEEE STD 1547-2003. IEEE standard for interconnecting distributed resources with electric power systems.
    [13] See Electric Power Research Institute web-page (January 1998):http://www.epri.com/gg/newgen/disgen/index.html.
    [14] CIGRE. Impact of increasing contribution of dispersed generation on the power system. CIGRE Study Committee no 37, Final Report, Septemper 1998.
    [15] Ackermann, T., Andersson, G., and Soder, L. Distributed generation: A definition. Electric Power System Research, 2001, 57, pp: 195-204.
    [16] Lasseter R.H. MicroGrids. 2002 IEEE Power Engineering Society Winter Meeting, Vol.1, 27-31 Jan., pp: 305-308.
    [17]沈国鏐.微型电网和小型燃气轮机发电机.电器工业, 2004, (06): 39-41.
    [18] F.Katiraei, M.R.Iravani. Power management strategies for a microgrid with multiple distributed generation units. IEEE Transactions on Power Systems, 2006, 21(4): 1821-1831.
    [19] Yunwei Li, D.Mahinda Vilathgamuwa, Poh Chiang Loh. Microgrid power quality enhancement using a three-phase four-wire grid-interfacing compensator. IEEE Transactions on Industry Applications, 2005, 41(6): 1707-1719.
    [20] Puttgen, H.B., MacGregor, P.R., Lambert, F.C. Distributed generation: semantic hype or the dawn of a new era? IEEE Power & Energy Magazine, 2003, 1(1): 22-29.
    [21]王长贵等主编.新能源发电技术.北京:中国电力出版社, 2003.
    [22]王承煦等主编.风力发电.北京:中国电力出版社, 2003.
    [23] R.E.Brown, L.A.A.Freeman. Analyzing the reliability impact of distributed generation. IEEE Power Engineering Society Summer Meeting, Vol.2, July 2001, Vancouver, Canada, pp:1013-1018
    [24]王志群.基于微型燃气轮机的分布式发电系统的研究.清华大学博士学位论文, 2004.
    [25]肖湘宁主编.电能质量分析与控制.北京:中国电力出版社,2004.
    [26] R.C.Dugan, T.E.McDermott. Operating conflicts for distributed generation on distribution systems. Rural Electric Power Conferenec, 2001, pp: A3/1-A3/6.
    [27] Sung-II Jang, Kwang-Ho Kim. An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current. IEEE Transactions on Power Delivery, 2004, 19(2): 745-752.
    [28] Agustoni A, Brenna M, Faranda R, etal. Constraints for the interconnection of distributed generation in radial distribution systems. 10th International Conference on Harmonics and Quality of Power, 2002, Vol.1, pp: 310-315.
    [29]刘健等主编.配电自动化系统.北京:中国水力水电出版社, 2003.
    [30] Ahmed M.Azmyl, Istvan Erlich. Impact of distributed generation on the stability of electrical power systems. 2005 IEEE Power Engineering Society General Meeting, June, pp: 1056-1063.
    [31] M.Reza, P.H.Schavemaker, J.G.Slootweg, etal. Impacts of distributed generation penetration levels on power systems transient stability. 2004 IEEE Power Engineering Society General Meeting, June, pp: 2150-2155.
    [32] Guttromson, R.T. Modeling distributed energy resource dynamics on the transmission system. IEEE Transactions on Power Systems, 2002, 17(4): 1148-1153.
    [33] Tamuraj, Ueno M. Transient stability simulation of power system including wind generator by PSCAD/EMTDC. Proceedings of 2001 IEEE Porto Power Tech Conference, Vol 4, Sep 10-13, 2001, Porto, Portugal, 2001:5.
    [34]晁勤,院海,吐尔逊.风电系统稳定性动态仿真.中国电机工程学报, 2005, 25(25): 277-280.
    [35]迟永宁,王伟胜,刘燕华等.大型风电场对电力系统暂态稳定性的影响.电力系统自动化, 2006, 20(15): 10-14.
    [36] In-Su Bae, Jin-O Kim, Jae-Chul Kim, et al. Optimal operating strategy for distributed generation considering hourly reliability worth. IEEE Transactions on power systems, 2004, 19(1): 287-292.
    [37] A.A.Chowdhury, Sudhir Kumar Agarwal, Don O.Koval. Reliability modeling of distributed generation in conventional distribution systems planning and analysis. IEEE Transactions on Industry Applications, 2003, 39(5): 1493-1498.
    [38]施鹏飞. 2005年中国风电产业回顾和未来5年的展望.中国电力, 2006, 39(9): 16-18.
    [39]王志群,朱守真,周双喜等.分布式发电对配电网电压分布的影响.电力系统自动化, 2004, 28(16): 56~60.
    [40] Y.Zhu, K.Tomsovic. Adaptive power flow method for distribution systems with dispersed generation. IEEE Transactions on Power Delivery, 2002, 17(3): 822~82.
    [41]申洪,王伟胜,戴慧珠.变速恒频风力发电机组的无功功率极限.电网技术, 2003, 27(11): 60-63
    [42]吴峻岭,周双喜,孙建锋等.并网风力发电场的最大注入功率分析.电网技术, 2004, 28(20): 28-32.
    [43] Andrés E, Feijóo, JoséCidrás. Modeling of wind farms in the load flow analysis. IEEE Transactions on Power Systems, 2000, 15(1): 110-115.
    [44]吴义纯,丁明,张立军.含风电场的电力系统潮流计算.中国电机工程学报, 2005, 25(4): 36-39.
    [45] N.D.Hatziargyriou, T.S.Karakatsania, M.Papadopoulos. Probabilistic load flow in distribution systems containing dispersed wind power generation. IEEE Transactions on power systems, 1993, 8(1): 159-165.
    [46]王成山,郑海峰,谢莹华等.计及分布式发电的配电系统随机潮流计算.电力系统自动化, 2005, 29(24): 39-44.
    [47] Shiqiong Tong, Karen Nan Miu. A network-based distributed slack bus model for DGs in unbalanced power flow studies. IEEE Transactions on Power Systems, 2005, 20(2): 835-842.
    [48]王成山,马力克.含风电场电源的配电系统三相潮流计算.电力系统自动化, 2006, 30(16): 21-26.
    [49]曹娜,赵海翔,陈默子等.潮流计算中风电场的等值.电网技术, 2006, 30(9): 53-56.
    [50] J.G.Slootweg, W.L.Kling. Impacts of distributed generation on power system transient stability. 2002 IEEE Power Engineering Society Summer Meeting, Volume 2, pp: 862-867.
    [51] C.J.Hatziadoniu, A.A.Lobo, F.Pourboghrat, etal. A simplified dynamic model of grid-connected fuel-cell generators. IEEE Transactions on Power Delivery, 2002, 17(2): 467-473.
    [52]吴学光.风电场并网运行的数学建模及遗传算法模型优化研究.武汉水利电力大学博士学位论文, 2000年.
    [53]雷亚洲.随机规划理论在风电并网系统分析中的应用研究.中国电力科学研究院博士学位论文, 2001年.
    [54] Hinrichsen E.N, Nolan P.J. Dynamic and stability of wind turbine generators. IEEE Transactions on Power Apparatus and Systems, 1982, 101(8): 2640-2648.
    [55] Z.Saad-Saoud, N.Jenkins. Simple wind farm dynamic model. IEE Proceedings-Generation, Transmission and Distribution, 1995, 142(5): 545-548.
    [56] JoséCidrás, Andrés Elías Feijóo. A linear dynamic model for asynchronous wind turbines with mechanical fluctuations. IEEE Transactions on Power Systems, 2002,17(3): 681-687.
    [57] Ahmadreza Tabesh, Reza Iravani. Small-signal dynamic model and analysis of a fixed-speed wind farm—a frequency response approach. IEEE Transactions on Power Delivery, 2006, 21(2): 778-787.
    [58]汤宏,吴俊玲,周双喜.包含风电场电力系统的小干扰稳定分析建模和仿真.电网技术, 2004, 28(1): 38-41.
    [59] Janaka B. Ekanayake, Lee Holdsworth, XueGuang Wu, et al. Dynamic modeling of doubly fed induction generator wind turbines. IEEE Transactions on Power Systems, 2003, 18(2): 803-809.
    [60]李晶,王伟胜,宋家骅.双馈发电机简化动态模型及在风电系统中的应用.电力自动化设备, 2005, 25(1): 58-61.
    [61]李晶,王伟胜,宋家骅.变速恒频风力发电机组建模与仿真.电网技术, 2003, 27(9): 14-17.
    [62] Pablo Ledesma, Julio Usaola. Doubly fed induction generator model for transient stability analysis. IEEE Transactions on Energy Conversion, 2005, 20(2): 388-397.
    [63] Jenkins N, Strbac G. Impact of embedded generation on distribution system voltage stability. IEE Colloquium on Voltage Collapse, London, 1997.
    [64] Freitas W, Da Silva L C P, Morelato A. Small-disturbance voltage stability of distribution systems with induction generators. IEEE Transactions on Power Systems, 2005, 20(3): 1653-1654.
    [65]胡骅,吴汕,夏翔等.考虑电压调整约束的多个分布式电源准入功率计算.中国电机工程学报, 2006, 26(19): 13-17.
    [66]夏翔,黄伟,徐祥海等.考虑小水电启停策略的准入容量计算.电力系统自动化, 2006, 30(22): 48-52.
    [67]郑国强,鲍海,陈树勇.基于近似线性规划的风电场穿透功率极限优化的改进算法.中国电机工程学报, 2004, 24(10): 68-71.
    [68]申洪,梁军,戴慧珠.基于电力系统暂态稳定分析的风电场穿透功率极限计算.电网技术, 2002, 26(8): 8-11.
    [69] Vachtsevanos G J, Kalaitzakis K C. Penetration of wind electric conversion system into the utility grid. IEEE Transactions on Power Apparatus and Systems, 1985, 104(7): 1677-1683.
    [70] Jim L. Assessing the capacity value of wind power: an evolving effort. The EPRIWind Users Support Group on Wind World, 1993-1994.
    [71] Kim J E. Methods of determining introduction limits of dispersed generation system in a distribution system. Electrical Engineering in Japan, 1997, 120(4): 48-58.
    [72]雷亚洲,王伟胜.一种静态安全约束下确定电力系统风电准入功率极限的优化方法.中国电机工程学报, 2001, 21(6): 25-28.
    [73]雷亚洲,王伟胜,印永华等.基于机会约束规划的风电穿透功率极限计算.中国电机工程学报, 2002, 22(5): 32-35.
    [74] T.Griffin, K.Tomosovic, D.Secrest, et al. Placement of dispersed generation systems for reduced losses. In Proc.33rd Annu.Hawaii Int.Conf. Systems Sciences, Maui, HI, 2000, pp: 1~9.
    [75] Caisheng Wang, M.Hashem Nehrir. Analytical approaches for optimal placement of distributed generation sources in power systems. IEEE Transactions on Power Systems, 2004, 19(4): 2068-2076.
    [76] Walid El-Khattam, Kankar Bhattacharya, Yasser Hegazy etal. Optimal investment planning for distributed generation in a competitive electricity market. IEEE Transactions on Power Systems, 2004, 19(3): 1674-1684.
    [77] Narayan S.Rau, Yih-heui Wan M. Optimum location of resources in distributed planning. IEEE Transactions on Power Systems, 1994, 9(4): 2014-2020.
    [78]王成山,陈恺,谢莹华等.配电网扩展规划中分布式电源的选址和定容.电力系统自动化, 2006, 30(3): 38-43.
    [79]林济铿,余贻鑫.基于混合决策树-人工神经网络的电力系统动态安全评价.中国电机工程学报, 1996, 16(6): 378-383.
    [80] M.La Scala, M.Trovato, F.Torelli. A neural network-based method for voltage sevurity monitoring. IEEE Transaction on Power systems, 1996, 11(3): 1332-1341.
    [81] Yuan-Yih Hsn, Lin_Her Jeng. Analysis of torsional oscillations using an artificial neural network. IEEE Transactions on Energy Conversion, 1992, 7(4): 684-690.
    [82] R.C.Bansal, Senior Member. Bibliography on the fuzzy set theory applications in power systems (1994~2001). IEEE Transactions on Power Systems, 2003, 18(4): 1291-1299.
    [83] Kumar P, Chandana V.K, Thomas M.S. Fuzzy-genetic algorithm for pre-processing data at the RTU. IEEE Transactions on Power Systems, 2004, 19(2): 718-723.
    [84] Saric A.T, Ciric R.M. Integrated fuzzy state estimation and load flow analysis in distribution networks. IEEE Transactions on Power Delivery, 2003, 18(2): 571-578.
    [85] Luan W.P, Irving M.R, Daniel J.S. Genetic algorithm for supply restoration and optimal load shedding in power system distribution networks. IEE Proceedings–Generation, Transmission and Distribution, 2002, 149(2): 145-151.
    [86] Damousis I.G, Bakirtzis A.G, Dokopoulos P.S. A solution to the unit-commitment problem using integer-coded genetic algorithm. IEEE Transaction on Power Systems, 2004, 19(2): 1165-1172.
    [87] Richter C.W, Sheble G.B. Genetic algorithm evolution of utility bidding strategies for the competitive marketplace. IEEE Transactions on Power Systems, 1998, 13(1): 256-261.
    [88] Mantawy A.H, Abdel-Magid Y.L, Selim S.Z. A simulated annealing algorithm for unit commitment. IEEE Transactions on Power Systems, 1998, 13(1): 197-204.
    [89]文福拴,韩祯祥.基于遗传算法和模拟退火算法的电力系统的故障诊断.中国电机工程学报, 1994, 14(3): 29-35.
    [90]程林,郭永基.模拟退火法用于电压稳定分析.清华大学学报(自然科学版), 1999, 39(1): 4-7.
    [91]顾雪平,张文朝.基于Tabu搜索技术的暂态稳定分类神经网络的输入特征选择.中国电机工程学报, 2002, 22(7): 66-70.
    [92] Da Silava EL, Ortiz J.M.A, De Oliveira, et al. Transmission network expansion planning under a tabu search approach. IEEE Transactions on Power Systems, 2001, 16(1): 62-68.
    [93] Whei-Min Lin, Fu-Sheng Cheng, Ming-Tong Tsay. An improved tabu search for economic dispatch with multiple minima. IEEE Transactions on Power Systems, 2002, 17(1): 108-112.
    [94]韩水,汪定伟.基于多代理技术的购电-输电计划优化方法.电力系统自动化, 2002, 26(13): 43-46.
    [95] Nagata T, Sasaki H. A multi-agent approach to power system restoration. IEEE Transactions on Power Systems, 2002, 17(2): 457-462.
    [96] J.F.Gomez, H.M.Khodr etal. Ant colony system algorithm for the planning of primary distribution circuits. IEEE Transactions on Power Systems, 2004, 19(2): 996-1004.
    [97] Shyh-Jier Huang. Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches. IEEE Transactions on Energy Conversion, 2001, 16(3): 296-301.
    [98] Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE International Conference on Neutral Networks, Perth, Australia, 1995, (4): 1-12.
    [99]侯云鹤,鲁丽娟,熊信银等.改进粒子群算法及其在电力系统经济负荷配中的应用.中国电机工程学报, 2004, 24(7): 95-100.
    [100] Kyu-Ho Kim, Yu-Jeong Lee, Sang-Bong Rhee, et al. Dispersed generator placement using fuzzy-GA in distribution systems. 2002 IEEE Power Engineering Society Summer Meeting, Vol.3, pp: 1148-1153.
    [101] Nara K, Hayashi Y, Ikeda K and Ashizawa T. Application of tabu search to optimal placement of distributed generatos. 2001 IEEE Power Engineering Society Winter Meeting, Vol.2, pp: 918-923.
    [102] Silvestr A, Berizzi A, Buonanno S. Distributed generation planning using genetic algorithms. IEEE International Conference on Electric Power Engineering, PowerTech Budapest, 29 Aug.-2 Sept, 1999, pp: 257.
    [103] Carpinell G, Celli G, Pilo F, Russo A. Distributed generation siting and sizing under uncertainty. IEEE Power Tech Proceedings, Porto, Sept., 2001, Vol.4, pp: 7.
    [104] A.A.Chowdhury, Sudhir Kumar Agarwal, Don O.Koval. Reliability modeling of distributed generation in conventional distribution systems planning and analysis. IEEE Transactions on Industry Applications, 2003, 39(5): 1493-1498.
    [105] Thomas E.MxDermott, Roger C.Duagan. Distributed generation impact on reliability and power quality indices. 2002 IEEE Rural Electric Power Conference, pp: D3-D3_7.
    [106] Zhu, D. Power system reliability analysis with distributed generators [Master Dissertation]. Virginia: Virginia Polytechnic Institute and State University, 2003.
    [107] Manisa Pipattanasomporn, Michael Willingham, Saifur Rahman. Implications of on-site distributed generation for commercial/industrial facilities. IEEE Transactions on Power Systems, 2005, 20(1): 206-212.
    [108]孙洪波,徐国禹,秦翼鸿等.电网规划的模糊随机优化模型.电网技术, 1996, 20(5): 4-7.
    [109]高赐威,程浩忠,王旭.考虑场景发生概率的柔性约束电网规划模型.中国电机工程学报, 2004, 24(11): 34-38.
    [110]谢敏,陈金富,段献忠等.基于模糊阻塞管理的启发式电网规划方法.中国电机工程学报, 2005, 25(22): 61-67.
    [111]高赐威,程浩忠,王旭.盲信息的模糊评价模型在电网规划中的应用.中国电机工程学报, 2004, 24(9): 24-29.
    [112] Celli, G., Pilo, F. MV network planning under uncertainties on distributed generation penetration. 2001 IEEE Power Engineering Society Summer Meeting, Volume 1, 15-19 July, pp: 485-490.
    [113] B.Kuri, F.Li. Distributed generation panning in the deregulated electricity supply industry. 2004 IEEE Power Engineering Society General Meeting, Volume 2, pp: 2085-2089.
    [114] Ault G.W, McDonald J.R. Planning for distributed generation within distribution networks in restructured electricity markets. IEEE Power Engineering Review, 2000, 20(2): 52-54.
    [115]雷亚洲,王伟胜,印永华等.含风电场电力系统的有功优化潮流.电网技术, 2002, 26(6): 18-21.
    [116]陈琳,钟金,倪以信等.含分布式发电的配电网无功优化.电力系统自动化, 2006, 30(14): 20-24.
    [117]易新,陆于平.分布式发电条件下的配电网孤岛划分算法.电网技术, 2006, 30(7): 50-54.
    [118]卢志刚,董玉香.含分布式电源的配电网故障恢复策略.电力系统自动化, 2007, 31(2): 89-92.
    [119] Yiming Mao, Karen N.Miu. Switch placement to improve system reliability for radial distribution systems with distributed generation. IEEE Transactions on power systems, 2003, 18(4): 1346-1352.
    [120] Aleksandar Pregelj, Miroslav Begovic, Ajeet Rohatgi. Recloser allocation for improved reliability of DG-enhanced distribution networks. IEEE Transactions on Power Systems, 2006, 21(3): 1442-1449.
    [121]王海超,鲁宗相,周双喜.风电场发电容量可信度研究.中国电机工程学报, 2005, 25(10): 103-106.
    [122] Karaki S H, Chedid R B, Ramadan R. Probabilistic performance assessment of autonomous solar-wind energy conversion systems. IEEE Transactions on Energy Conversion, 1999, 14(3): 766-772.
    [123]粟文义,张保会,巴根.风/柴/储能系统发电容量充裕度评估.中国电机工程学报, 2006, 26(16): 62-67.
    [124]陈树勇,戴慧珠,白晓民等.风电场的发电可靠性模型及其应用.中国电机工程学报, 2000, 20(3): 26-29.
    [125]吴义纯,丁明.基于蒙特卡罗仿真的风力发电系统可靠性评价.电力自动化设备, 2004, 24(12): 70-73.
    [126]陈星莺,刘孟觉,单渊达.超导储能单元在并网型风力发电系统的应用.中国电机工程学报, 2001, 21(12): 63-66.
    [127]张步涵,曾杰,毛承雄等.电池储能系统在改善并网风电场电能质量和稳定性中的应用.电网技术, 2006, 30(15): 54-58.
    [128] Kariniotakis G, Stavrakakis G, Nogaret E. Wind power forescasting using advanced neural network models. IEEE Transactions on Energy Conversion, 1996, 11(4): 762-767.
    [129]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究.中国电机工程学报, 2005, 25(11): 1-5.
    [130] PSERC Final Project Report, 1996. Evaluation of distributed electric energy storage and generation. Available: http://www.pserc.org.
    [131]胡庶,吴耀武,娄素华等.用户自备分布式发电与供电商的博弈.电力系统自动化, 2006, 30(20): 21-25.
    [132] H.H.Zeineldin, K.Bhattacharya, E.F.El-Saadany, et al. Impact of intentional islanding of distributed generation on electricity market prices. IEE Proceedings-Generation, Transmission and Distribution, 2006, 153(2): 147-154.
    [133] Paul M.Sotkiewicz, Jesus M.Vignolo. Nodal pricing for distribution networks: efficient pricing for efficiency enhancing DG. IEEE Transactions on Power Systems, 2006, 21(2): 1013-1014.
    [134]王守相,王成山,刘若沁.基于模糊区间算法的配电网潮流计算.电力系统自动化, 2000, 24(20): 19-22.
    [135] Arturo Losi, Mario Russo. Dispersed generation modeling for object-oriented distribution load flow. IEEE Transactions on Power Delivery, 2005, 20(1): 1-9.
    [136] Walmir Freitas, Jose C.M. Vieira, Andre Morelato et al. Influence of excitation system control modes on the allowable penetration level of distributed synchronous generators. IEEE Transactions on Energy Conversion, 2005, 20(2): 474-480.
    [137] Robert Lasseter. Dynamic models for micro-turbines and fuel cells. IEEE Power Engineering Society Summer Meeting, 2001, vol.2, pp: 761-766.
    [138] Kourosh Sedghisigarchi, Ali Feliachi. Dynamic and transient analysis of powerdistribution dystems with fuel cells-part I: fuel-cell dynamic model. IEEE Transactions on Energy Conversion, 2004, 19(2): 423-428.
    [139] Arturo Losi, Mario Russo. Object-oriented load flow for radial and weakly meshed distribution networks. IEEE Transactions on Power System, 2003, 18(4): 1265-1274.
    [140] Tsai-Hsiang Chen, Mo-Shing Chen, Kab-Ju Hwang, et al. Distribution system power flow analysis-a rigid approach. IEEE Transactions on Power Systems, 1991, 6(3): 1146-1152.
    [141] G.X.Luo, A.Semlyen. Efficient load flow for large weakly meshed networks. IEEE Transactions on Power Systems, 1990, 5(4): 1309-1316.
    [142] Goswami, S.K., Basu, S.K. Direct solution of distribution systems. IEE Proceedings -Generation, Transmission and Distribution, 1991, 38(1): 78-88.
    [143]段献忠,何仰赞,陈德树.电力系统电压稳定的研究现状.电网技术, 1995,19(4): 20-24.
    [144]刘道伟,谢小荣,穆钢等.基于同步相量测量的电力系统在线电压稳定指标.中国电机工程学报, 2005, 25(1): 13-17.
    [145]王庆红,周双喜,胡国根.基于扩展潮流模型的电力系统电压稳定分析.电网技术, 2002, 26(10): 25-29.
    [146]韦化,丁晓莺.基于现代内点理论的电压稳定临界点算法.中国电机工程学报, 2002, 22(3): 27-31.
    [147] Guimaraes M A N, Lorenzeti J F C, Castro C A. Reconfiguration of distribution systems for stability margin enhancement using tabu search. 2004 International Conference on Power System Technology, Vol.2, 21-24 Nov., Singapore, pp: 1556-1561.
    [148]刘健,毕鹏翔,董海鹏.复杂配电网简化分析与优化.北京:中国电力出版社, 2002.
    [149] Prada R B, Souza L J. Voltage stability and thermal limit: constraints on the maximum loading of electrical energy distribution feeders. IEE Proceedings- Generation, Transmission and Distribution, 1998, 145(5): 573-577.
    [150]胡彩娥.应用基于连续潮流算法的遗传算法进行静态电压稳定分析.电网技术, 2004, 28(15): 57-61.
    [151]马世英,李永庄,李柏青.线性模拟法求解电力系统静态电压稳定裕度.电网技术, 1998, 22(9): 31-34.
    [152]李鹏,余贻鑫,贾宏杰.关于更精确的电压稳定极限描述中所需模型与方法的研究.中国电机工程学报, 2004, 24(10): 21-26.
    [153]余耀南, Weng-jie Zhang.包含负荷及系统动态的电力系统电压稳定仿真.电网技术, 1995, 19 (11): 5-11.
    [154] Jasmon G B, Lee L H C C. Stability of load flow techniques for distribution system voltage stability analysis. IEE Proceedings-Generation, Transmission and Distribution, 1991, 138(6): 479-484.
    [155] Jasmon G B, Lee L H C C. New contingency ranking technique incorporating a voltage stability criterion. IEE Proceedings-Generation, Transmission and Distribution, 1993, 140(2): 87-90.
    [156] Agustoni A, Brenna M, Faranda R, et al. Cosntraints for the interconnection of distributed generation in radial distribution systems. 2002 International Conference on Harmonics and Quality of Power, Volume 1, pp: 310-315.
    [157] Nara K, Hayashi Y, Ikeda K and Ashizawa T. Application of tabu search to optimal placement of distributed generators. 2001 IEEE Power Engineering Society Winter Meeting, Vol.2, pp: 918-923.
    [158] Gianni Celli, Emilio Ghiani, Susanna Mocci, et al. A multiobjective evolutionary algorithm for the sizing and siting of distributed generation. IEEE Transactions on Power Systems, 2005, 20(2): 750-757.
    [159]伍力,吴捷,钟丹虹.多目标优化改进遗传算法在电网规划中的应用.电力系统自动化, 2000, 24(12): 45-48.
    [160]孙洪波著.电力网络规划.重庆:重庆大学出版社, 1996.
    [161]何仰赞等.电力系统分析(上).武汉:华中理工大学出版社, 1995.
    [162] Panagis N. Vovos, Janusz W. Bialek. Direct incorporation of fault level constraints in optimal power flow as a tool for network capacity analysis. IEEE Transactions on Power Systems, 2005, 20(4): 2125-2134.
    [163]谢敬东,王磊,唐国庆.遗传算法在多目标电网优化规划中的应用.电力系统自动化, 1998, 22(10): 20-22.
    [164]胡家声,郭创新,叶彬等.离散粒子群优化算法在输电网络扩展规划中的应用.电力系统自动化, 2004, 28(20): 31-36.
    [165]翟海保,程浩忠,吕干云等.多阶段输电网络最优规划的并行蚁群算法.电力系统自动化, 2004, 28(20): 37-42.
    [166] G. Durga Prasad and A. K. JanaS. C. Tripathy. Modifications to Newton-Raphson load flow for ill-conditioned power systems. International Journal of Electrical Power & Energy System, 1990, 12(3): 192-196.
    [167]中国电力百科全书——电力系统卷(第二版).北京:中国电力出版社, 1995年.
    [168] Mesut E.Baran, Ismatil El-Markaby. Fault analysis on distribution feeders with distributed generators. IEEE Transactions on Power Systems, 2005, 20(4): 1757-1764.
    [169] Natthaphob Nimpitiwan, Gerald Thomas Heydt, Raja Ayyanar, et al. Fault current contribution from synchronous machine and inverter based distributed generators. IEEE Transactions on Power Delivery, 2007, 22(1): 634-641.
    [170] Geraldo Leite Torres, Victor Hugo Quintana. Optimal power flow by a nonlinear complementarity method. IEEE Transactions on Power Systems, 2000, 15(3): 1028-1033.
    [171]王永刚,韩学山,王宪荣等.动态优化潮流.中国电机工程学报, 1997, 17(3): 195-198.
    [172] Masters C.L, Mutale J, Strbac G, et al. Statistical evaluation of voltages in distribution systems with embedded wind generation. IEE Proceedings -Generation, Transmission and Distribution, 2000, 147(4): 202-212.
    [173]丁明,吴义纯.风力发电系统运行和规划问题研究综述.国际电力, 2003, 7(3): 36-40.
    [174] G C Contaxis, J Kabouris. Short term scheduling in a wind/diesel autonomous energy system. IEEE Transactions on Power Systems, 1991, 6(3): 1161-1167.
    [175] Alexidis M C, Dokopoulos P S, Sahsamanoglou H S. Wind speed and power forecasting based on spatial correlation models. IEEE Transactions on Energy Conversion, 1999, 14(3): 836-842.
    [176]骆济寿,张川.电力系统优化运行.武汉:华中理工大学出版社, 1990.
    [177] Bakirtzis A G, Biskas P N, Zoumas C E, et al. Optimal power flow by enhanced genetic algorithm. IEEE Transactions on Power Systems, 2002, 17(2): 229-236.
    [178]王锡凡主编.现代电力系统分析.北京:科学出版社, 2003.
    [179]张小平,陈朝晖.基于内点法的安全约束经济调度.电力系统自动化, 1997, 21(6): 27-29.
    [180]潘毅,柳焯,于尔铿等.动态优化调度对特殊负荷段落的处理.电力系统自动化, 1997, 21(4): 3-5.
    [181]杨洪明,段献忠.基于模糊理论的双边交易裁减模型.电力系统自动化, 2002, 26(20): 24-28.
    [182]陈得治,郭志忠.配电网模糊匹配潮流状态估计方法分析.电力系统自动化, 2005, 29(13): 34-39.
    [183]刘明波,段晓军,赵艳.多目标最优潮流问题的模糊建模及内点解法.电力系统自动化, 1999, 23(14): 37-40.
    [184]张焰,陈章潮.电网规划中的模糊潮流计算.电力系统自动化, 1998, 22(3): 20-22.
    [185] Damousis I.G, Bakirtzis A.G, Dokopoulos P.S. Network-constrained economic dispatch using real-coded genetic algorithm. IEEE Transactions on Power Systems, 2003, 18(1): 198-205.
    [186] Pathom Attaviriyanupap, Hiroyuki Kita, Eiichi Tanaka et al. A fuzzy-optimization approach to dynamic economic dispatch considering uncertainties. IEEE Transactions on Power Systems, 2004, 19(3): 1299-1307.
    [187]袁晓辉,王乘,袁艳斌等.一种求解机组组合问题的新型改进粒子群方法.电力系统自动化, 2005, 29(1): 34-38.
    [188] Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE International Conference on Neutral Networks, Perth, Australia, 1995, 4: 1-12.
    [189]赵明旺.基于遗传算法和最速下降法的函数优化混合数值算法.系统工程理论与实践, 1997(7): 59-64.
    [190] Pathom Attaviriyanupap, Hiroyuki Kita Eiichi Tanaka etal. A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function. IEEE Transactions on Power Systems, 2002, 17(2): 411-416.
    [191]周任军,段献忠,周晖.计及调控成本和次数的配电网无功优化策略.中国电机工程学报, 2005, 25(9): 23-25.
    [192]赵书强,马燕峰,贺春.抑制谐波的配电网无功优化规划.电网技术, 2004, 28(6): 71-75.
    [193]任晓娟,邓佑满,赵长城,等.高中压配电网动态无功优化算法的研究.中国电机工程学报, 2003, 23(1): 31-36.
    [194] M.A.Kashem, Gerard Ledwich. Distributed generation as voltage support for single wire earth return systems. IEEE Transactions on Power Delivery, 2004, 19(3): 1002-1011.
    [195] Fabrice Demailly, Olivier Ninet, Andre Even. Numerical tools and models for monte carlo studies of the influence on embedded generation on voltage limits in LV Grids. IEEE Transactions on Power Delivery, 2005, 20(3): 2343-2350.
    [196]段献忠.电压稳定问题的机理和建模及实用算法研究.华中理工大学博士学位论文, 1992.
    [197]玄光南,程润伟著.于歆杰,周根贵译.遗传算法与工程优化.北京:清华大学出版社, 2004.
    [198]丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究.中国电机工程学报, 2005, 25(10): 107-110.
    [199]程莹,刘明波.含离散控制变量的大规模电力系统无功优化.中国电机工程学报, 2002, 22(5): 54-60.
    [200] Kundur著.电力系统稳定与控制.北京:中国电力出版社, 2002.
    [201]孙建峰,焦连伟,吴俊玲等.风电场发电机动态等值问题的研究.电网技术, 2004, 28(7): 58-61.
    [202]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700