用户名: 密码: 验证码:
代谢工程技术构建产均聚物聚3-巯基丙酯的Advenella mimigardefordensis菌株
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PTE (polythioester)是一类人工改造的在碳骨架上含有硫的新型化合物。聚3-巯基丙酸酯(poly(3-mercaptopropionate), PMP)是PTE聚酯的一种。和结构类似物聚羟基脂肪酸酯(PHA)相比,PTE在主链上将氧原子换成了硫原子。因为这种改变,该聚合物具有了一些更有价值的性质,比如其熔点更高,溶解度更低,热稳定性也更高。同时另一个吸引人的性质是其不可降解性,这些性质让这类聚合物有着很多潜在的用途。随着不可再生的化石能源的日益枯竭,原本来源于化石原料的聚合物都需要找到合适的替代产品。现代化房屋建造行业,汽车制造行业以及其他许多行业都需要不可降解的聚合物材料,这是PHA这类可降解材料不能满足的。因此开拓PTE的生物合成方法具有重要意义。
     PTE于1951年通过化学方法首次合成,其后又发展了多种不同的化学合成方法,但是化学方法的难制备,高成本以及低产率的问题制约了PTE的商业化生产;更重要的是这些方法原料基本来源于石油基,面临着原料日益短缺及环境污染的诸多问题。使用重组有BPEC代谢途径(由Clostridium acetobutylicum的丁酸激酶(Buk)和磷酸丁酰转移酶(Ptb)以及Thiocapsa pfennigii的PHA合成酶PhaEC组成)的大肠杆菌菌株实现了合成均聚物PMP。这种生物法合成的PTE材料相比较于化学法合成的材料具有单体均一并且聚合度高的优点。但该大肠杆菌重组菌只能利用毒性较高的3MP(3-mercaptopropioante,3-巯基丙酸)为原料合成产物,而不能利用TDP或DTDP等低毒性原料合成PMP,这阻碍了其后期工业化应用。
     为了找到一株可以使用DTDP这种低毒性,低成本原料合成PMP的菌种,我们研究组进行了大规模的筛选,最终得到了若干株不同的可以降解DTDP并利用其作为唯一碳源进行生长的菌株。对其中首次鉴定的A. mimigardfordensis DPN7T进行了Tn5转座子的突变筛选,全基因组测序和相关酶的表达与酶活测定,最终发现和鉴定了一条完整的DTDP降解途径。该菌对DTDP降解途径的第一步是通过硫辛酰胺脱氢酶(dihydrolipoamide dehydrogenase, LpdA)将其催化变为3MP,而3MP又是合成PMP的一个直接前体。
     本研究正是利用这株菌作为构建合成PMP的基础菌株。我们首先寻找到了可以在该菌株中稳定自主复制的质粒pBBR1MCS5,并尝试着将BPEC这条唯一已知的可以合成PMP的代谢途径构建到质粒pBBR1MCS5上得到了pBBRlMCS5::BPEC。但这个重组质粒不能稳定的在菌株A. mimigardefordensis SHX1中复制。出现了抑制菌体生长和质粒传代结构不稳定等现象。通过进一步的质粒构建和培养实验,最终确定重组buk-ptb操纵子过表达是导致这些问题的根源。之后我们发展了一套适用于该菌株的,利用自杀质粒同源双交换原理进行基因敲除或基因替代的方法。利用此方法,将buk-ptb操纵子成功的插入A. mimigardefordensis菌株的基因组中,得到了生长正常的菌株和稳定遗传的重组质粒。并利用反转录PCR的方法定性的证实了buk-ptb操纵子在被插入到基因组后都可以进行转录。3-巯基丙酸双加氧酶(3-mercaptopropionate dioxygenase, Mdo)是DTDP降解途径中的第二个催化酶,该酶催化3MP生成3-亚磺酸基丙酸(3-sulfinopropionate,3SP),因此该代谢支路会导致3MP前体底物的减少,是影响PMP产量的关键因素之一。而利用mdo::Tn5突变株进行阻断研究时,我们发现Tn5转座子不稳定,并且观察到因转座导致质粒变大的现象。于是我们改用等位替换方法将mdo基因进行敲除,发酵结果表明敲除了mdo的菌株PMP产量进一步提高。本文研究同时表明A. mimigardefordesis菌株的常规碳源葡萄糖酸并不适合用于PMP合成的发酵碳源。与之相比,琥珀酸作为发酵碳源可以提高菌体量并同时提高PMP产量。综合以上的工作,使用琥珀酸发酵的重组菌SHX5胞内的PMP含量可以稳定在5%-6%。我们初步实现了利用DTDP合成PMP的目的。
     尽管如此,但该菌株的产量较低,并且使用的琥珀酸碳源价格昂贵。为了进一步提高PMP产量和降低成本,从发酵水平分别对碳源进行比较,并对发酵具体方式进行优化以及发酵中各组分随时间的改变进行分析。结果表明当以甘油为碳源时,细胞虽然生长缓慢,但可以积累到和以琥珀酸为碳源时相似的菌体量,并且PMP的胞内含量几乎提高了一倍,达到了10%,这使它成为替代琥珀酸的廉价碳源。一个出乎意料的结果表明在使用甘油和丙酸的混合碳源培养基中(丙酸浓度设为0.2%(w/v)),丙酸作为一种‘刺激物’进一步提高了聚合物产量(聚合物占细胞总重量的18%左右),并提高了菌体的生长速率。但这种发酵方法使含有3MP单体的PTE中混入了少量的3HB和3HV单体(占PTE总质量分数少于10%),并得到了一种含有三种单体的未见报道的新化合物poly(3MP-co-3HB-co-3HV)。之后对该类聚合物组成在发酵时间上的变化进行了分析,最终发现很难通过控制发酵时间的方法将3HB和3HV单体去除。这说明这种混合碳源的发酵模式无法很好的用于PMP的生产。
     为了进一步提高PMP的产量,我们对之前的结果进行了总结,发现在使用甘油为碳源后,作为对照的不含有BPEC途径的菌株SHX12也可以积累不显著的PMP(胞内含量低于2%),多次重复结果相同。这提示该菌株自身含有一条内在的PMP途径。通过与基因组的序列比对分析,找到了PhaEC的同工酶:由内源的phaCAm基因编码的PHA合成酶(PhaCAm)。将phaCAm基因进行敲除,比较其对内源PMP合成途径和重组的BPEC代谢途径合成PMP的影响,结果说明了三点:第一,起关键作用的酶是其自身的phaCAm基因编码的PHA合成酶PhaCAm。第二,尽管phaE和phaC基因的转录本可以通过逆转录PCR被检测到,但是异源表达的同工酶PhaEC在该菌株中没有活性,也没有对PMP合成有任何贡献。第三,验证了之前的结论,即插入基因组的buk-ptb操纵子所表达的Buk和Ptb对PMP合成有比较重要的影响,显著提高了菌株合成PMP的能力。从而最终发现并鉴定了编码内源PMP合成途径上的PHA合成酶基因phaCAm。为了寻找更优的PHA合成酶,我们比较了三种不同来源的phaC基因。结果表明其自身来源的phaCAm是最有效的。
     进一步对内源phaC进行了过量表达来提高PMP的含量,并优化得到了最佳的PHA合成酶的表达量来满足最大化的PMP合成。我们得到了PMP产量最高的菌株SHX22。产量达到20%,最高可以得到25%。对菌株SHX22的菌体干重、PMP含量和培养基中各组分进行了随发酵时间的变化分析,最终发现3MP的“相对剩余”的现象。在A. mimigardefordensis菌株的细胞中,3MP分子只能快速的被转运到胞外而不能成功的穿越细胞膜再次进入细胞。我们判断这是导致PMP产量无法继续提高的一个重要限制因素。据此提出了三种解决方案:第一种通过降低DTDP的浓度进而降低胞内DTDP的降解速度来协调其和PMP合成速度的策略,但该方法最终被证明是不可行的。第二种方法寻找一个转运蛋白将3MP转入胞内比较困难,第三种策略是进一步提高3MP到3MP-CoA的转化速率。为此我们寻找到了合适的酶,即来自Clostridium kluyveri的cat2,并在大肠杆菌中成功的验证了其功能。进一步验证工作正在进行。
     最后我们建立了一种适合于重组菌的PMP纯化方法,获得了纯的PMP产物,并通过GC/MS的分析确认了得到的PMP产物的均一性。尼罗红染色证实该菌株中的PMP是以常规的PMP颗粒的形式存在。而这种具有生物活性PMP颗粒可以使我们对其和完整PHA酶系之间的关系进行深入研究。为此我们优化并建立了一套适合于该菌株的活性PMP颗粒的甘油密度梯度超速离心的纯化方法并试着对其蛋白成分组成进行了分析。
     PMP材料是用生物方法人工合成的新型聚合物材料。因为材料在性质上的优越性,具有较高的实用价值。但其生产目前受限于前体底物3MP的毒性,采用低毒性的DTDP进行PMP合成无疑具有很大的优势。本论文通过对一株可以利用DTDP进行生长的菌株A. mimigardefordensis进行异源PMP合成途径BPEC的构建和优化,以及之后的一系列发酵优化改造,成功实现了利用低毒性DTDP为底物,在不能生产PMP的菌株细胞中积累到10%的PMP含量。之后,通过内源的新的PMP合成途径的发现以及之后的关键酶phaCAm的鉴定和优化,将PMP胞内含量进一步提高到了20%,最高可以达到25%.之后对合成的PMP进行了纯化和一些性质鉴定的工作。本研究在成功构建新的PMP合成途径的基础上,首次实现了利用低毒性DTDP合成PMP的目的,为PMP材料的生物合成提供了一个新的研究思路和产业化的可行性。
PTE (polythioester) is a kind of polymer containing sulfur in its backbone which are artificially transformed. Poly(3-mercaptopropionate)(PMP) is one kind of PTE. It has similar structure with its analogues, polyoxoesters. The only difference is the substitution of oxygen with sulfur in the chain backbone. Because of this alteration, this kind of polymer shows valuable characters, such as higher melting points, slower solubility and increased heat stability. Whereas the most attracting property is its non-biodegradability. This endows PTE plenty of potentials. In the foreseeable future, as the nonrenewable fossil energy consuming, more and more polymer products should be replaced by proper substitutes. But not all non-biodegardable polymers from fossil oil could be replaced by the biodegradable substitutes from renewable sources as we normally thought. Modern construction of houses, automobiles and other major developments would be unthinkable and impractical without the availability of persistent polymers. In considering of these industrial demands, the production of PTE from renewable feedstock by biotechnical method makes sense.
     The chemical synthesis of PTE has already been reported in1951. A lot of other chemical methods to synthesize PTE have also been reported ever since. But all these methods have not been technically produced and commercialized due to difficult preparations, high costs and low yields from laborious synthesis. The key point is that its synthesis still needs petroleum base feedstock which is still in the influence of fossil oil. One recombinant E. coli strain which harbors the non-natural BPEC pathway was successfully used to produce PMP. It contains the following recombining enzymes:butyrate kinase (Buk) and phosphotransbutyrylase (Ptb) from Clostridium acetobutylicum in addition to the PHA synthase from Thiocapsa pfennigii, PhaEC which is recognized as BPEC pathway. This PMP material has sole monomer and it has higher degree of polymerization. But this strain could not use low toxic TDP or DTDP to produce PMP which makes this method hard to be industrially promoted.
     To find one strain which could use the low toxic and more stable precursor DTDP, our team screened plenty of strains in large scale. Finally, some strains that could use DTDP as the sole carbon source to grow were shown. One new identified strain A. mimigardefordensis DPN7T attracted our interests. After Tn5mutagenesis screening and relevant enzymes assay, a clear DTDP degradation pathway was figured out. The whole genome sequence has been got and the detailed annotation was processed. The first step of this degradation pathway is at the help of LpdA to form3MP which is just the start precursor for PMP production.
     Basing on these facts, the first option is to use DTDP degradation strain A. mimigardfordensis DPN7T to produce PMP. First, we find a proper vector pBBR1MCS5which could be autonomously replicated in this strain. The entire BPEC pathway is inserted into the vector pBBR1MCS5and mobilized into the strain. However, the recombinant vector could not stably replicate in this strain SHX1. Finally, the plasmid structural instability is found to be related with the buk-ptb operon which could lead to growth repression of this strain. One gene deletion or gene exchange method is established basing on the suicide vector by using of allelic exchange. The integration of buk-ptb operon into the genome relieve the repression affection and stable the plasmid structure in the cell. Mdo is the second enzyme in the DTDP degradation pathway which could catalyze3MP into3SP and decrease the3MP amount in the cell, so it is thought as one key factor to affect PMP accumulation in the cells. Unfortunately, it is not possible to use mdo::Tn5mutant to carry out this strategy due to the transposition events of Tn5transposon in A. mimigardefordensis strains. In some cases, the plasmid size in our strain SHX1is observed in bigger size due to this affection. So the mdo gene is deleted instead of mdo::Tn5mutation in the same method. The PMP production is increased further after the mdo deletion procedure. Gluconate is one common used carbon source for cultivation of A. mimigardefordensis strains. But our results proves that it is not suitable for PMP production, so succinate is chosen instead. It improved the cell growth and the PMP content in the cells synchronously. After all these metabolic engineering modifications, the strain SHX5could produce PMP in5%-6%repeatedly and stably. It ultimately verified that the method to modified A. mimigardefordesis DPN7T for PMP production is feasible.
     Although we have achieved so much achievements, the production ability of this strain which was around5%is still low and the utilization of costly succinate as carbon source is also limited. To further improve the PMP production and decrease the cost, more different carbon sources, the cultivation styles and the changes of different components along the time course in the medium were all tested. Although cells in glycerol grew slower, it could help the strains to accumulate similar biomass with double PMP content comparing with succinate. It was finally chosen as one cheaper alternative carbon source for PMP production. The addition of propionate increased the polymer production to around18%and recovered the growth of cells. Whereas few3HB and3HV monomers were also incorporated into this polymer (less than10%). The analysis of this polymer composition according to time scale indicated that the appearance of three different kinds of monomers were almost at the same time. It was hard to get rid of the3HB and3HV monomers by changing the cultivation methods.
     The supernatant analysis demonstrated the increasing of3MP in the medium. It expelled it from one limited factor. The PMP production pathway itself was locked as the critical point for further PMP production. The previous data also implied that the strain itself contained one inherent PMP production pathway which is independent of the BPEC pathway. After genome blast analysis by using a phaC database, its own phaC gene which encodes PhaC Am as the isozyme of PhaEC was revealed. After the comparison of these two different genes encoding PHA synthase, the PHA synthase encoded by its own phaC was proved as the only functional enzyme. PhaEC was proved to be deficient although their transcripts were positive by reverse-transcript PCR assay. The buk-ptb operon was proved to improve the PMP production in the same experiment. Three different origins of PHA synthase were compared afterward and its own PhaCAm was proved as the most efficient. The affection of lac promoter was excluded at the same time. PHA synthase encoded by phaCl from R. eutropha H16also showed its activity to some extent.
     The improved expression of phaC in the cells increased the PMP production further. And the optimal phaC expression amount was defined. The best PMP production strain SHX22was got finally. To further increase the PMP content, the components in the medium were analyzed according to time scale,'relative surplus'of3MP was thought as one key factor. More experiments proved that the3MP molecule could only be exported and could not be imported by the A. mimigardefordensis strains. It was thought to be the next obstacle for further PMP production. Three different solutions were proposed afterwards. The decrease of DTDP concentration was proved not applicable at last. The second strategy was to find a proper enzyme that could accelerate the catalysis speed from3MP to3MP-CoA. For that purpose, a candidate enzyme was proved to be active for PMP accumulation in E. coli strain. Further attempts are arranged at this moment.
     Through the modification of PMP purification method, one method was established to purify PMP polymer from this strain. After GC/MS analysis, the PMP was confirmed as homo-polymer. One proper native PMP granules purification method was developed and its protein components were also analyzed by SDS-PAGE which could do great benefit for further research.
     PMP materials is one new valuable artificial polymer which could be produced through biotechnical method. However its production is limited to the high toxic precursor3MP. Thus the PMP production through lower toxic DTDP is more practical. Through the construction and optimization of BPEC pathway in a DTDP degradation strain A. mimigardedfordensis DPN7T and a serial of fermentation condition optimizations, the native strain which could not accumulate any PMP could accumulated up to10%PMP in its cells after these modifications. Soon after, its own native PMP production pathway was revealed and the key enzyme phaCAm was identified and its expression was optimized. The PMP production in the cells could arrived to around20%with the highest amount to25%. The purification and identification of this PMP material was studied basing on this system. This work achieved the purpose that the PMP was accumulated by using of low toxic DTDP. A new PMP production pathway was constructed in a new developed strain A. mimigardefordensis. It offers a new research thought and potentials of industrialization for biotechnical PMP production.
引文
1. Abe, H., Y. Doi, T. Fukushima, and H. Eya.1994. Biosynthesis from gluconate of a random copolyester consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp.. International journal of biological macromolecules 16:115-9.
    2. Al-Farawati, R., and C. M. G. van den Berg.2001. Thiols in coastal waters of the western North Sea and English Channel. Environmental science & technology 35:1902-1911.
    3. Al-Masri, M., G. Schwarz, and H. R. Kricheldorf.2001. New polymer syntheses.105. Syntheses of aliphatic poly (thioester) s by ring-opening polycondensation of 2,2-dibutyl-2-stanna-1, 3-dithiolane. Journal of Macromolecular Science, Part A 38:1007-1017.
    4. Aldor, I. S., and J. D. Keasling.2003. Process design for microbial plastic factories:metabolic engineering of polyhydroxyalkanoates. Current opinion in biotechnology 14:475-483.
    5. Alper, R., D. G. Lundgren, R. H. Marchessault, and W. A. Cote.1963. Presented at the Biopolymers.
    6. Anderson, A. J., and E. A. Dawes.1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiology and Molecular Biology Reviews 54:450.
    7. Anderson, A. J., G W. Haywood, D. R. Williams, and E. A. Dawes.1990. The production of polyhydroxyalkanoates from unrelated carbon sources. Novel biodegradable microbial polymers 186:119-129.
    8. Antonio Vazquez, J., A. Duran, I. Rodriguez-Amado, M. Angel Prieto, D. Rial, and M. Anxo Murado.2011. Evaluation of toxic effects of several carboxylic acids on bacterial growth by toxicodynamic modelling. Microbial Cell Factories 10.
    9. Appell, R. B., I. A. Tomlinson, and I. Hill.1995. New reagents for the reductive quenching of ozonolysis reactions. Synthetic communications 25:3589-3595.
    10. Barnard, G. N., and J. K. Sanders.1989. The poly-beta-hydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. Journal of Biological Chemistry 264:3286.
    11. Barnard, G. N., and J. K. M. Sanders.1988. Observation of mobile poly ([beta]-hydroxybutyrate) in the storage granules of Methylobacterium AM1 by in vivo 13C-NMR spectroscopy. FEBS letters 231:16-18.
    12. Bhubalan, K., J. A. Chuah, F. Shozui, C. J. Brigham, S. Taguchi, A. J. Sinskey, C. K. Rha, and K. Sudesh.2011. Characterization of the highly active polyhydroxyalkanoate synthase of Chromobacterium sp. strain USM2. Appl. Environ. Microbiol.77:2926-2933.
    13. Brandl, H., R. A. Gross, R. W. Lenz, and R. C. Fuller.1990. Plastics from bacteria and for bacteria:poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Advances in biochemical engineering/biotechnology 41:77-93.
    14. Brandl, H., R. A. Gross, R. W. Lenz, and R. C. Fuller.1988. Pseudomonas oleovorans as a source of poly (β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl. Environ. Microbiol.54:1977-1982.
    15. Bruland, N., J. H. Wubbeler, and A. Steinbuchel.2009.3-Mercaptopropionate dioxygenase, a cysteine dioxygenase homologue, catalyzes the initial step of 3-mercaptopropionate catabolism in the 3,3-thiodipropionic acid-degrading bacterium Variovorax paradoxus. Journal of Biological Chemistry 284:660.
    16. Burgmann, H., E. C. Howard, W. Ye, F. Sun, S. Sun, S. Napierala, and M. A. Moran.2007. Transcriptional response of Silicibacter pomeroyi DSS-3 to dimethylsulfoniopropionate (DMSP). Environmental microbiology 9:2742-2755.
    17. Cary, J. W., D. J. Petersen, E. T. Papoutsakis, and G. N. Bennett.1988. Cloning and expression of Clostridium acetobutylicum phosphotransbutyrylase and butyrate kinase genes in Escherichia coli. Journal of bacteriology 170:4613.
    18. Chen, Q., Q. Wang, G. Wei, Q. Liang, and Q. Qi.2011. Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Varied Monomer Compositions in Escherichia coli from Unrelated Carbon Sources. Appl. Environ. Microbiol.
    19. Cobntbekt, J., and R. H. Mabchessault.1972. Physical properties of poly-[beta]-hydroxybutyrate:: IV. Conformational analysis and crystalline structure. Journal of molecular biology 71:735-756.
    20. Codognoto, L., E. Winter, J. A. R. Paschoal, H. B. Suffredini, M. F. Cabral, S. A. S. Machado, and S. Rath.2007. Electrochemical behavior of dopamine at a 3,3'-dithiodipropionic acid self-assembled monolayers. Talanta 72:427-433.
    21. Coenye, T., E. Vanlaere, E. Samyn, E. Falsen, P. Larsson, and P. Vandamme.2005. Advenella incenata gen. nov., sp. nov., a novel member of the Alcaligenaceae, isolated from various clinical samples. Int. J. Syst. Evol. Microbiol.55:251-256.
    22. Crick, E. W., I. Osorio, N. C. Bhavaraju, T. H. Linz, and C. E. Lunte.2007. An investigation into the pharmacokinetics of 3-mercaptopropionic acid and development of a steady-state chemical seizure model using in vivo microdialysis and electrophysiological monitoring. Epilepsy research 74:116-125.
    23. Cuebas, D., J. D. Beckmann, F. E. Frerman, and H. Schulz.1985. Mitochondrial metabolism of 3-mercaptopropionic acid. Chemical synthesis of 3-mercaptopropionyl coenzyme A and some of its S-acyl derivatives. Journal of Biological Chemistry 260:7330.
    24. Da Silva, G. P., M. Mack, and J. Contiero.2009. Glycerol:a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv.27:30-39.
    25. Dam, B.2011. A type Ib plasmid segregation machinery of the Advenella kashmirensis plasmid pBTK445. Plasmid.65:185-191.
    26. Dam, B., W. Ghosh, and S. K. Das Gupta.2009. Conjugative Type 4 secretion system of a novel large plasmid from the chemoautotroph Tetrathiobacter kashmirensis and construction of shuttle vectors for Alcaligenaceae. Appl. Environ. Microbiol.75:4362-4373.
    27. Dam, B., S. Mandal, W. Ghosh, S. K. Das Gupta, and P. Roy.2007. The S4-intermediate pathway for the oxidation of thiosulfate by the chemolithoautotroph Tetrathiobacter kashmirensis and inhibition of tetrathionate oxidation by sulfite. Res. Microbiol.158:330-338.
    28. Dassler, T., T. Maier, C. Winterhalter, and A. Bock.2000. Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Molecular Microbiology 36:1101-1112.
    29. Dave, M. P., J. M. Patel, N. A. Langalia, and K. A. Thaker.1984. Synthesis and antitubercular activity of some 2-aryl-3-[4-chlorobenzamido]-5-substituted-4-thiazolidinones. J. Indian Chem. Soc 61:891-892.
    30. de Boer, A. L., and C. Schmidt-Dannert.2003. Recent efforts in engineering microbial cells to produce new chemical compounds. Current opinion in chemical biology 7:273-278.
    31. de Koning, G.1995. Physical properties of bacterial poly ((R)-3-hydroxyalkanoates). Canadian journal of microbiology 41:303-309.
    32. De Smet, M. J., G Eggink, B. Witholt, J. Kingma, and H. Wynberg.1983. Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. Journal of Bacteriology 154:870.
    33. Diao, J., and M. S. Hasson.2009. Crystal structure of butyrate kinase 2 from Thermotoga maritima, a member of the ASKHA superfamily of phosphotransferases. J. Bacteriol.191:2521-2529.
    34. Ding, R., N. Tsunekawa, and K. Obata.2004. Cleft palate by picrotoxin or 3-MP and palatal shelf elevation in GABA-deficient mice. Neurotoxicology and teratology 26:587-592.
    35. Do Young, K., T. Lutke-Eversloh, K. Elbanna, N. Thakor, and A. Steinbiichel.2005. Poly (3-mercaptopropionate):A Nonbiodegradable Biopolymer? Biomacromolecules 6:897-901.
    36. Doi, Y.2002. Biotechnology:unnatural biopolymers. Nature Materials 1:207-208.
    37. Dunlop, W. F., and A. W. Robards.1973. Ultrastructural study of poly-beta -hydroxybutyrate granules from Bacillus cereus. Journal of bacteriology 114:1271-80.
    38. Eggink, G., P. de Waard, and G. N. M. Huijberts.1995. Formation of novel poly (hydroxyalkanoates) from long-chain fatty acids. Canadian journal of microbiology 41:14-21.
    39. Eisenberg, R. C., and W. J. Dobrogosz.1967. Gluconate metabolism in Escherichia coli. Journal of Bacteriology 93:941.
    40. El-Sayed, H.2006. Novel approach for antisetting of wool fabrics during dyeing. Coloration technology 122:57-60.
    41. Elbanna, K., T. Lutke-Eversloh, D. Jendrossek, H. Luftmann, and A. Steinbuchel.2004. Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Archives of microbiology 182:212-225.
    42. Escamilla-Gomez, V., S. Campuzano, M. Pedrero, and J. M. Pingarron.2008. Immunosensor for the determination of Staphylococcus aureus using a tyrosinase-mercaptopropionic acid modified electrode as an amperometric transducer. Analytical and bioanalytical chemistry 391:837-845.
    43. Fehling, E., E. Klein, K. Vosmann, K. Bergander, and N. Weber.2008. Linear copolymeric poly (thia-alkanedioates) by lipase-catalyzed esterification and transesterification of 3,3'-thiodipropionic acid and its dimethyl ester with a,ω-alkanediols. Biotechnology and bioengineering 99:1074-1084.
    44. Findlay, R. H., and D. C. White.1983. Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Applied and environmental microbiology 45:71.
    45. Fuhrer, T., E. Fischer, and U. Sauer.2005. Experimental identification and quantification of glucose metabolism in seven bacterial species. Journal of bacteriology 187:1581.
    46. Fukui, T., and Y. Doi.1997. Cloning and analysis of the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. Journal of bacteriology 179:4821.
    47. Ghosh, W., A. Bagchi, S. Mandal, B. Dam, and P. Roy.2005. Tetrathiobacter kashmirensis gen. nov., sp. nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic betaproteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India. Int. J. Syst. Evol. Microbiol.55:1779-1787.
    48. Ghosh, W., A. George, A. Agarwal, P. Raj, M. Alam, P. Pyne, and S. K. Das Gupta.2011. Whole-Genome Shotgun Sequencing of the Sulfur-Oxidizing Chemoautotroph Tetrathiobacter kashmirensis. J. Bacteriol.193:5553-5554.
    49. Gibello, A., A. I. Vela, M. Martin, A. Barra-Caracciolo, P. Grenni, and J. F. Fernandez-Garayzabal.2009. Reclassification of the members of the genus Tetrathiobacter Ghosh et al.2005 to the genus Advenella Coenye et al.2005. International journal of systematic and evolutionary microbiology 59:1914-1918.
    50. Greco, P., and E. Martuscelli.1989. Crystallization and thermal behaviour of poly ((--)-3-hydroxybutyrate)-based blends. Polymer 30:1475-1483.
    51. Hakkarainen, M., and A. C. Albertsson.2004. Environmental degradation of polyethylene. Long Term Properties of Polyolefins:177-200.
    52. Hall, M. R., and R. S. Berk.1968. Microbial growth on mercaptosuccinic acid. Canadian journal of microbiology 14:515-523.
    53. Hall, M. R., and R. S. Berk.1972. Thiosulfate oxidase from an Alcaligenes grown on mercaptosuccinate. Canadian journal of microbiology 18:235-245.
    54. Handrick, R., S. Reinhardt, P. Kimmig, and D. Jendrossek.2004. The" intracellular" poly (3-hydroxybutyrate)(PHB) depolymerase of Rhodospirillum rubrum is a periplasm-located protein with specificity for native PHB and with structural similarity to extracellular PHB depolymerases. Journal of bacteriology 186:7243.
    55. Hartmanis, M. G 1987. Butyrate kinase from Clostridium acetobutylicum. J. Biol. Chem. 262:617-621.
    56. Hein, S., B. Sohling, G Gottschalk, and A. Steinbuchel.1997. Biosynthesis of poly(4-hydroxybutyric acid) by recombinant strains of Escherichia coli. FEMS Microbiol. Lett. 153:411-418.
    57. Held, K. D., and J. E. Biaglow.1994. Mechanisms for the oxygen radical-mediated toxicity of various thiol-containing compounds in cultured mammalian cells. Radiation research 139:15-23.
    58. Hoffmann, N., A. A. Amara, B. B. Beermann, Q. Qi, H. J. Hinz, and B. H. A. Rehm.2002. Biochemical characterization of the Pseudomonas putida 3-hydroxyacyl ACP:CoA transacylase, which diverts intermediates of fatty acid de novo biosynthesis. Journal of Biological Chemistry 277:42926.
    59. Holmes, P. A.1985. Applications of PHB-a microbially produced biodegradable thermoplastic. Physics in technology 16:32.
    60. Holmes, P. A., and G. B. Lim.1990. Separation process. US Patents.
    61. Hong, K., S. Sun, W. Tian, G. Q. Chen, and W. Huang.1999. A rapid method for detecting bacterial polyhydroxyalkanoates in intact cells by Fourier transform infrared spectroscopy. Applied Microbiology and Biotechnology 51:523-526.
    62. Horowitz, D. M., and E. M. Brennan.2002. Method of decolorizing or deodorizing polyhydroxyalkanoates from biomass with ozone patent US 6368836.
    63. Hu, H., S. E. Mylon, and G. Benoit.2006. Distribution of the thiols glutathione and 3-mercaptopropionic acid in Connecticut lakes. Limnology and oceanography:2763-2774.
    64. Huang, A. H. C.1992. Oil bodies and oleosins in seeds. Annual Review of Plant Biology 43:177-200.
    65. Huijberts, G. N., T. C. de Rijk, P. de Waard, and G. Eggink.1994.13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly (3-hydroxyalkanoate) synthesis. Journal of bacteriology 176:1661.
    66. Huisman, G. W., O. de Leeuw, G. Eggink, and B. Witholt.1989. Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Applied and environmental microbiology 55:1949.
    67. Hunter, W. J., and D. K. Manter.2008. Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr. Microbiol.57:83-88.
    68. Jendrossek, D.2007. Peculiarities of PHA granules preparation and PHA depolymerase activity determination. Applied microbiology and biotechnology 74:1186-1196.
    69. Jendrossek, D., and R. Handrick.2002. Microbial Degradation of Polyhydroxyalkanoates. Annual Reviews in Microbiology 56:403-432.
    70. Kato, M., K. Toshima, and S. Matsumura.2005. Preparation of aliphatic poly (thioester) by the lipase-catalyzed direct polycondensation of 11-mercaptoundecanoic acid. Biomacromolecules 6:2275-2280.
    71. Kawada, J., T. Lutke-Eversloh, A. Steinbiichel, and R. H. Marchessault.2003. Physical properties of microbial polythioesters:characterization of poly (3-mercaptoalkanoates) synthesized by engineered Escherichia coli. Biomacromolecules 4:1698-1702.
    72. Kiene, R. P., K. D. Malloy, and B. F. Taylor.1990. Sulfur-containing amino acids as precursors of thiols in anoxic coastal sediments. Applied and environmental microbiology 56:156.
    73. Kiene, R. P., and B. F. Taylor.1988. Biotransformations of organosulphur compounds in sediments via 3-mercaptopropionate. Nature 332:148-150.
    74. Kirst, H. A., and G. D. Sides.1989. New directions for macrolide antibiotics:structural modifications and in vitro activity. Antimicrobial agents and chemotherapy 33:1413.
    75. Kotin, R. M., R. M. Linden, and K. I. Berns.1992. Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. The EMBO journal 11:5071.
    76. Kovach, M. E., P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Farris, R. M. Roop,2nd, and K. M. Peterson.1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene.166:175-176.
    77. Kowalczykowski, S. C., D. A. Dixon, A. K. Eggleston, S. D. Lauder, and W. M. Rehrauer.1994. Biochemistry of homologous recombination in Escherichia coli. Microbiology and Molecular Biology Reviews 58:401-465.
    78. Kranz, R. G., K. K. Gabbert, and M. T. Madigan.1997. Positive selection systems for discovery of novel polyester biosynthesis genes based on fatty acid detoxification. Applied and environmental microbiology 63:3010-3.
    79. Kricheldorf, H. R., and G. Schwarz.2007. Poly (thioester) s. Journal of Macromolecular Science, Part A:Pure and Applied Chemistry 44:625-649.
    80. Lageveen, R. G., G. W. Huisman, H. Preusting, P. Ketelaar, G. Eggink, and B. Witholt.1988. Formation of polyesters by Pseudomonas oleovorans:effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Applied and environmental microbiology 54:2924.
    81. Lauzier, C., R. H. Marchessault, P. Smith, and H. Chanzy.1992. Structural study of isolated poly ([beta]-hydroxybutyrate) granules. Polymer 33:823-827.
    82. Lee, S. Y.1996. High cell-density culture of Escherichia coli. Trends Biotechnol.14:98-105.
    83. Lee, S. Y., S. H. Park, Y. Lee, and S. H. Lee.2002. Production of chiral and other valuable compounds from microbial polyesters. Biopolymers Online.
    84. Lee, Y. H., M. S. Kang, and Y. M. Jung.2000. Regulating the molar fraction of 4-hydroxybutyrate in poly(3-hydroxybutyrate-4-hydroxybutyrate) biosynthesis by Ralstonia eutropha using propionate as a stimulator. J. Biosci. Bioeng.89:380-3.
    85. Lehman, A. J., O. G. Fitzhugh, A. A. Nelson, and G. Woodard.1951. The pharmacological evaluation of antioxidants. Advances in Food Research 3:197-208.
    86. Leichert, L. I., C. Scharf, and M. Hecker.2003. Global characterization of disulfide stress in Bacillus subtilis. J. Bacteriol.185:1967-1975.
    87. Lenz, R. W., and R. H. Marchessault.2005. Bacterial polyesters:biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1-8.
    88. Li, F., P. Xu, J. Feng, L. Meng, Y. Zheng, L. Luo, and C. Ma.2005. Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Applied and environmental microbiology 71:276-281.
    89. Lindenkamp, N., K. Peplinski, E. Volodina, A. Ehrenreich, and A. Steinbuchel.2010. Impact of multiple β-ketothiolase deletion mutations in Ralstonia eutropha H16 on the composition of 3-mercaptopropionic acid-containing copolymers. Appl. Environ. Microbiol.76:5373-5382.
    90. Liu, S. J., and A. Steinbiichel.2000. A novel genetically engineered pathway for synthesis of poly (hydroxyalkanoic acids) in Escherichia coli. Applied and environmental microbiology 66:739-743.
    91. Lundgren, D. G., R. M. Pfister, and J. M. Merrick.1964. Structure of poly-beta-hydroxybutyric acid granules. Journal of general microbiology 34:441.
    92. Liitke-Eversloh, T., K. Bergander, H. Luftmann, and A. Steinbuchel.2001. Biosynthesis of poly (3-hydroxybutyrate-co-3-mercaptobutyrate) as a sulfur analogue to poly (3-hydroxybutyrate)(PHB). Biomacromolecules 2:1061-1065.
    93. Lutke-Eversloh, T., K. Bergander, H. Luftmann, and A. Steinbiichel.2001. Identification of a new class of biopolymer:bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology 147:11.
    94. Liitke-Eversloh, T., A. Fischer, U. Remminghorst, J. Kawada, R. H. Marchessault, A. Bogershausen, M. Kalwei, H. Eckert, R. Reichelt, S. J. Liu, and A. Steinbuchel.2002. Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nature materials 1:236-240.
    95. Lutke-Eversloh, T., A. Fischer, U. Remminghorst, J. Kawada, R. H. Marchessault, A. Bogershausen, M. Kalwei, H. Eckert, R. Reichelt, S. J. Liu, and A. Steinbuchel.2002. Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nat. Mater. 1:236-240.
    96. Lutke-Eversloh, T., J. Kawada, R. H. Marchessault, and A. Steinbuchel.2002. Characterization of microbial polythioesters:physical properties of novel copolymers synthesized by Ralstonia eutropha. Biomacromolecules 3:159-166.
    97. Lutke-Eversloh, T., and A. Steinbuchel.2003. Novel precursor substrates for polythioesters (PTE) and limits of PTE biosynthesis in Ralstonia eutropha. FEMS microbiology letters 221:191-196.
    98. Lutke-Eversloh, T., and A. Steinbuchel.2003. Polythioesters. Biopolymers Online.
    99. Liitke-Eversloh, T., and A. Steinbuchel.2004. Microbial polythioesters. Macromolecular bioscience 4:165-174.
    100. Marvel, C. S., and A. H. Markhart Jr.1951. Polyalkylene Sulfides. V. The Rate of Formation in Emulsion1. Journal of the American Chemical Society 73:1064-1065.
    101. McDaniel, L. E., E. G. Bailey, and A. Zimmerli.1965. Effect of Oxygen-Supply Rates on Growth of Escherichia coli. Applied microbiology 13:109-114.
    102. Moldes, C., P. Garcia, J. L. Garcia, and M. A. Prieto.2004. In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Applied and environmental microbiology 70:3205.
    103. Munday, R.1989. Toxicity of thiols and disulphides:involvement of free-radical species. Free Radic. Biol. Med.7:659-673.
    104. Peoples, O. P., and A. J. Sinskey.1989. Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). Journal of Biological Chemistry 264:15298.
    105. Peplinski, K., A. Ehrenreich, C. Doring, M. Bomeke, and A. Steinbuchel.2010. Investigations on the microbial catabolism of the organic sulfur compounds TDP and DTDP in Ralstonia eutropha H16 employing DNA microarrays. Applied Microbiology and Biotechnology 88:1145-1159.
    106. Peters, V., and B. H. A. Rehm.2005. In vivo monitoring of PHA granule formation using GFP-labeled PHA synthases. Fems Microbiology Letters 248:93-100.
    107. Petri, R., and C. Schmidt-Dannert.2004. Dealing with complexity:evolutionary engineering and genome shuffling. Current opinion in biotechnology 15:298-304.
    108. Pittman, M. S., H. Corker, G. H. Wu, M. B. Binet, A. J. G. Moir, and R. K. Poole.2002. Cysteine is exported from the Escherichia coli cytoplasm by CydDC, an ATP-binding cassette-type transporter required for cytochrome assembly. Journal of Biological Chemistry 277:49841-49849.
    109. Poetter, M., H. Mueller, F. Reinecke, R. Wieczorek, F. Fricke, B. Bowien, B. Friedrich, and A. Steinbuechel.2004. The complex structure of polyhydroxybutyrate (PHB) granules:four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology (Reading) 150:2301-2311.
    110. Potter, M., M. H. Madkour, F. Mayer, and A. Steinbuchel.2002. Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology-Sgm 148:2413-2426.
    111. Potter, M., H. Muller, and A. Steinbuchel.2005. Influence of homologous phasins (PhaP) on PHA accumulation and regulation of their expression by the transcriptional repressor PhaR in Ralstonia eutropha H16. Microbiology (SGM) 151:825-833.
    112. Quandt, J., and M. F. Hynes.1993. Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15-21.
    113. Rajopadhye, M., and F. D. Popp.1987. Synthesis and antileukemic activity of spiro [indoline-3,2'-thiazolidine]-2,4'-diones. Journal of heterocyclic chemistry 24:1637-1642.
    114. Rehm, B. H.2003. Polyester synthases:natural catalysts for plastics. Biochem. J.376:15-33.
    115. Rehm, B. H. A., N. Kruger, and A. Steinbuchel.1998. A new metabolic link between fatty acid de novosynthesis and polyhydroxyalkanoic acid synthesis. Journal of Biological Chemistry 273:24044-24051.
    116. Reinecke, F., and A. Steinbuechel.2009. Ralstonia eutropha Strain H16 as Model Organism for PHA Metabolism and for Biotechnological Production of Technically Interesting Biopolymers. Journal of Molecular Microbiology and Biotechnology 16:91-108.
    117. Reiser, S. E., T. A. Mitsky, and K. J. Gruys.2000. Characterization and cloning of an (R)-specific trans-2,3-enoylacyl-CoA hydratase from Rhodospirillum rubrum and use of this enzyme for PHA production in Escherichia coli. Applied microbiology and biotechnology 53:209-218.
    118. Ruth, K., A. Grubelnik, R. Hartmann, T. Egli, M. Zinn, and Q. Ren.2007. Efficient production of (R)-3-hydroxycarboxylic acids by biotechnological conversion of polyhydroxyalkanoates and their purification. Biomacromolecules 8:279-286.
    119. Sabbagh, E., D. Cuebas, and H. Schulz.1985.3-Mercaptopropionic acid, a potent inhibitor of fatty acid oxidation in rat heart mitochondria. Journal of Biological Chemistry 260:7337.
    120. Saegusa, H., M. Shiraki, C. Kanai, and T. Saito.2001. Cloning of an Intracellular Poly [D ({-})-3-Hydroxybutyrate] Depolymerase Gene from Ralstonia eutropha H16 and Characterization of the Gene Product. Journal of bacteriology 183:94.
    121. Saito, T., H. Saegusa, Y. Miyata, and T. Fukui.1992. Intracellular degradation of poly (3-hydroxybutyrate) granules of Zoogloea ramigera I-16-M. FEMS Microbiology Letters 103:333-338.
    122. Saito, T., K. Takizawa, and H. Saegusa.1995. Intracellular poly (3-hydroxybutyrate) depolymerase in Alcaligenes eutrophus. Canadian journal of microbiology 41:187-191.
    123. Sambrook, J., and D. W. Russell.2001. Molecular cloning:a laboratory manual. Cold spring harbor laboratory press, Cold spring harbor, NY.
    124. Sanda, F., D. Jirakanjana, M. Hitomi, and T. Endo.1999. Anionic Ring-Opening Polymerization of ε-Thionocaprolactone. Macromolecules 32:8010-8014.
    125. Sandier, S. R.1996. Polythioesters. Polymer Syntheses, Organic Chemistry 29:4602.
    126. Saxena, R. S., and A. Gupta.1984. Electrochemical studies on the composition, stability constants and thermodynamics of TI (I) complexes with dithiodipropionic acid. Monatshefte fur Chemie/Chemical Monthly 115:1293-1298.
    127. Schlegel, H. G., H. Kaltwasser, and G. Gottschalk.1961. A submersion method for culture of hydrogen-oxidizing bacteria:growth physiological studies. Archiv fur Mikrobiologie 38:209.
    128. Schuch, R., and A. T. Maurelli.1997. Virulence plasmid instability in Shigella flexneri 2a is induced by virulence gene expression. Infect. Immun.65:3686-3692.
    129. Schurmann, M., J. H. Wubbeler, J. Grote, and A. Steinbuchel.2011. Novel reaction of succinyl-CoA synthetase:Activation of 3-sulfinopropionate to 3-sulfinopropionyl-CoA in Advenella mimigardefordensis strain DPN7T during degradation of 3,3'-dithiodipropionic acid. Journal of Bacteriology.
    130. Scott, G 1968. Mechanisms of antioxidant action:esters of thiodipropionic acid. Chem. Commun.(London):1572-1574.
    131. Seidel, W., and D. Seebach.1982. Crahamimycin Al synthesis and determination of configuration and chirality. Tetrahedron Letters 23:159-162.
    132. Seo, M. C., H. D. Shin, and Y. H. Lee.2004. Transcription level of granule-associated phaP and phaR genes and granular morphogenesis of poly-beta-hydroxyalkanoate granules in Ralstonia eutropha. Biotechnology Letters 26:617-622.
    133. Seuring, B., and D. Seebach.1978. Synthese und bestimmung der absoluten konfiguration von norpyrenophorin, pyrenophorin und vermiculin. Justus Liebigs Annalen der Chemie 1978:2044-2073.
    134. Silva, F., J. A. Queiroz, and F. C. Domingues.2012. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv 30:691-708.
    135. Simon, R., U. Priefer, and A. Puhler.1983. A broad host range mobilization system for in vivo genetic engineering:transposon mutagenesis in Gram-negative bacteria. Nat. Biotech.1:784-791.
    136. Solaiman, D. K. Y., and R. D. Ashby.2005. Rapid genetic characterization of poly(hydroxyalkanoate) synthase and its applications. Biomacromolecules 6:532-537.
    137. Spiekermann, P., B. H. A. Rehm, R. Kalscheuer, D. Baumeister, and A. Steinbuchel.1999. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Archives of Microbiology 171:73-80.
    138. Sprince, H., C. M. Parker, and G. G. Smith.1970.3-Mercaptopropionic acid:convulsant and lethal properties compared with other sulfur-convulsants; protection therefrom. Inflammation Research 1:231-233.
    139. Steinbuchel, A.2005. Non-biodegradable biopolymers from renewable resources:perspectives and impacts. Curr Opin Biotechnol 16:607-13.
    140. Steinbuchel, A.1991. Polyhydroxyalkanoic acids. Biomaterials:novel materials from biological sources. Stockton, New York 124.
    141. Steinbuchel, A., K. Aerts, W. Babel, C. Follner, M. Liebergesell, M. H. Madkour, F. Mayer, U. Pieper-Furst, A. Pries, and H. E. Valentin.1995. Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Canadian journal of microbiology 41 SuppI 1:94-105.
    142. Steinbiichel, A., and S. Hein.2001. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Biopolyesters:81-123.
    143. Steinbuchel, A., and T. Liitke-Everslon.2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16:81-96.
    144. Steinbuchel, A., and H. G. Schlegel.1991. Physiology and molecular genetics of poly(beta-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Molecular microbiology 5:535-42.
    145. Steinbuchel, A., and H. E. Valentin.1995. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiology Letters 128:219-228.
    146. Sudesh, K., T. Fukui, T. Iwata, and Y. Doi.2000. Factors affecting the freeze-fracture morphology of in vivo polyhydroxyalkanoate granules. Canadian Journal of Microbiology 46:304-311.
    147. Tessmer, N., S. Konig, U. Malkus, R. Reichelt, M. Potter, and A. Steinbuchel.2007. Heat-shock protein HspA mimics the function of phasins sensu stricto in recombinant strains of Escherichia coli accumulating polythioesters or polyhydroxyalkanoates. Microbiology (SGM) 153:366-374.
    148. Thakor, N., T. Lutke-Eversloh, and A. Steinbuchel.2005. Application of the BPEC pathway for large-scale biotechnological production of poly (3-mercaptopropionate) by recombinant Escherichia coli, including a novel in situ isolation method. Applied and environmental microbiology 71:835.
    149. Thompson, J. D., D. G. Higgins, and T. J. Gibson.1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 22:4673-80.
    150. Todd, J. D., R. Rogers, Y. G. Li, M. Wexler, P. L. Bond, L. Sun, A. R. J. Curson, G Malin, M. Steinke, and A. W. B. Johnston.2007. Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315:666.
    151. Tsuge, T., T. Fukui, H. Matsusaki, S. Taguchi, G Kobayashi, A. Ishizaki, and Y. Doi.2000. Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS microbiology letters 184:193-198.
    152. Tsutsumi, H., S. Okada, and T. Oishi.1998. A potentially biodegradable polyamide containing disulfide bonds as a positive material for secondary batteries. Electrochimica acta 43:427-429.
    153. Tuan, Y. H., and R. D. Phillips.1997. Optimized determination of cystine/cysteine and acid-stable amino acids from a single hydrolysate of casein-and sorghum-based diet and digesta samples. Journal of agricultural and food chemistry 45:3535-3540.
    154. Valappil, S. P., S. K. Misra, A. R. Boccaccini, and I. Roy.2006. Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert review of medical devices 3:853-868.
    155. Van der Maarel, M., and T. A. Hansen.1996. Anaerobic microorganisms involved in the degradation of DMS (P). Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum Press, New York, NY:351-360.
    156. van der Maarel, M. J. E. C., M. Jansen, and T. A. Hansen.1995. Methanogenic conversion of 3-S-methylmercaptopropionate to 3-mercaptopropionate. Applied and environmental microbiology 61:48.
    157. Vasil'eva, T. P., A. O. Mozzhukhin, M. Y. Antipin, and Y. T. Struchkov.1992. Sulfur-containing carboxylic acids.5. Synthesis and structure of dialkyl sulfides and dialkyl sulfoxides with vicinal carboxyl or acylamino groups. Russian Chemical Bulletin 41:1368-1376.
    158. Veit, A., T. Polen, and V. F. Wendisch.2007. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Appl. Microbiol. Biotechnol.74:406-421.
    159. Verlinden, R. A. J., D. J. Hill, M. A. Kenward, C. D. Williams, and I. Radecka.2007. Bacterial synthesis of biodegradable polyhydroxyalkanoates. Journal of applied microbiology 102:1437-1449.
    160. Villatte, F., A. S. Hussein, T. T. Bachmann, and R. D. Schmid.2001. Expression level of heterologous proteins in Pichia pastoris is influenced by flask design. Applied microbiology and biotechnology 55:463-465.
    161. Visscher, P. T., and B. F. Taylor.1994. Demethylation of dimethylsulfoniopropionate to 3-mercaptopropionate by an aerobic marine bacterium. Applied and environmental microbiology 60:4617.
    162. Visscher, P. T., and B. F. Taylor.1993. Organic thiols as organolithotrophic substrates for growth of phototrophic bacteria. Applied and environmental microbiology 59:93.
    163. Wallen, L. L., and W. K. Rohwedder.1974. Poly(beta-hydroxyalkanoate) from activated sludge. Environmental Science & Technology 8:576-579.
    164. Wiesenborn, D. P., F. B. Rudolph, and E. T. Papoutsakis.1989. Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis. Appl. Environ. Microbiol. 55:317-322.
    165. Williams, S. F., and D. P. Martin.2002. Applications of PHAs in medicine and pharmacy. Biopolymers 4:91-127.
    166. Wu, H. A., D. S. Sheu, and C. Y. Lee.2003. Rapid differentiation between short-chain-length and medium-chain-length polyhydroxyalkanoate-accumulating bacteria with spectrofluorometry. Journal of Microbiological Methods 53:131-135.
    167. Wubbeler, J. H., N. Bruland, K. Kretschmer, and A. Steinbuchel.2008. Novel pathway for catabolism of the organic sulfur compound 3,3'-dithiodipropionic acid via 3-mercaptopropionic acid and 3-Sulfinopropionic acid to propionyl-coenzyme A by the aerobic bacterium Tetrathiobacter mimigardefordensis strain DPN7T. Appl. Environ. Microbiol.74:4028-4035.
    168. Wubbeler, J. H., T. Lutke-Eversloh, S. Van Trappen, P. Vandamme, and A. Steinbuchel.2006. Tetrathiobacter mimigardefordensis sp. nov., isolated from compost, a betaproteobacterium capable of utilizing the organic disulfide 3,3'-dithiodipropionic acid. International journal of systematic and evolutionary microbiology 56:1305-1310.
    169. Wubbeler, J. H., M. Raberg, U. Brandt, and A. Steinbuchel.2010. Dihydrolipoamide dehydrogenases of Advenella mimigardefordensis and Ralstonia eutropha catalyze cleavage of 3, 3'-dithiodipropionic acid into 3-mercaptopropionic acid. Applied and environmental microbiology 76:7023.
    170. York, G. M., J. Stubbe, and A. J. Sinskey.2002. The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. Journal of Bacteriology 184:59-66.
    171. Zhang, C., and G. N. Bennett.2005. Biodegradation of xenobiotics by anaerobic bacteria. Applied microbiology and biotechnology 67:600-618.
    172. Zhang, J., and M. Oyama.2007. Electrocatalytic activity of three-dimensional monolayer of 3-mercaptopropionic acid assembled on gold nanoparticle arrays. Electrochemistry communications 9:459-464.
    173. Zhang, J., F. Wang, J. D. House, and B. Page.2004. Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation. Limnology and oceanography:2276-2286.
    174. Zhao, J. B., D. Z. Wei, and W. Y. Tong.2007. Identification of Escherichia coli host cell for high plasmid stability and improved production of antihuman ovarian carcinoma x antihuman CD3 single-chain bispecific antibody. Appl. Microbiol. Biotechnol.76:795-800.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700