用户名: 密码: 验证码:
苦丁茶冬青及其近缘种的研究与种质资源评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“苦丁茶”是中国民间一大类代茶饮料植物的总称。其中,有两类”苦丁茶”在国内外比较有影响:一类是以苦丁茶冬青Ilex kudingcha为代表的冬青科苦丁茶;另一类是以粗壮女贞Ligustrum robustum为代表的木犀科苦丁茶。本研究仅限于研究冬青科苦丁茶。冬青科苦丁茶包含苦丁茶冬青I. kudingcha、大叶冬青I.latifolia、五棱苦丁茶I.pentagona、枸骨I. cornuta、华中枸骨I. centrochinensis、霍山冬青I. huoshanensis等136种冬青属植物。在6种植物当中,栽培面积、产量和经济价值等方面最具影响者系苦丁茶冬青。影响冬青属苦丁茶植物产业发展和推广的因素较多,其中植物基源和种质资源品质是两大关键因素。由于传统上冬青属植物归属于分类较为困难的群体之一,在植物系统学上表现为分类学者对是否应将苦丁茶冬青与扣树I.kaushue,以及霍山冬青与华中枸骨给予合并存在着争议。此外,海南大学苦丁茶研究所还发现了存在系统位置不明的冬青属苦丁茶种质材料,其形态特征介于苦丁茶冬青和五棱苦丁茶之间。这些系统学难题给冬青科苦丁茶的可持续发展带来了严重的负面影响。本研究从植物形态学、解剖学、微形态学、核型特征、数量分类学、化学分类学、红外光谱分析、分子生物学等角度对苦丁茶冬青及其近缘种的系统学进行比较系统的和综合研究,以期为解决冬青属苦丁茶系统学的难题提供科学依据。此外,作者还以绿原酸和芦丁为标准,利用反相高效液相色谱和超声提取等方法对苦丁茶冬青及其近缘种的种质资源进行科学评价,为其资源开发和利用提供理论支撑。本研究取得的主要成果如下:
     1.对6种冬青属苦丁茶植物形态进行了观察和比较,结果显示,本研究的物种茎的形态有五棱形和圆形两类。苦丁茶冬青的花被基数、子房室数目、果实分核数目和花的性别特征均存在丰富的多样性。上述特征对于冬青属苦丁茶植物的分类鉴定和遗传多样性的研究具有一定的辅助意义。
     通过实地观测,结果表明,除五棱苦丁茶的植物茎为五棱形外,其余5种植物的茎均为圆形。苦丁茶冬青的花被数、子房室数目、果实分核数目以4为主;在性别方面,以单性花为主,但也存在杂性的现象。
     2.对6种冬青属苦丁茶植物茎和叶柄的解剖结构进行了观察和比较。结果显示,本研究的物种之间其茎的结构大体相似,其差异体现在髓部形态、髓部与次生维管束宽度比例、木射线的宽度及密度方面。该6种冬青属植物叶柄解剖结构也大体相似,其主要差异体现在维管束的形态方面,可分为两大类。
     利用荧光显微镜观察了茎和叶柄的解剖结构。结果表明,霍山冬青茎中髓部宽度所占比例最大;枸骨和华中枸骨茎的髓部形态呈四方形,其他四种茎的髓部形态呈圆形或近圆形;木射线最宽的是苦丁茶冬青,大叶冬青和五棱苦丁茶的木射线宽度次之;叶柄木质部束呈较规则半月形者为枸骨、华中枸骨、霍山冬青和大叶冬青,典型不规则半月形者为苦丁茶冬青和五棱苦丁茶。
     3.6种冬青属苦丁茶植物的茎叶形态数量分类学研究结果与叶柄解剖分类结果相似,均可分为同样的两大类。
     基于26个茎叶形态变量的数量聚类分析结果,可将6种冬青属苦丁茶植物分为两大类,第一类为苦丁茶冬青和五棱苦丁茶;第二类为大叶冬青、霍山冬青、枸骨和华中枸骨4种植物。主成分分析结果表明第一主成分主要反映的是叶片对称性、叶柄长度、叶基到最宽处的距离与叶长的比值。
     4.叶表皮微形态特征研究结果表明,冬青属苦丁茶叶片微形态特征具有种级水平上的分类学意义,可以为苦丁茶冬青及其近缘种的划分提供可靠的依据。根据叶表皮微形态特征的研究结果,不支持霍山冬青与华中枸骨的合并。结合分子生物学证据与叶表皮特征微形态特征的研究结果,形态居间种质材料的冬青属苦丁茶类型应为五棱苦丁茶(Lpentagona)的变种。
     光学显微镜和扫描电镜研究结果表明,7种冬青属苦丁茶植物的叶表皮微形态特征具有一定的相似性,如气孔器均位于下表皮,每种植物均有正常气孔器和大气孔器,气孔器类型以环列型为主,其次为双环列型;其差异性体现在叶表皮细胞的垂周壁形态和气孔外缘角质层纹饰等方面。霍山冬青叶表皮微形态与华中枸骨存在着较大区别。
     5.观察了不同地域的枸骨和四种性别特征材料的苦丁茶冬青的正常与异常花药与花粉的微形态学特征,同时还研究了大叶冬青、贡山冬青和猫儿刺的花粉特征。研究结果表明,花药纹饰大体相似,但花粉外壁纹饰和萌发沟、花粉体积在种间和种内具有较大差异。不育或败育花粉则在萌发沟深度和长度方面与正常花粉具有较大差异。根据花药与花粉微形态学研究结果,说明花药特征对冬青属系统分类意义不大,但花粉的特征对于冬青属植物的分类具有一定的价值。
     扫描电镜研究结果表明,所研究的五类材料其花药纹饰大体相似,都具有不规则脊纹并间有条纹,种间区别不显著;花粉均为三沟型,外壁纹饰均具疣状或钉状颗粒。不同物种间、不同地域的枸骨与不同性别特征的苦丁茶冬青其花粉体积大小指数、纹饰颗粒密度、萌发沟长度和宽度及其比值等特征都具有多样性。此外不育或败育花粉微形态体现在萌发沟深浅和长度不一,具有一定的生态学意义。
     6.染色体核型分析结果表明,4种冬青属苦丁茶的核型可分为两类,核型分析的研究结果有助于研究冬青属植物的亲缘关系。
     通过酶解离染色后显微镜观察,发现苦丁茶冬青、大叶冬青和形态居间类型种质材料其核型属于2B类型,五棱苦丁茶属于3B类型。就核型分析结果而言,形态居间类型种质材料的核型更接近于苦丁茶冬青。
     7.冬青属苦丁茶化学分类学聚类分析研究结果显示,五棱苦丁茶与苦丁茶冬青归为一类,这表明化学分类学与形态数量分类学研究结果基本一致;同时也显示,苦丁茶冬青在化学成分方面具有一定的多样性,这种多样性与其分布地域有关。
     根据RP-HPLC数据和NTsys软件进行了化学分类学研究。六种冬青属植物中色谱峰共有峰数目有6个,另外在各个物种色谱图中,作者还发现了一些特殊峰。根据聚类分析的结果,五棱苦丁茶(S12,S13)与苦丁茶冬青(S2)种质材料聚类在一起,其亲缘关系最近,但起源于广西马山石灰岩地区的苦丁茶冬青(S1)种质材料单独聚为1类,其所含有的化学成分种类及含量与其他地域苦丁茶冬青的差异很大。
     8.六种冬青属苦丁茶的叶片因种质材料的起源地域,野生来源与栽培条件以及叶片储藏措施的不同,其绿原酸含量存在明显差异。
     基于超声提取和RP-HPLC基础上的绿原酸含量研究结果表明,新采集的成熟功能叶经过低温干燥后,其所含绿原酸含量由大到小依次为丁茶冬青>霍山冬青>大叶冬青>五棱苦丁茶>华中枸骨>枸骨;干燥的成熟功能叶放置2月后绿原酸含量显著降低;在苦丁茶冬青野生材料不同发育阶段的叶片中,大部分材料以老叶绿原酸含量最高;一般来说,苦丁茶冬青野生材料叶片中绿原酸含量要高于栽培材料,种间或种内绿原酸含量存在较大的差异,这可能与种质材料的起源地域有关。
     9.根据叶总黄酮含量测定结果,并结合绿原酸含量的分析结果,可以认为霍山冬青是一种良好的苦丁茶种质资源;利用幼嫩叶加工成苦丁茶具有其科学性。
     在超声提取、络合反应及紫外分光光度法,以芦丁为标准的含量测定结果表明,就5批次栽培材料的功能叶总黄酮的平均值而言,苦丁茶冬青(3.96%)>五棱苦丁茶(3.67%)>霍山冬青(3.63%)>枸骨(3.04%)>大叶冬青(2.64%);低温干燥(50℃)放置2月后的叶片总黄酮含量明显降低;栽培条件下的苦丁茶冬青,其成熟叶片中的总黄酮含量平均值要高于野生植株成熟功能叶所含量;就所有个体总黄酮含量而言,霍山冬青最高(7.39%);幼嫩叶的总黄酮含量具有较高的水平。
     10.基于红外光谱分析的研究表明,利用红外二阶导数谱图可以将不同物种的冬青属苦丁茶植物和不同来源的苦丁茶冬青种质材料快速和有效地加以区分。
     一维傅里叶中红外光谱分析表明,不同物种的冬青属苦丁茶植物和不同来源的苦丁茶冬青种质材料不易区分,有大量的共同的吸收峰,特征峰相对较少。通过对指纹区二阶导数图谱变换,将重叠的光谱分开后,除共同的吸收峰外,不同物种的冬青属苦丁茶植物和不同来源的苦丁茶冬青种质材料叶片红外光谱图吸收峰位置、数目和吸光度显示出了明显差异,利用此差异可以对上述物种或不同来源的种质材料进行鉴别。利用红外光谱聚类分析表明,形态居间类型种质材料与五棱苦丁茶亲缘关系较近,霍山冬青与华中枸骨亲缘关系相对较远。
     11.基于SRAP-PCR分子标记的聚类分析结果表明,供试的6种冬青属苦丁茶可分为两大类,与其他分子标记的实验结果基本一致。同时SRAP分子标记实验结果还显示供试的苦丁茶冬青不同的种质材料可分为两大类,这己研究结果为探讨苦丁茶冬青的基因型分类提供了可靠的科学证据。
     在本研究中,苦丁茶冬青、五棱苦丁茶和大叶冬青聚为一大类,枸骨、华中枸骨和霍山冬青聚为一大类,这与传统的根据其叶形的分类结果完全一致。也与其他分子标记实验的结果相吻合。因此,SRAP分子标记用于冬青属苦丁茶植物分子系统学研究以及种级水平和种下水平分类鉴定是完全可行的。另一方面,根据聚类分析结果,不同来源的供试苦丁茶冬青种质材料还可分为2个类群,每个类群又可分为若干小类。这说明苦丁茶冬青存在比较丰富的遗传多样性。
     本论文在综合分析各种研究手段的实验结果基础上,对冬青属苦丁茶植物的系统亲缘关系及优良种质资源选择进行了探讨。
"Kudingcha" was the general name for a large class of Chinese folk tea beverage plants. There were two types of "Kudingcha" with a large impact at home and abroad among of them. One type of "Kudingcha" was made of species from Aquifoliaceae with the representative species of Ilex kudingcha. The other type of "Kudingcha" was made of species from Oleaceae with the representative species of Ligustrum robustum. This study was limited to the species of Ilex L.(Aquifoliaceae) used as "Kudingcha". The Aquifoliaceae origins of Kudingcha were I. kudingcha and its related species ncluding I.latifolia, I.pentagona, I.huoshanensis,cornuta and I.centrochinensis. Among of six species,the largest of the planting area,yield and economic value was I. kudingcha. There were many factors influencing the industry development and promotion of Kudingcha from Ilex species, and the two key factors were their botanical origin and quality of germplasm resource. But Ilex L.was a groups with more difficult classification, and their had a controversial among different scholars on whether there should merge I. kudingcha and I.kaushue; I.huoshanensis and I.centro-chinensis. In addition, intermediate species with indecisive systematic position (I.sp.) have been revealed by Kudingcha Research Institute of Hainan University, and ts morphological characteristics was intermediated between I. kudingcha and I.pentagona. It have brought a serious influence on sustainable development for Kudingcha. In order to provide scientific basis for solving systematic problems, we have studied the systematic of I. kudingcha and its related species from the perspective of plant morphology, anatomy, micro morphology, numerical taxonomy, chemotaxonomy, infrared spectral analysis, molecular biology. And in order to provide theoretical support for the development and utilization of germplasm resources, Author also have evaluated the germplasm of I. kudingcha and its related species by using methods of RP-HPLC, ultrasonic extraction with standard of chlorogenic acid and rutin. The main results were as follows.
     1. Author have observed plant morphology from six Ilex species used as kudingcha. The results showed that stem form of the studied species had five prismatic and circular form. There were abundant diversity for I. Kudingcha in gender and number of fruit, perianth,and locules nuclear of fruit. The above characteristics could have auxiliary meaningful for classification and genetic diversity for Ilex species used as Kudingcha.
     Through field observation, author have found that, stem form of I.pentagona was five prismatic and other five species were circular form. The main number were four in number of fruit, perianth and locules nuclear of fruit. In terms of gender, the main gender were unisexual flowers, but there were polygamous phenomenon.
     2. Author have observed the anatomy structure of stem and petiole from six Ilex species used as Kudingcha. The results showed that stem structure similar to each other.The differences were the width and density of wood ray, medullary morphology, and the ratio of pith and secondary bundle width.Petiole anatomical structures of the six aboved species are similar to each other too.The difference lies in the form of vascular bundle, and they can be divided into two categories.
     Author found that the largest proportion of stem pith width among six species was I.huoshanensis according to the anatomical structure of stem and petiole under the fluorescence microscope. Medullary morphology of stem from I.cornuta, I.centrochinensis was four square, and the other four species were round or nearly round; The species with most wide in wood ray was I.kudingcha, The second was I.latifolia and I.pentagona; The species with regular half moon petiole xylem are I.cornuta, I.centrochinensis I.huoshanensis, and I.latifolia.irregular one are I.pentagona and I. kudingcha.
     3.Results of research of stem and leaf morphological quantitative taxonomy of six Ilex species showed that there have similar to the results of petiole anatomy classification, and they could be divided into the same two categories.
     The reults of cluster analysis of six Ilex species used as Kudingcha could be divided into two categories based on26morphological variable from stem and leaf.The first class were I.kudingcha and I.pentagona, second for I.latifolia, I.huoshanensis, I.cornuta, I.Centrochinensis.incipal component analysis (PCA) showed that the first principal component mainly reflects the blade symmetry, petiole length, the ratio of distance of base to largest leaf width and leaf length.
     4.The results proved that the micro-morphological characteristics of leaf epidermis of Ilex L. had taxonomic significance at the species level, it could be used as reliable evidence in distinguishing I.kudingcha with its related species.There should not be treated I.huoshanensis and I.centrochinensis as the same species according to their micro-morphological characteristics of leaf epdermis.Combined with the evidence of molecular biology and the characteristics of the leaf epidermis, intermediate types should be treated as varieties of I.pentagona.
     Micro-morphological characteristics of leaf epdermis for I. kudingcha and its six relative species were examined with an optical microscope and SEM. Micro-morphological structure of leaf epidermis for seven Ilex species as Kudingcha had a certain similarity such as the stomata at lower epidermis.According to the size of stomata, it could be divided into two typies of stomata:large stomata and common stomata.Most of stomatal type were cyclocytic.There also had some differences in leaf epidermis characteristics, such as leaf epidermal cells and stomata anticlinal walls form, the outer edge of the cuticle ornamentation of stomata, etc. And there have a big difference in leaf epidermal morphology between I.huoshanensis and I.centrochinensis.
     5. The micro-morphological characteristics of different regions of I.cornuta and four gender characteristics of materials of normal and abnormal anther and pollen of I.kudingcha have been observed. At the same time, the pollen characteristics of I. latifolia,I. hookeri and I. pernyi have also been studied.The results showed that, the anther ornamentation of studied materials were similar to each other. But there had a great difference in the pollen exine sculpture, germinal furrow and pollen size among interspecific and intraspecific level.There had a larger difference between infertility or sterility and normal pollen in germinal furrow depth and length. According to the anther and pollen micro-morphological characteristics, anther characteristics was little significance in classification of Ilex species, but the pollen characteristics had a certain value for the classification of Ilex species.
     The results under SEM was showed that, the anther ornamentation was similar to each other among of studied materials. The anther had irregular ridges and striped, cxine sculpture of pollen had verrucous particles and there was no significant differences in anther among Ilex species. Pollen had three germinal furrow. And the exine have ornamentation with verrucous or nail shaped particles. It was diverse in pollen size index, particle density, length and width and its ratio of germinal furrow characteristics among different species, different regions of I.cornuta and different gender characteristics of I. kudingcha. In addition, the characteristic of morphology of infertility or sterility pollen were irregular length and depth of germinal furrow, It could help to clarify some ecological significance.
     6.The results of karyotype analysis showed that the four Ilex species could be divided into two classes, and it could help the study of phylogenetic relationships among Ilex species for karyotype analysis.
     By using enzymatic dissociation and staining, the results showed that karyotype of I.kudingcha, I.latifolia and intermediate type(I.sp) belongs to2B type, I.pentagona belongs to the type of3B under the microscopy, and it also showed that the form of intermediate type(I.sp)close to that of I.kudingcha according to the feature of karyotype.
     7. The results of cluster analysis based on chemotaxonomy showed that I.kudingcha and I.pentagona belonged to the same class, it showed that the chemotaxonomy and morphological quantitative taxonomy have the same results; At the same time it showed that I.kudingcha had a certain degree of diversity in chemical composition, and it may be related with its geographical distribution.
     Author have found six common peaks according to chemical taxonomy research based on chromatographic data from RP-HPLC method and Ntsys software. In addition, we also have found some special peak from all chromatograms in six species.According to the results of clustering analysis, Ⅰ.pentagona,(S12, S13)and I.kudingcha(S2) clustered together, the two species had the closest relationship.But I.kudingcha (S1) which come from Guangxi Province, Mashan limestone areas have clustered into one categories alone.There have a big difference both in chemical components and contents combared with the other regions of the I.kudingcha, It may be related to that germplasm materials may have formed a chemical type.
     8. Owing to different geographical origin of germplasm, wild and cultivation conditions, storage measures of leaves for six species of Ilex L., there were obvious differences in the content of chlorogenic acid.
     The content of chlorogenic acid of fresh mature leaves of six species from high to low is I.kudingcha> I.huoshanesis> I.latifolia> I.centrochinensis> I.pentagona> I.cornuta which have been determined by ultrasonic extraction and RP-HPLC method.; and the content of fresh leaves was much larger than that of the dried up to two months; for content of chlorogenic acid of different developmental stages of wild I.kudingcha samples, old leaves with infected> mature leaves> young leaves.The mean content of chlorogenic acid in the mature leaves of the wild was larger than that of cultivation one for I.kudingcha.There was much difference among six Ilex species and intraspecific of I.kudingcha according to chlorogenic acid content which may be related to the origin of species.
     9.The results showed that I.huoshanesis was a better germplasm resources combined with content determination of both the chlorogenic acid and rutin, and it had a scientific significance that people used the tender leave as materials of Kudingcha.
     The content of total flavonoids (rutin) from5species of Ilex L.used as kudingcha tea were determined using ultrasonic extracti, complexation reaction and UV spectrophotometry.On the average of value of total flavonoids from5batches of planting materials, I.kudingcha (3.96%)> I.pentagona(3.67%)> I.huoshanesis (3.63%)> I.cornuta (3.04%)> I.latifolia (2.64%); and total flavonoids in the leaves of placed after two months at low temperature dried has decreased significantly; On the average, the content of total flavone content of cultivation of mature leaves of I.kudingcha was significantly higher than that of wild mature leaves.The content of total flavonoids of I.huoshanesis was highest (7.39%) in all individuals from five species; Content of total flavonoids in young leaves maintained a higher level.
     10. The results of infrared spectrum analysis of germplasm materials from I.kudingcha and its relatived species based on the second derivative spectra showed that Ilex species used as Kudingcha and different sources of I. kudingcha could be quickly and effectively distinguished with each other.
     The one-dimensional fourier infrared spectrum analysis showed that, germplasm materials from Ilex species used as kudingcha and different sources of I. kudingcha were not easy to distinguish and there were a lot of common peaks. The number of characteristic absorption peak was relatively small. The overlapped spectra could be separated by using second derivative spectrum transform of the fingerprint region, In addition to a common peak, it showed obvious differences in IR absorption peak position, number and absorbance among of different species and germplasm materials with different sources of I. kudingcha. Thus it could be identified to those species. The results of clustering analysis by using the infrared spectral have been showed that intermediate species (I.sp) was close to I.pentagona in phylogenetic relationship,and I.centrochinensis had a relatively distantly relationship to Lhuoshanensis.
     11. The results of cluster analysis based on the SRAP molecular markers showed that six Ilex species used as Kudingcha could be divided into two categories, which were consistent with experimental results on the basis of leaf morphology and other molecular marker. At the same time, the research results showed that Lkudingcha could be divided into two categories, which provides reliable scientific evidence for the genotypic classification of Lkudingcha.
     In this study, I.kudingcha, I.latifolia, I.pentagona had been clustered into one category, I.cornuta, I.centrochinensis, Lhuoshanensis have been clustered into another category, it was consistent with the traditional classification according to its leaf morphology and other molecular marker results. Therefore, it was feasible that SRAP molecular markers could be used as systematics research of identification In the level of species and subspecies.On the other hand, according to the results of clustering analysis, Lkudingcha also could be divided into2categories, and each category can be divided into several small groups.It showed that. I.kudingcha had greater genetic diversity.
     Plant systematic and excellent germplasm resource selection among of I.kudingcha and its related species have been discussed on the basis of comprehensive analysis of the experimental results from various research methods.
引文
[1]蔡秀珍,刘克明,丛义艳,等.凤仙花属mpatiens L.)10种植物花粉形态的扫描电镜观察[J].植物研究,2007,27(3):279-283.
    [2]曾沧江.冬青属一新种[J].东北植物研究,1981,1(1,2):39.
    [3]曾俊玲,杨树英,麦永前.毛冬青乙素抗炎作用研究[J].中药材,1999,16(11):31.
    [4]常生辉,邓传良,高武军,等.27种木犀属植物叶表皮微形态特征的研究[J].西北植物学报,2008,28(2):278-288.
    [5]陈俊愉.中国花经[M].上海:上海文化出版社,1990.
    [6]陈书坤,俸宇星.中国植物志.45(2)[M].北京:科学出版社,1999:1-266.
    [7]陈薇,王恒山,黄世稳,等.大叶苦丁茶抗氧化成分及抗氧化性能研究[J].广西植物,2002,22(5):463.
    [8]陈伟祥, 王昌腾.浙江冬青属药用植物资源及其利用[J].中国林副特产,2005,79(6):52-53.
    [9]陈文德,李贤伟,彭培好,等.苦丁茶资源及四川民间苦丁茶[J].福建茶叶,2004,1:9-10.
    [10]陈一,李开双,谢堂贵.苦丁茶冬青叶的降压作用研究[J].中草药,1995,26:250-252.
    [11]陈仗洲.浅析苦丁茶[J].贵州茶叶,2004, (4):7-10.
    [12]陈杖洲.苦丁茶种形态特征、特性与主要品种[J].贵州茶叶,1997, (2):10-13.
    [13]陈宗懋,陈雪芬.无公害茶园农药安全使用技术[M].北京:金盾出版社,2002:136-142.
    [14]邓传良,周坚.石蒜属植物叶微形态特征研究[J].西北植物学报,2005,25(2):355-362.
    [15]俸宇星,陈书坤,赵瑞峰,等.中国冬青属苦丁茶名实辨证[J].植物分类学报,1998,36(4):353-358.
    [16]符翠莉,蒙大平,荣延平,等.苦丁茶老叶水提取物降血脂作用实验研究[J].中国实验方剂学杂志,2010,16(5):244-245.
    [17]傅健羽,刘德华,廖利民,等.苦丁茶树短穗扦插育苗技术的研究[J].湖南农学院学报,1994,20(2):118-124.
    [18]高攀,马淑勇,周忠泽,等.安徽典型栽培作物的花粉形态、鉴定特征及生态意义[J].古生物学报,2012,51(2):248-264.
    [19]谷婧,彭勇,许利嘉,等.苦丁茶商品的原植物调查与性状鉴别[J].中药材,2011,(2):196-198.
    [20]郭伦发,蒋桥生,王新桂,等.广西苦丁茶的生产现状及无公害栽培技术探讨[J].广西植物,2005,25(4):366-371.
    [21]《广东中药志》编委会.广东中药志(第一卷)[M].广东:广东科技出版社,1984:387.
    [22]《Flora of China》编委会. Flora of China (Vo115) [M].北京:中国科学出版社,2009:299.
    [23]国家药典委员会.中华人民共和国药典(第一部)[S].北京:中国医药科技出版社,2010:29.
    [24]耿世磊,徐鸿华,赵晟,等.山银花茎、叶、花中绿原酸分布规律研究[J].中草药,2004,25(3):315-318.
    [25]何爽,张爱勤,夏荣,等.新疆不同生态区域苜蓿花粉败育情况及影响因素的细胞学研究[J].草叶学报,2011,20(4):153-158.
    [26]何彦峰.我国冬青属植物繁殖技术及应用[J].林业实用技术,2010,(3):50-52.
    [27]何云核.安徽冬青属一新种[J].植物分类学报,2002,40(4):380-382
    [28]洪跃明.苏铁的核型分析[J].学术探讨,2007,7:204-206.
    [29]候冬岩,回瑞华,杨梅,等.苦丁茶中总黄酮的三波长-光谱法定量分析[J].分析化学,2004,32(6):783-786.
    [30]黄夔才.民族药苦丁茶原植物种类和资源分布[J].中国民族民间医药杂志,1994,(10):13-14.
    [31]黄林芳,万德光,万仁英.川产女贞属苦丁茶的资源调查及鉴别[J].现代中药研究与实践,2003,17(1):56-57.
    [32]黄玉仙,王丰青,杜家方,等.薯蓣属植物种质资源形态变异的数量分析[J].中国中药杂志,2013,38(3):318-324.
    [33]江苏新医学院.中药大辞典(上册)[M].上海:科学技术出版社,1975:1288
    [34]姜一平,冯锋,谢宁,等.毛冬青的化学成分[J].药学与临床研究,2008,16(3):163-165.
    [35]蒋水元,赵瑞峰.苦丁茶良种采穗圃营建技术[J].广西植物,1999,19(2):183-186.
    [36]焦云,汪国云,柴春燕,等.不同性别类型杨梅花粉形态扫描电镜观测及生活力测定[J].中国南方果树,2013,42(1):12-15.
    [37]解军波,李萍.四季青酚酸类化学成分研究[J].中国药科大学学报,2002,33(1):76-77.
    [38]解军波,李萍.冬青属植物化学成分及药理活性研究进展[J].中草药,2002,22(1):85-88.
    [39]冷欣,王中生,安树青,等.岛屿特有种全缘冬青遗传多样性的ISSR分析[J].生物多样性,2005,13(6):546-554.
    [40]李冬玲,付晖,任全进,等.中国华东地区冬青属药用植物资源调查[J].中国野生植物资源,2003,22(1):22-24.
    [41]李国泰.芦荟染色体的核型分析[J].通化师范学院学报,2007,03(24):27-28
    [42]李国文,吴弢,谢 燕,等.中药枸骨叶研究进展[J].国际药学研究杂志,2011,38(5):356-361.
    [43]李宏扬,刘飞,张凤琴,等.冬青科苦丁茶中熊果酸和齐墩果酸含量的测定[J].安徽农业科学,2010,38(14):7244-7246.
    [44]李路军,杜鹏,孙珂焕,等.华中枸骨叶的化学成分及其肿瘤细胞毒作用[J].中国中药杂志,2013,38(3):354-357.
    [45]李娈,蒋道松,刘硕.富贵菜茎及不同发育时期叶总黄酮含量的比较[J].湖南林业科技,2007,34(3):13-14.
    [46]李敏华,俞世杰,杜上剑.岗梅根的化学成分研究[J].中草药,1997,28(8):454-456.
    [47]李娜,毛永强.苦丁茶冬青叶总黄酮微波提取工艺[J].贵州农业科学,2011,39(5):212-214.
    [48]郭艳华,张玉敏,陈达畅.微波法提取生姜总黄酮及光热稳定性研究[J].应用化工,2010,39(2):233-236.
    [49]李乃伟,李云龙,王传永,等.大别山冬青扦插繁殖技术研究[J].北方园艺,2012,(01):110-112.
    [50]李相传,孙柏年,林志成,等.冬青属植物的叶表皮特征及其分类学意义[J].兰州大学学报(自然科学版),2010,46(4):13-21,29.
    [51]李玉巧,梁珍海,李晓储,等.大叶冬青无根试管苗移栽技术研究[J].江苏林业科技,2003,30(3):14.
    [52]刘瑾,丁平.冬青属药用植物资源、化学成分及药理作用研究进展[J].广州中医药大学学报,2008,25(3):277-280.
    [53]刘爱华,罗永明,林燕华.苦丁茶的概述研究[J].中药材,2002,25(2):148-150.
    [54]刘德华,廖利民,张金莲,等.苦丁茶树种子育苗的研究[J].湖南农学院学报,1994,20(4):342-344.
    [55]刘国民,李娟玲,陈榆,等.我国苦丁茶冬青种质资源的形态学研究Ⅰ,茎叶的形态学研究[J].贵州科学,2004,22(3):9-23.
    [56]刘国民,李娟玲,彭超,等.苦丁茶液插法繁殖技术的研究[J].贵州科学,2001,19(3):25-32.
    [57]刘国民.苦丁茶树扦插繁殖的研究[J].海南大学学报(自然科学版),1998,16(1):69-75.
    [58]刘国民.中国木犀科代茶植物的多样性及开发状况[J].贵州科学,2003,21(1-2): 69-77.
    [59]刘红昌,胡跃维,柴琨,等.何首乌不同种质花粉形态及进化趋势研究[J].西北植物学报,2013,33(7):1353-1367.
    [60]刘韶,杜方麓.冬青属苦丁茶研究进展[J].湖南中医学院学报,2001,21(2):68-70.
    [61]刘永安,冯海生,陈国志.植物染色体核型分析常用方法概述[J].贵州农业科学,2006,34:98-102.
    [62]刘勇,刘贤旺,胡小芬.江西冬青属药用植物资源及其利用[J].江西林业科技,1997,(6):23.
    [63]卢振辉,刘新.有机茶与茶业可持续发展[J].食品科学,2001,22(11):91-94.
    [64]陆小清,李乃伟,李云龙,等.大别山冬青苗木的组织培养[J].林业科技开发,2010,24(6):109-111.
    [65]罗惠宁,杨礼旦.苦丁茶扦插育苗与造林技术[J].林业科技开发,2003,17(4):46-47.
    [66]罗集鹏,毕培曦.七种冬青属中草药的高效液相色谱法鉴别[J].广东药学院学报,1997,13(4):211-214.
    [67]马颖敏,邢世岩,王玉山.中国侧柏种源核型分析与进化趋势[J].分子植物育种,2009,7(6):1186-1192.
    [68]农训学.三款苦丁茶初加工技术[J].农村新技术,2010, (6):64-66.
    [69]潘慧娟,唐婷.反相高效液相色谱法测定苦丁茶中黄酮类化合物(芦丁)的含量[J].杭州医学高等专科学校学报,2003,24(3):126-128.
    [70]潘慧娟,廖志银,应奇才,等.苦丁茶大叶冬青的降脂作用研究[J].茶叶科学,2004,24(1):49-52.
    [71]潘开玉,路安民,温洁.金缕梅科(广义)的叶表皮特征[J].植物分类学报,1990,28(1):10-26.
    [72]庞涛涛,杜黎明.苦丁茶红外指纹图谱共有峰率和变异峰率双指标序列分析法[J].光谱学与光谱分析,2007,27(3):486-489.
    [73]裴盛基,淮虎银.民族植物学[M].上海:上海科学技术出版社,2007.
    [74]彭焱松,陈丽,李建强.中国栎属植物的数量分类研究[J].武汉植物学研究,2007,25(2):149-157.
    [75]钱永生,王慧中,施农农,等.10种冬青属植物遗传多样性RAPD和AFLPs分析[J].分子细胞生物学报,2008,41(1):35-43.
    [76]邱以祥.中国苦丁茶资源及其开发利用[J].自然资源,1997, (4):63-67.
    [77]胡华健.贵州五棱苦丁茶资源考察及植物学鉴定[J].贵州农业科学,2002,30(4):3-5.
    [78]任辉,潘开玉,陈之端,等.葡萄科植物叶表皮特征及其系统学意义[J].植物分类学报,2003,41(6):531-544.
    [79]任明迅.花内雄蕊分化及其适应意义[J].植物生态学报,2009,33(1):222-236.
    [80]时丽冉,高汝勇,李会芬.紫茉莉染色体数目及核型分析[J].草业科学,2010,01(27):52-55.
    [81]时丽冉,郭晓丽.大花秋葵染色体数目及核型分析[J].河南农业科学,2009,7(10):87-89.
    [82]宋文婵, 宁伟, 赵鑫,等.8种蒲公英属植物叶柄解剖学特征与分类学意义[J].西北植物学报,2011,31(3):468-474.
    [83]张红海,张蜀宁,于旭红.抱子甘蓝和羽衣甘蓝的核型分析[J].中国农业大学学报,2010,15(2):5-8.
    [84]张广进,赵兰勇,王芬,等.蔷薇品种的数量分类学研究[J].山东农业大学学报(自然科学版),2006,37(2):175-180.
    [85]张勃,孙杉,张志强,等.杠杆状雄蕊及其进化生态学意义[J].植物生态学报,2010,34(1): 89-99.
    [87]史学群,刘国民,徐立新,等. 冬青属苦丁茶不同种质材料之过氧化物酶同工酶和酯酶同工酶研究初报[J].贵州科学,2003,21(3):46-50.
    [88]苏薇薇,陈继慈.中药苦丁茶的化学模式识别研究(Ⅰ)[J].中药材,1998,(3):115-119.
    [89]苏薇薇,吴忠,何新新.中药苦丁茶的化学模式识别研究(Ⅱ)[J].中药材,1998,(4):170 -173.
    [90]孙辉,张晓琦,蔡艳,等.救必应的化学成分研究[J].林产化学与加工,2009,29(1):111-114.
    [91]谭秦莉,刘冬,李玉宝,等.总黄酮化合物药理作用研究进展[J].安徽中医学院学报,2009,28(3):62-64.
    [92]唐晓清,陈暄,温元元.黄芩根尖预处理方法的优化及其核型分析[J].江苏农业科学,2006,5:123-125.
    [93]田建平,胡远艳,张俊清,等.9种梧桐科植物叶表皮特征的扫描电镜研究[J].西北植物学报,2008,28(7):1326-1332.
    [94]田建平,胡远艳,杨卫丽,等.夹竹桃科植物叶表皮特征及其系统学研究[J].西北植物学报,2013,33(6):1151-1158.
    [95]王从周,刘荣,欧阳明安.冬青属植物化学成分研究进展[J].亚热带植物科学,2006,35(3):61-69.
    [96]王家伦,梁远发,胡华健,等.贵州五棱苦丁茶资源考察及植物学鉴定[J].贵州农业科学,2002,30(4):3-5.
    [97]王开发,王宪曾.孢粉学概论[M].北京:北京大学出版社,1983:21-32.
    [98]王琳霞,樊向合,李建道.冬青在兽医临床中的应用[J].中兽医医药杂志,2006,(5):46-48.
    [99]王明强,曹兵,李翔.苦丁茶饮料生产过程中全程质量控制体系的研究[J].食品研究与开发,2010,31(12):233-235.
    [100]王世清,郑亚玉.贵州苦丁茶品种考证及资源调查(一)[J].中国民族民间医药杂志,2002,55:107-108.
    [101]王树芝,刘德华,刘黎,等.冬青苦丁茶树组织培养的研究[J].湖南农业科学,2009,(2):131-133.
    [102]王新,陆慧宁,林少琨.苦丁茶冬青叶化学成分及药理作用研究进展[J].天然药物研究与开发,2005,17(3):366-370.
    [103]王宇飞,陶君容.植物角质层分析术语新体系[J].植物学通报,1991,8(4):11-13.
    [104]王玉国,韦发南.药用植物苦丁茶与近缘种的微形态研究-叶表皮特征的扫描电镜观察[J].广西植物,2000,20(3):229-232.
    [105]王玉国,韦发南.苦丁茶与近缘种的果皮微形态特征及其分类学意义[J].植物研究,2001,21(1):47-52.
    [106]王祖秀,杨军,王枭盟.韭兰的几种花形变异及初步分析[J].广西植物,2007,27(5):692-696
    [107]魏成武.枸骨抗生育作用[J].中药通报,1988, (5):48.
    [108]文东旭,郑学忠,井上谦一郎.海南冬青的化学成分研究[J].中国中药杂志,1999,24(04):223-225.
    [109]吴婷,张晓琦,王英,等.毛冬青根的化学成分研究[J].时珍国医国药,2009,20(12):2923-2925.
    [110]吴致,程志红,刘和平,等.中药枸骨叶脂溶性化学成分的研究[J].中国药学杂志,2005,40(19):1460-1462.
    [111]伍彬,郑曦孜.大叶冬青化学成分研究[J].中国药业,2009,18(10):17-18
    [112]肖文军,杨伟丽,李觅路.苦丁茶饮料加工技术的研究Ⅰ.原料配伍的筛选[J].湖南农业大学学报(自然科学版),2001,27(3):221-223.
    [113]谢光波,周思祥,雷连娣,等.猫儿刺中三萜类化合物的结构研究[J].中国中药杂志,2007,32(18):1890-1892.
    [114]谢光波,牛锋,王晓静,等.猫儿刺的化学成分[J].药学学报,2008,43(1):60-62.
    [115]谢光波,赵明波,王晓静,等.猫儿刺叶的化学成分研究[J].中草药,2008,39(8):1132-1135.
    [116]谢宗万,余友芩.全国中草药名鉴(上册)[M].北京:人民卫生出版社,1996:307,914.
    [117]徐炳声.中国植物分类学中的物种问题[J].植物分类学报, 1998,36(5):470-480.
    [118]俸宇星,陈书坤,赵瑞峰,等.中国冬青属苦丁茶名实辨证[J].植物分类学报,1998,36(4)353-358.
    [119]徐增莱,余伯阳,徐珞珊.大戟科植物分类的数值分析[J].热带亚热带植物学报,2004,12(5):399-404.
    [120]杨鑫,丁怡,孙志浩,等.毛冬青的化学成分研究[J].中草药,2005,36(8):1146-1147.
    [121]尹文清,冯华芬,段少卿,等.不同溶剂提取毛冬青叶挥发油成分的GC-MS分析[J].安微农业科学,2011,39(20):12138-12140.
    [122]应鸽,丁平,代蕾,等.毛冬青茎化学成分研究[J].中国实验方剂学杂志,2012,18(11):118-120.
    [123]郁建平·贵州苦丁茶植物资源及化学成分分析[J].植物资源与环境,1997,6(2):22·
    [124]张超良,曹庆荣.茶叶型的中药新资—山绿茶[J].中药材科技,1990:18.
    [125]张凤琴,刘国民,周鹏,等.用RAPD技术探讨冬青属苦丁茶的遗传差异、亲缘关系与分类地位[J].云南植物研究,2004,26(6):637-644.
    [126]张桂和,郑道君,刘国民,等.五种冬青科苦丁茶的酯酶同工酶分析[J].中国农学通报,2008,24(8):50-56.
    [127]张鲁勉.苦丁茶的微量元素测定及其保健功能初探[J].广东微量元素科学,2002,9(8):55-56.
    [128]章建红,高云振,张斌,等.26种冬青属植物遗传多样性分析[J].西北植物学报,201 1,31(3):504-510.
    [129]中华本草编委会.中华本草(第13卷)[M].上海:上海科学技术出版社,1999
    [130]周喜军,张冬梅,罗玉兰,等.冬青属植物的I SSR标记分析及其应用[J].河南农业大学学报,2009,43(2):196-200.
    [131]周长辉,田智仁,龚道远,等.频振式杀虫灯防治有机茶园害虫试验[J].湖北植保,2003,(2):10-11.
    [132]周志坚,翟应昌,周丽华,等.苦丁茶的离体培养与快速繁殖[J].广东林业科技,1996,12(4):23-27.
    [133]朱恒星,曾正明,何桥.5个苦瓜地方品种染色体核型分析[J].山西农业大学学报,2009,29(5):427-429.
    [134]朱莉芬,李美珠,钟伟新,等.苦丁茶心血管药理作用研究[J].中药材,1994,17:37-40.
    [135]祝骥,姚汝华,黄毓文,等.苦丁茶愈伤组织的诱导与褐变抑制[J].热带亚热带植物学报,2000,8(4):319-323.
    [136]周凌瑜,刘群录,邵邻相.虫媒花与凤媒花花粉的比较[J].上海交通大学学报(农业科学版),2008,26(3):177-182.
    [137]Abebe B, Gholap AV.Characterization and determination of chlorogenic acids (CGA) in coffee beans by UV-Vis spectroscopy[J].Afr.J.Pure and Appl.Chem.,2009,3(11):234-240.
    [138]Adriana DM, Carolina SB, Cristiano AB, et al.Methylxanthines and phenolics content extracted during the consumption of mate (Ilex paraguariensis St.Hil) beverages[J].J.Agric.Food Chem., 2010,58(4):2188-2193.
    [139]Alessandra SS, Suzana SC, Manen JF, et al.New information for Ilex phylogenetics based on the plastid psbA-trnH intergenic spacer(Aquifoliaceae)[J].Botanical Journal of the Linnean Society,2009,159(1):182-193.
    [140]Alexandra MG, Gustavo CG, Lidia P.Molecular analyses of the genus Ilex (Aquifoliaceae)in Southern South-America, evidence from AFLP and its sequence data[J]. American Journal of Botany,2005,.92(2):352-369.
    [141]Alikaridis F. Natural constituents of Ilex species[J]. Journal of Ethnopharmacology,1987,20(2): 121-144.
    [142]Aline MCR, Bente D, Leif H.Mate (Ilex paraguariensis) as a source of water extractable antioxidant for use in chicken meat[J]. Eur. Food Res. Technol,2008,227:255-260.
    [143]Baa SP. The wood anatomical range in Ilex (Aquifoliaceae)and its ecological and phylogenetic significance[J]. Blumea,1973,21(1):193-258.
    [144]Bennett BC, Baker MA, G6mez P.Ethnobotany of the Shuar of Eastern Ecuador[J].Advances in Economic Botany,2002,14:1-299.
    [145]Berté KA, Beux MR, Spada PK, et al.Chemical composition and antioxidant activity of yerba-mate (Ilex paraguariensis A.St-Hil, Aquifoliaceae) extract as obtained by spray drying[J]. JAgric.Food Chem.,2011,59:5523-5527.
    [146]Bracescoa N, Sancheza AG, Contrerasa V, et al. Recent advances on Ilex paraguariensis research: minireview[J].Journal of Ethnopharmacology,2011,136:378-384.
    [147]Carla AA, Paola T, Daniele D, et al.Potential of botanic gardens to show pollen biodiversity. the modena project: 1.The pollen flora of the garden [J].Boll. Mus.Ist.Biol.Univ.Genova,2010, 72:43-55.
    [148]Carlini EA.Plants and the central nervous system[J].Pharmacology,Biochemistry and Behavior, 2003,75:501-512.
    [149]Chen SHK, Ma HY, Feng YX, et al. Flora of China (volume 11) [M]. Beijing:Science Press,2008:360.
    [150]Choi YH. Sertic S, Kim HK, et al. Classification of Ilex species based onmetabolomic fingerprinting using nuclear magnetic resonance and multivariate data analysis[J].J.Agric.Food Chem.,2005,53:1237-1245.
    [151]Christopher B, Hubert H, Reinhard J.Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of rosa canina leaves[J].Ann.Bot.,2007,100:1557-1564.
    [152]Claudia A, Sebastian T, Laura C,et al. Study of the participation of caffeine and polyphenols on the overall antioxidant activity of mate (Ilex paraguariensis)[J].LWT-Food ScienceandTechnology, 2012,45(2):299-304.
    [153]Coelho GC, Mariath JEA, Schenkel EP.Populational diversity on leaf morphology of mat(Ilex paraguariensis A.St.-Hil., Aquifoliaceae)[J]. Brazilian Archives of Biology and Technology, 2002,45 (1):47-51.
    [154]Cozzolino D, Restaino E, Fassio A.Discrimination of yerba mate (Ilex paraguayensis St.Hil.) samples according to their geographical origin by means of near infrared spectroscopy and multivariate analysis [J]. Sens.& Instrumen.Food Qual,2010,4:67-72.
    [155]Cristiane MP, Manoela AV, Rossana P. Methylxanthines, phenolic composition, and antioxidant activity of bark from residues from mate tree harvesting(Ilex paraguariensis A.St.Hil.)[J]. Food Chem.,2010,122:173-178.
    [156]Crown PL, Emerson TE, Gu J, et al. Ritual black drink consumption at Cahokia [J].Proceedings of the National Academy of Science,2012,109(35):13944-13949.
    [157]Cui WX, Yang J, Chen XQ, et al.Triterpenoid-rich fraction from Ilex hainanensis Merr.attenuates non-alcoholic fatty liver disease induced by high fat diet in rats[J].Am.J.Chin. Med.,2013, 41(3):487-502.
    [158]Dartora N, Souza LM, Paiva SM, et al.Rhamnogalacturonan from l. paraguariensis: a potential adjuvant in sepsis treatment[J].Carbohydr. Polym.,2013,92(2):1776-1782.
    [159]Demétrius PA, Viviane BP, Elis RVR.Effect of mate tea(Ilex paraguariensis) supplementation on oxidative stress biomarkers and LDL oxidisability in normo-and hyperlipidaemichumans[J]. J.Funct. Foods,2011,3(3):190-197.
    [160]Edwards A L, Bennett BC.Diversity of methylxanthine content in Ilex cassine Lo and. Ilex vomitoria Ait.:assessing sources of the north american stimulantcassin[J].Economic Botany, 2005,59(3):275-285.
    [161]Elvira G de M, Young SS, Caleb IH, et al.Yerba mate tea(Ilex paraguariensis)phenolics, antioxidant capacity and in vitro inhibition of colon cancer cell proliferation[J]. Journal of Functional Foods,2010,2(1):23-34.
    [162]Fairbanks CH.The function of black drink among the creeks.In: Hudson, CM, editor.Black drink: a native American tea[M]. Athens, GA, USA:University of Georgia Press,1979:120-149.
    [163]Faizul H, Habib A, Rahat U, et al.Species diversity and ethno botanical classes of the flora of allai valley district battagram Pakistan[J]. International Journal of Plant Research,2012,2(4):111-123.
    [164]Fermin M, Aurelie C, Ana AF.Time-resolved spectral studies of blue Green fluorescence of artichoke (Cynara cardunculus L. var. scolymus) leaves,identification of chlorogenic acid as one of the major fluorophores and age-mediated changes[J].J.Agr.Food Chem,2005,53:9668-9678.
    [165]Filip R, López P, Giberti G, et al. Phenolic compounds in seven South American Ilex species [J]. Fitoterapia,2001,72(7):774-778.
    [166]Filip R, Ferraro G.Researching on new species of Mate:Ilex brevicuspis, phytochemical and pharmacology study[J].Eur.J.Nutr.,2003,42:50-54.
    [167]Genderen HHV, Jaarsma J. Triterpenes and alkanes in developing variegated and albino leaves of Ilex aquifolium L.(Aquifoliaccae)[J], Plant Sci.,1990,72:165-172.
    [168]Gonzalez AM, Tarragó JR.Anatomical structure and secretion compounds of colleters in nine Ilex species (Aquifoliaceae) from southern South America[J]. Botanical Journal of the Linnean Society,2009,160,197-210.
    [169]Gonzalez de Mejia E, Song YS, Ramirez-Mares MV, et al.Effect of yerba mate(Ilex paraguariensis) tea on topoisomerase inhibition and oral carcinoma cell proliferatio[J].J. Agric. Food Chem.,2005,53(6):1966-1973.
    [170]Gottlieb AM, Poggio L.Genomic screening in dioecious "yerba mate" tree (Ilex paraguariensis A.St.Hill., Aquifoliaceae) through representational difference analysis[J].Genetica,2010,138: 567-578.
    [171]Greizerstein EJ, Giberti GC, Poggio L.Cytogenetic studies of Southern South-American Ilex[J]. Caryologia,2004,57(1):19-23.
    [172]Gugliucci A, Bastos DH, Schulze J.Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins [J].Fitoterapia, 2009,80(6):339-344.
    [173]Hao D CH, Gu X J, Xiao PG, et al.Research progress in the phytochemistry and biology of Ilex pharmaceutical resourcs[J]. Acta Pharmaceutica Sinica B,2013,3(1):8-19.
    [174]Haraguchi H, Kataoka S, Okamoto S, et al.Antimicrobial triterpenes from Ilex intergra and the mechanism of antifungal action[J].phytother.Res.,1999,1 (2):151-156.
    [175]Heck CI, Mejia EG. Yerba mate tea (Ilex paraguariensis):a comprehensive review on chemistry, health implications, and technological considerations[J].J.Food Sci.,2007,72(9): 138-151.
    [176]Hudson CM.Black drink:a native American tea. [M]. Athens, GA, USA:University of Georgia Press,1979.
    [177]Isolabella S, Cogoi L P, López C, et al. Study of the bioactive compounds variation during yerba mate(Ileх paraguariensis)processing[J].Food Chemistry,2010,122:695-699.
    [178]Joo YK, Ha YJ, Hong KL.Protective effect of Ilex latifolia, a major component of "kudingcha" again transient focal ischemia-induced neuronal damage in rats [J]. J. Ethnopharm, 2011,133: 558-564.
    [179]Kashiwad Y, Zhang DC.Antitumor agents,145.Cytotoxic asprellic acids A and C and asprellic acid B. new pcoumaroyl triterpenes, from Ilex asprella[J].J. Nat. Prod.,1993,56 (12):2077-2082.
    [180]Kim DK, Nam IY, Kim J W, et al.Pentacyclic triterpenoids from Ilex macropoda[J]. Archives of pharmacal research,2002,25(5):617-620.
    [181]Kim HK, Saifullah KS, Wilson EG. Metabolic classification of south American Ilex species by NMR-based metabolomics.[J]. Phytochemistry,2010,71(7):773-784.
    [182]Lewis WH, Kennelly EJ, Bass GN, et al. Ritualistic use of the holly Ilex guayusa by Amazonian Jivaro lndians[J].J Ethnopharmacol.,1991,33(1-2):25-30.
    [183]Liu LX, Sun Y, Tanguy L.Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha C.J.Tseng[J]. Food Chem.,2009,112:35-41.
    [184]Loizeau PA, Barriera G, Manen JF, et al. Towards an understanding of the distribution of Ilex L.(Aquifoliaceae) on a world-wide scale[J]. Biol. Skr.,2005,55:501-520.
    [185]Luciane G, Suzana CM.Genetic variation in natural populations of mate A(Ilex paraguariensis A.S-Hil., Aquifoliaceae) using RAPD Markers[J].Heredity,2000,84:647-656.
    [186]Maciej W, Anna L, Bernadetta O, et al. Evaluation of the cyto-and genotoxic activity of yerba mate(Ileх paraguariensis) in human lymphocytes in vitro[J]. Mutation Researchl Genetic Toxicology and Environmental Mutagenesis,2009,679(1-2):18-23.
    [187]Manen JF, Boulter MC, Graven YN.The complex history of the genus Ilex L.(Aquifoliaceae): evidence from the comparison of plastid and nuclearDNA sequences and from fossil data[J]. Plant Syst.Evol,2002,235:79-98.
    [188]Manen JF.Are both sympatric species Ilex perado and Ilex canariensis secretly hybridizing? indication from nuclear markers collected in Tenerife[J].BMC Evolutionary Biology,2004,4: 46-57.
    [189]Manen JF, Barriera G, Loizeau PA, et al. The history of extant Ilex species (Aquifoliaceae): evidence of hybridization within a miocene radiation[J].Mol. Phylogenet. Evol,2010,57(3): 961-977.
    [190]Maneesha S, Medochulie K. Floristic composition and ethno botanical studies of viswema village, Kohima, Nagaland, India[J]. Herbal Tech. Industry,2011:11-15.
    [191]Maria AV, Angela MSC, Hiroko MW.Estudo polinico das espécies de Aquifoliaceae, Euphorbiaceae, Lecythidaceae, Malvaceae, Phytolaccaceae Portulacaceae ocorrentes na restinga da Ilha do Cardoso (Canaéia, SP, Brasil)[J]. Revista Brasil.Bot.,2006,29(1):145-162.
    [192]Mejía D, Song Y S, Heck CI, et al.Yerba mate tea (Ilex paraguariensis):phenolics, antioxidant capacity and in vitro inhibition of colon cancer cell proliferation[J]. J. Funct. Foods,2010,2(1): 23-34.
    [193]Muccillo BAL, Johnston KB, Paganini SFL. Endo thelium dependent vasorelaxing activity of aqueous extracts of Ilex paraguariensis on mesenteric arterial bed of rats[J]. J Ethnopharmacol., 1998,60 (2):133-139.
    [194]Muller K, Ziereis K, Paperd H. Ilex aquifolium, protection against enzymatic and non-enzymatic lipid peroxidation[J].planta Med,1998,64 (6):536-540.
    [195]Nishimura K, Toshiyuki F, Toshio M.Activity-guided isolation of triterpenoid acyl CoA cholylacyl transferase inhibitors from Ilex kudingcha[J]. J.Nat.prod,1999,62(7):1061-1064.
    [196]Noratto GD, Kim Y, Talcott ST, et al.Flavonol-rich fractions of yaupon holly leaves (Ilex vomitoria, Aquifoliaceae) induce microRNA-146a and have anti-inflammatory and chemopreventive effects in intestinal myofribroblast CCD-18Co cells[J]. Fitoterapia,2011, 82(4):557-569.
    [197]Palumbo M, Talcott S, Putz F.Ilex vomitoria Ait.(Yaupon):a native north American source of a caffeinated and antioxidant-rich tea[J]. Economic Botany,2009,63(2):130-137.
    [198]Peng B, Qiao CF, Zhao J, et.al.Simultaneous determination of flavonoids, isochlorogenic acids and triterpenoids in Ilex hainanensis using high performance liquid chromatography coupled with diode array and evaporative light scattering detection[J]. Molecules,2013,18(3):2934-2941.
    [199]Philippe CD, Maria PM, Loizeau PA, et al.Molecular phylogeny and biogeography of the genus Ilex L.(Aquifoliaceae)[J]. Annals of Botany,2000,85:111-122.
    [200]Prado M JG, Porto E, Alencar SM, et al.Antimicrobial activity of yerba mate (Ilex paraguariensis St.Hil.) against food pathogens[J]. Rev. Argent Mcrobiol.,2013,45(2):93-98.
    [201]Pramod KJ, Krishna K SH, Madhusudan PU, et.al.Plant genetic resources of Nepal:a guide for plant breeders of a icultural, horticultural and forestry crops[J]. Euphytica,1996,87:189-210.
    [202]Racanicci AMC, Menten JFM, Alencar SM, et al.Mate (Ilex paraguariensis) as dietary additive for broilers:performance and oxidative stability of meat[J].Eur. Food Res.Technol,2011,232: 655-661.
    [203]Raquel G, Carla EIS, Samir M SH, et al. The study of the influence of industrial processing on the elemental composition of mate tea leaves (Ilex paraguariensis) using the PIXE technique[J]. LWT-Food Science and Technology,2009,42(1):74-80.
    [204]Rathee P, Chaudhary H, Rathee S, et al.Mechanism of action of flavonoids a anti-inflammatory agents:a review[J].Inflamm Allergy Drug Targets,2009,8:229-235.
    [205]Reginatto FH, Athayde ML, Gosmann G.Methylxanthines accumulation in Ilex species caffeine and theobromine in Erva-Mate (Ilex paraguariensis) and other llexspecies[J].J.Braz.Chem.Soc., 1999,10(6):443-446.
    [206]Rendell S, Ennos RA.Chloroplast DNA diversity of the dioecious European tree llex aquifolium L. (English holly)[J]. Mol. Ecol.,2003,12(10):2681-2688.
    [207]Schultes RE.Amazonian ethnobotany and the search for new drugs[J]. Ciba Found Symp.,1994, 185:106-112.
    [208]Silvie B, Aline H, Cristiane LR, et al.Lipid-lowering effects of standardized extracts of ex paraguariensis in high-fat-diet rats[J]. Fitoterapia,2013,86:115-122.
    [209]Son SW, Kim IH, Kim KJ.Molecular evidence for the hybridily of Ilex x wandoensis and the phylogenetic study of Korean llex based on ITS sequence data[J]. Genes& Genomjcs,2009,31 (1):53-63.
    [210]Spegazzini ED, Castro MT, Carpano SM, et al.Taxonomic determination of therapeutic Argentine species of Ilex[J]. Pharmaceutical Biology,2002,40(1):2-15.
    [211]Tarrago J, Sansberroa P, Filip R, et al.Effect of leaf retention and flavonoids on rooting of Ilex paraguariensis cuttings[J]. Scientia Horticulturae,2005,103:479-488.
    [212]Tasanee K, Choojit A.Herbs from peat swamp forests in Narathivas, Thailand[J].Traditional Medicine & Nutraceuticals,2005,6:73-81.
    [213]Tee NS, Xeau SH, Park JO, et al. Molecular evidence for hybridization of neх x wandoensis (Aquifoliaceae)by RAPD analysis[J].Joumal of plant Biology,2006,49(6):491-497.
    [214]Tong JY, Huang QL, Ma XY, et al.Molecular identification of Ilex asprella var. asprella with other 7 species in the genus Ilex based on ITS2 sequence[J]. Medicinal Plant, 2012,3(3):45-48.
    [215]Torimaru T, Tomaru N, Nishimura N, et al. Clonal diversity and genetic differentiation in Ilex leucoclada M.patches in an old-growth beech forest[J]. Molecular Ecology,2003,12(4):809-818.
    [216]Turner S, Cogoi L, Isolabella, et al.Evaluation of the antioxidant activity and polyphenols content of Ilex paraguariensis (Mate) during industrialization[J]. Advanced Journal of Food Science and Technology,2011,3(1):23-30.
    [2171 Vania HT, Alexandro C, Paulo AF, et al. Morphometry and foliar venation in origins of maté (Ilex paraguariensis A.St.Hill.) (Aquifoliaceae)[J]. Acta Scientiarum Biological Sciences, 2009,31(4):433-437.
    [218]Will CM, Mahady GB, et al.Ethnobotany as a pharmacological research tool and recent developments in CNS-active natural products from ethnobotanical source[J].Pharmacol. Ther., 2009,123(2):239-254.
    [219]Xiang HL, Xu HD, Tian WY, et al. An experimented study on the effects of China Ilex kudingcha on hypelipidemia in mice[J].J.Chin. Mater. Med.,1994,19:497-498.
    [220]Young H J, Picton D, Park JO, et al.Molecular evidence for the interspecific hybrid origin of Ilex × wandoensis[J]. Hort.Environ. Biotechnol.,2011,52(5): 516-523.
    [221]Zhu F, Cai YZh, Sun M, et al. Comparison of major phenolic constituents and in vitro antioxidant activity of diverse kudingcha genotypes from Ilex kudingcha, Ilex cornuta, and Ligustrum robustum[J].J.Agric.Food Chem.,2009,57(14):6082-6089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700