用户名: 密码: 验证码:
复杂地形条件下的重气扩散研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先从发生重气扩散的原因入手(具体选用了高含硫天然气井喷事故),然后研究重气的扩散过程模型,其次对重气扩散的后果进行了风险分析,最后针对重气扩散事故——高含硫天然气井喷事故,做了应急响应方面的研究。
     (1)山区高含硫天然气井喷失控事故分析
     首先,详细介绍了钻井工程和井下作业的具体工艺过程,为后续的井喷失控事故致因分析提供了基础条件。同时,对井控技术进行了深入研究,井控,本质都是指采取一定的方法控制住地层孔隙压力,基本上保持井内压力平衡,保证钻井的顺利进行的技术。根据井涌的规模和所采取控制方法的不同,把井控作业分为一级井控(即初级井控)、二级井控和三级井控。当二级井控失败,井涌现象没有得到控制,地层流体无控制地涌入井筒,喷出地面,则会成为井喷。
     有资料显示川东1993年以后发生的井喷事故远远少于1993年之前的,为了从时间上有比较,所以选取1996-2005年10年间的井喷案例研究井喷的显示特征,发现随着技术进步,在各类作业中,钻井井喷所占比例已降低;起下钻井喷事故比例有所上升;和人们的普遍认识不同,也通过统计资料可以看到,浅层气和高压深井的发生井喷的比例不相上下,所以,对浅层气钻井的安全井控意识需要加强;井喷前的征兆显示溢流、井涌、井漏、油气侵显示都非常明显;操作失误、设备因素、钻井液因素在井喷失控的直接原因中占比例较高;规章制度因素、井控意识因素在井喷失控间接原因中占有重要比例。
     然后,进行井喷失控的事故致因分析。事故致因理论较多。井喷事故的发生,是由多个事故因素引起的,事故因素的出现具有一定的因果层次性、不同的因素之间相互联系,在一定的环境条件下,最终导致了井喷事故的发生,所以,选择系统分析的方法——鱼骨图法,较为适用,目前这是首次采用该方法进行井喷失控事故致因分析。从物的因素、人的因素、管理因素、环境因素四个方面,深入研究了井喷失控事故的致因因素,为制定井喷失控事故安全管理对策提供了理论基础。
     在井喷失控中,人的因素贯穿钻井活动的始末,所以进行了人的可靠性分析,采用贝叶斯方法,贝叶斯方法是根据先验分布和样本信息得到后验分布,对于先验分布,对可靠性数据的获取要求不高,如果没有客观资料,可以完全采用主观方法确定。建立了贝叶斯网络的人因可靠性因果层次模型,给出了进行可靠性分析的具体思路。
     (2)复杂地形重气扩散模型
     通常由于本身分子量比空气平均分子量大、气体温度低、气体中有液态喷雾存在或者环境温度太低等原因,使得气体的密度大于空气,这样的气体在大气中的扩散,不同于高斯扩散,具有明显的沉降现象,称为重气扩散。
     H2S具有毒性,相对密度为1.189。根据开县特大井喷事故的人员和动物的伤亡分布情况,可以看出,高含硫天然气发生井喷失控事故时,H2S的沉降现象非常明显。所以,可以把天然气中的H2S作为研究对象,考虑它的重气效应,求解其在复杂地形条件下的重气扩散过程。
     重气扩散的模型组成为下图所示。对于瞬时释放,改进箱模型,适用于斜坡地形,模型中需要坡地风场输入。对于连续释放,复杂地形条件下,采用Monte-Carlo模型,模型中包含被动扩散情况、密度稍大于空气(即空气密度不能忽略)的情况和密度远大于空气(即空气密度可以忽略)的情况,当模型考虑卷吸效应时,重气密度随扩散逐渐减小,当气体密度小于空气时,扩散转化为被动扩散。Monte-Carlo模型中需要复杂地形风场输入。并分别用不同方法进行模拟计算,由于复杂地形的存在,风场不再是均匀场,风场的改变,则重气物质的扩散过程也变得复杂起来,与平坦地形上的重气扩散差别较大。
     a)适用于斜坡的改进箱模型
     风对重气体物质的浓度分布的第一个作用是整体输送;第二个作用是冲淡稀释。所以,重气云团在斜坡上的运动过程分解为两个阶段:
     第一阶段,以平坦地形箱模型为基础的重气稀释模型。结合风对云团的稀释和输送作用,重气云团做负浮力扩散,在模型中特征参数分布引入相似分布。顶部湍流动能来自三个方面:云团和环境流体速度不同,引起的剪切所产生的湍流;重气云团在地面移动产生的湍流;在大气边界层中产生的湍流。顶部夹卷速率采用TWODEE模型中对Eidsvik的改进方法。通过重气云团的稀释模型,可以得到云团的质量、密度、外形尺寸、夹卷空气质量以及云团内危险物质浓度等随时间的变化情况。
     第二阶段,重气云团作为一个整体,风对云团在斜坡上的整体输送模型。通过重气云团的稀释模拟,可以得到重气云团的质量、外形尺寸等参数,用于整体输送模型的计算。通过重气整体输送模型,可以得到云团的运动速度、距离等随时间的变化情况。
     b)复杂地形重气扩散模型
     对于复杂地形上的重气扩散,采用Monte-Carlo方法进行模拟。Monte-Carlo方法,首先要建立一个随机模型,然后确定随机变量的概率分布,做足够多的随机试验——过程模拟,对实验结果进行统计分析,根据大数定律,问题的解的近似估计值就是观测值的平均值。
     单个气体分子、微团、粒子、或者足够小的气包在风场的输送过程中,一方面微团粒子受到风的平均风速的平流输送,另一方面,由于风具有随机性,自然风是一种平均风速与瞬间激烈变动的湍流相结合的风,所以,在这个过程中微团粒子的运动也是具有随机性质的,是一种随机过程,从而可以采用Monte-Carlo模拟方法来模拟这一过程。
     模型的构建考虑了三种情况:
     ①对于气体密度小于空气的情况,微团粒子的运动是平均风场和随机部分的组合。
     ②对于气体密度稍大于空气的情况,空气密度不能够被忽略,在第一种情况的基础上,同时又在微团粒子的运动中引入了重力效应,从而构建出重气扩散模型。在重气扩散模型中,如果考虑卷吸效应,则可以假设微团是一个足够小的小气包,且小气包的膨胀尺度远远小于风的湍涡尺度,那么可以考虑小气包的卷吸效应,在重气的扩散过程中,随着卷吸的进行,小气包密度会逐渐减小,最后就转化为了非重气扩散。
     ③对于气体密度远远大于空气的情况,则空气的密度可以忽略,在粒子的运动过程中引入粒子的重力作用,建立重气扩散模型。
     模型中的湍流参数,采用了经验公式;风场采用符合质量守恒的诊断模式,需要先采集观测点数据,然后在空间进行水平和垂直插值,垂直插值是按照风速廓线公式,水平插值采用考虑了地形起伏因子的权重系数,从而得到了初始风场。采用变分法对初始风场进行调整,得到了符合质量守恒的诊断风场。
     最后采用目前国际上比较成熟的软件HYSPLIT进行了重气的扩散模拟,主要是设置沉降速度来确定重气效应。(3)山区高含硫天然气井喷失控事故风险分析
     首先对风险分析的基本理论进行了深入研究,对风险的定义、特征以及风险分析的内容都进行了介绍。
     然后将风险分析模型MEVIP模型应用于井喷失控事故的风险分析,模型要素有事故强度I、脆弱性V、事故发生概率P、宏观管理因子M和应急能力因子E,对各个要素进行了分析,并研究了其计算方法。虽然有研究者采用了该模型方法(MEVIP模型)应用于工业园区的风险评价,在井喷失控事故的风险分析中应用该模型方法还属于首次。
     对井喷失控事故的工艺过程安全系统进行了可靠性分析,主要采用了蝶形图的方法,中间为关键事件——井喷失控事故,左边为事故树原因分析,右边为事件数结果分析。建立了井喷失控事故的蝶形图,选取了其中的一个险情演变进行了研究,是一个典型的喷漏同存的井喷失控事故,造成了毒气云的后果,对其中的每一项的安全屏障进行了研究,为井控工作以及事故后果控制提供了思路和方法。虽然有研究人也采用了蝴蝶结模型分析井喷失控,但是他对于原因的分析并不是采用的事故树方法,对于结果的分析也不是事件树,他只是简单给出了原因和结果,然后对个原因和结果进行屏障。
     最后,对井喷失控事故中的有毒气体的中毒伤害进行了研究。研究了剂量和反应的关系,深入讨论了毒性气体中毒评价标准,建立了反应剂量曲线模型,研究了急性中毒评估方法。
     (4)复杂地形高含硫天然气井喷失控事故应急响应
     首先,分析了符合复杂地形高含硫特征的开县特大井喷事故中的应急救援存在的问题。然后,构建了复杂地形条件下的高含硫天然气井喷失控事故的应急救援体系,对其中的每一个部分都进行了详细的研究。
     然后,对高含硫天然气井喷失控事故应急响应机制做了研究。分析了制定应急响应机制的原则,给出了天然气井喷失控事故应急响应程序/机制,分析了其中的关键步骤事故报警、应急响应等级制度、应急避灾。对响应等级的确定采用了基于风险的事故分级,对应与事故不同的等级采用不同的应急级别,最后给出了考虑事故风险的响应级别判断表,考虑了事态趋势之后,对于趋势严重的事故,其应急启动级别要采用更高一层次的响应。
Firstly, start from why the dense gas diffusion occurs (specific choice of sour gas blowout accident), and then study the dense gas diffusion model, followed by risk analysis of the consequences of the dense gas diffusion, and finally for the dense gas diffusion accident, that is sour gas blowout accident, do a study of the emergency response.
     (1) accident analysis of sour gas blowout out of control in mountain
     First, the details of the specific process of drilling engineering and underground work, provides the basic conditions for analysis of the subsequent uncontrolled blowout accident cause. Meanwhile, in-depth study of the well control technology, well control are technology, in essence, means taking a certain method to control the formation pore pressure, and borehole pressure remained essentially balanced, to ensure the smooth progress of drilling. According to the different size and method of controlling well kick, well controlled operations are divided into one level of well control (ie primary well control), two level of well controls and three level of well controls. Kick phenomenon has not been brought under control when the two level of well controls failed, and the uncontrolled influx of formation fluids into well bore, spouting the ground, it will become a blowout.
     Informations showed blowout accident occurred after1993on Chuandong far less than that before1993, in order to compare those with time, so select and study the display characteristics of the blowout case in1996-2005, found that as technology advances, in all kinds of jobs, drilling blowout proportion has decreased, and tripping blowout proportion increased, and different of general awareness of the people, but also can be seen through the statistics, the occurrence of shallow gas and high pressure deep well blowout proportions are almost the same. We need to strengthen the safety of shallow gas drilling well control awareness. Signs display the overflow before the blowout, kick, lost circulation and gas emplacement of oil and water, are very obvious. Operational errors, equipment factors, drilling fluid factors have higher proportion of direct cause of uncontrolled blowout. Rules and regulations factor, and sense factor of well control occupies an important proportion of the indirect causes of uncontrolled blowout.
     Then, do causation analysis of uncontrolled blowout accident. The accident theories of causation are a lot. Blowout accident caused by a number of accident factors, and accident factors appear to have some causal hierarchy and relation between different factors, under certain environmental conditions, eventually leading to the blowout accident. So select system analysis method, the fishbone diagram, which is more applicable, this is the first time use the method to analyze uncontrolled blowout accident causation. Based of aterial factors, human factors, management factors and environmental factors, in-depth study of the factors causing uncontrolled blowout accident, provides a theoretical basis for safety management countermeasures of the uncontrolled blowout accident.
     Human factor in uncontrolled blowout is throughout the whole drilling activities, so human reliability analysis make use of Bayesian methods. Bayesian posterior distribution is based on the prior distribution and sample information. For the prior distribution, if there is no objective information on the reliability of data acquisition with less demanding, you can completely select subjective methods to determine. Bayesian network reliability causal level model and the specific ideas of the reliability analysis are given.
     (2) dense gas diffusion model on the complex terrain
     Usually because of their molecular weight than the average molecular weight of air, the gas temperature is low, the gas in the presence of a liquid spray or the ambient temperature is too low, and other reasons, so that the density of the gas is greater than the air, so the diffusion of the gases in the atmosphere, different from the Gaussian diffusion, has the slump phenomenon, known as a dense gas dispersion.
     H2S has toxicity, the relative density of1.189. According to of Kaixian gas blowout accident casualties distribution of personnel and animals, can be found that, when sour gas uncontrolled blowout accident occurred, H2S slumping phenomenon is very obvious. Consider H2S in the gas as the research object, considering its dense gas effect, solve the dense gas diffusion processes in complex terrain conditions.
     Dense gas dispersion models are composed as shown in the following figure. For instantaneous release, box model is improved, suitable for slope terrain, and the model needs to the input of the sloping wind feild. For continuous release and complex terrain conditions, Monte-Carlo model of passive diffusion model is improved. The density is slightly denser than the air (ie, the air density can not be ignored), or the density is much larger than the air (air density can be ignored) within dense gas diffusion. When the model takes into account of the entrainment effect, which gradually decreases the density, and finally the gas density may be less than air diffusion and the dispersion become into passive diffusion. Monte-Carlo model requires inputs of complex terrain wind field. And, respectively, use the different methods to simulate. Due to the presence of complex terrain, wind farm is no longer a homogeneous field, and because of the change of the wind farm, dense gas substances diffusion process was complicated and much different of dense gas diffusion on flat terrain.
     a) improved box model applys to the slope
     Wind overall transports and dilutes the dense gas, and then affects the distribution of the concentration of the gas. So, the movement process of dense gas cloud on the slopes is divided into two stages.
     The first stage, dense gas dilution model on the flat terrain based box model. Combined the wind clouds dilution and delivery role, dense gas clouds do negative buoyancy diffusion, and the distribution of characteristic parameters of the model introduced similar distribution. Top turbulent kinetic energy are from three aspects: shear turbulent caused by difference of the clouds and environmental fluid velocity, turbulence generated by the dense gas clouds moving on the ground and turbulence in the atmospheric boundary layer. Top entrainment rate that is improved Eidsvik method used in TWODEE model. Dense gas clouds dilution model can get the cloud mass, density, Dimensions, entrainment of air quality as well as the concentration of hazardous substances within the cloud changes over time.
     The second stage, the dense gas cloud as a whole, overall transport models of the clouds on the slopes by wind. By diluting simulation of the dense gas cloud, you can get a cloud of dense gas quality, shape, size, and other parameters, for the calculation of the overall delivery model. The change with time of speed and distance of movement of the cloud can be obtained through the overall delivery model of dense gas.
     b) dense gas dispersion models on complex terrain
     For dense gas dispersion on complex terrain, select Monte-Carlo simulation. Monte-Carlo method must first establish a stochastic model, and then determine the probability distribution of the random variable, more than enough to do a randomized trial, the process modeling, make statistical analysis of the experimental results, according to the law of large numbers, the solution of the problem of approximate estimated value is the average of the observed values.
     Individual gas molecules, micelles, particles, or small enough air bag are transported in a wind field. On the one hand, micelle particles advected by the average wind speed of the wind, on the other hand, because the wind is random, natural wind is an combined wind of average wind speed and instantaneous turbulence that intensely changes. So the motion of particles in the process also has a random nature, and is a random process. So Monte-Carlo simulation method can be used to simulate this process.
     Model constructions consider three cases:
     ①When gas density is less than the air, the micelle particle movement is a combination of average wind field and a random part.
     ②For the case that the density of the gas is slightly larger than the air, the air density can not be ignored. So, in order to build a dense gas diffusion model, on the basis of the first case, the model also introduce the gravity effect into the motion of the particles. Dense gas diffusion model, considering the entrainment effect, can be assumed that the micelle is a small enough gas package, and expansion scales of the small gas package are much smaller than the wind eddy scale, then you can consider the gas packet entrainment effect. In the dense gas diffusion process, with the entrainment, the small gas package density gradually decreases, and finally is converted into non-dense gas diffusion.
     ③For the case that the gas density is much larger than the air, then the density of the air can be ignored, the force of gravity during the movement of the particles introduced into the particle to create a dense gas diffusion model.
     Turbulence model parameters opt the empirical formula. Wind field opt the diagnostic mode of mass conservation, and need to gather the data of the observation points, and then are interpolated into the horizontal and vertical space. Vertical interpolation is in accordance with the formula of the wind profile, and horizontal interpolation has to consider the terrain factor weighting coefficient. Thereby obtain the initial wind field. Variational method adjust the initial wind field, and get diagnostic wind field of mass conservation.
     Finally, select the more mature software HYSPLIT, the dense gas dispersion modeling, and settling velocity is set to determine the effect of dense gas.
     (3) risk analysis sour gas uncontrolled blowout accident in the mountain
     Throughly study on the basic theory of risk analysis, risk definitions, characteristics, and risk analysis are introduced.
     Then the risk analysis model, MEVIP model, is applied to risk analyze uncontrolled blowout accident. Model elements include incident intensity, vulnerability,, the probability of accident occurrence, macro society management factor and the emergency response capacity factor. Analysze those various elements, and discuss those calculation method. Although the researchers used the model (MEVIP model) applied to the risk assessment of the industrial park, this is the first application of the model in the uncontrolled blowout accident risk analysis.
     Safety system reliability analysis of uncontrolled blowout accident process, mainly select bow-tie diagram. The middle key event is uncontrolled blowout accident, and the left side is Fault Tree, and the right is event tree. Establish the uncontrolled blowout accident bow-tie diagram, and select a danger evolution of a typical type accident that blowout and circulation loss concur, and cause the consequences of a poison gas cloud, in which safety barriers are given. And then provide the ideas and methods of control for well control work as well as the consequences of the accident. Although researchers also gave a bow-tie model of uncontrolled blowout, but he did not adopt the fault tree and event tree, and he simply gave the cause and effect, and safety barriers.
     Finally, study on the damage of toxic gas poisoning in the uncontrolled blowout accident. Study the relationship between toxic dose and response, and in-depth discuss on the toxic gas poisoning evaluation criteria, establish dose response curve model, and study on acute poisoning assessment methods.
     (4)sour gas blowout control emergency response on complex terrain
     First, analyze the existing problems of the emergency rescue in complex topographic features of Kaixian King sour gas blowout. Then, build emergency rescue system of sour gas uncontrolled blowout accident under complex terrain conditions, and carry out a detailed study of each part.
     Then, do research on emergency response mechanism in sour gas blowout out of control. Analyze the principle of the development of emergency response mechanisms, natural gas uncontrolled blowout emergency response program/mechanism, the key steps in accident alarm, hierarchy of emergency response, and emergency escaping. Determine the response level by a classification based on the risk of accidents, corresponding with the accident different levels with different emergency levels, and gave the response level table, considering the risk of accidents, after considering the situation trend, the trend of emergency of serious accidents elevates level to adopt a higher level of response.
引文
[1]赵琦.天然气市场面临重新洗牌.科学时报.2012.03.01.
    [2]朱光有,张水昌,李剑等.中国高含硫化氢天然气的形成及其分布.石油勘探与开发,2004,31(3):18-211.
    [3]戴金星,胡见义,贾承造等.关于高硫化氢天然气田科学安全勘探开发的建议.石油勘探与开发,2004,31(2):1-51.
    [4]谢传欣、叶从胜、黄飞.国内外井喷事故回顾.安全、健康和环境.2004,4(2):9、19.
    [5]汤淳.中国石油川东钻探公司.“12·23”特别重大井喷失控事故情况调查.化工安全与环境.2004,(18):4-6.
    [6]钟茂华,魏玉东,范维澄等.事故致因理论综述.火灾科学.1999,(3):36-42.
    [7]罗春红,谢贤平.事故致因理论的比较分析.中国安全生产科学技术,2007(5):111-115.
    [8]张洪,王凯,曾宏.钻井井喷事故人因失误特征分析和对策.天然气工业,2010(8).
    [9]吉安民,何沙.基于系统动力学的井喷事故仿真研究.中国安全科学学报,2011(10).
    [10]陈安英.含硫气井的大气环境风险评价与防范措施研究.[硕士论文]成都:西南石油大学,2011
    [11]任美鹏,李相方,尹邦堂等。基于模糊数学钻井井喷概率计算模型研究.中国安全生产科学技术.2012(1)
    [12]魏超南,陈国明.“深水地平线”钻井平台井喷事故剖析与对策探讨.钻采工艺,2012(5)
    [13]郭恒,陈国明.基于图论的海洋平台连锁风险评价.中国安全科学学报,2012(5)
    [14]魏利军.重气扩散过程的数值模拟.[博士学位论文].北京:北京化工大学.2000
    [15]潘旭海.事故性泄漏动力学过程的理论与实验研究.[博士学位论文].南京:南京工业大学.2004
    [16]丁信伟,王淑兰,徐国庆.可燃及毒性气体泄漏扩散研究综述.化学工业与工程,1999,16(2):118-122.
    [17]Jerry Havens. Review of Dense Gas Dispersion Field Experiments. Journal of Loss Prevention in Process Industries,1992,5(1):28-41.
    [18]K. C. Heidorn. M. C. Murphy, P. A. Irwin. Effects of Obstacles on the Spread of a Heavy Das—Wind Tunnel Simulations. Journal of Hazardous Materials,30(1992):151-194
    [19]刘国梁.重气烟羽扩散的模拟实验研究:[硕士论文].北京:北京大学,2001.
    [20]杜可.重气体瞬时源扩散的风洞实验研究:[硕士论文].北京:北京大学,2001.
    [21]姜传胜,丁辉,刘国梁等.重气连续泄漏扩散的风洞模拟试验与数值模拟结果对比分析.中国安全科学学报,2003,13(12):8-13.
    [22]秦颂,董华.重气扩散的盐水模拟.能源技术.2007,28(02):66-69.
    [23]秦颂,董华,张启波等.重气连续泄漏扩散的盐水模拟实验.环境化学.2007,(05)
    [24]沈武艳.高原山区城市流场风洞实验和重气泄漏扩散模拟研究[硕士论文].昆明:昆明理工大学2007.
    [25]周超,王志荣,蒋军成.室内空间重气泄漏扩散过程的影响因素.南京工业大学学报(自然科学版).2011,33(04):88-92.
    [26]Anay Luketa-Hanlin. A review of large-scale LNG spills:Experiments and modeling. Journal of Hazardous Materials A1322006:119-140.
    [27]S.T. Chan, Numerical simulations of LNG vapor dispersion from a fenced storage area, J. Hazard. Mater.30 1992,195-224.
    [28]S.T. Chan, D.L. Ermak, L.K. Morris, FEM3 model simulations of selected Thorney Island phase 1 trials, J. Hazard. Mater.16,1987,267-292.
    [29]D.L. Ermak, S.T. Chan, D.L. Morgan, L.K. Morris, A comparison of dense-gas dispersion model simulations withBurro series LNG spill test results, J. Hazard. Mater.6,1982,129-160.
    [30]R.I. Sykes, C.P. Cerasoli, D.S. Henn, The representation of dynamic flow effects in a Lagrangian puff dispersion model, J. Hazard. Mater.64,1999,223-247.
    [31]R.K.S. Hankin, R.E. Britter, TWODEE: the Health and Safety Laboratory's Shallow Layer Model for Heavy Gas Dispersion. Part 1. Mathematical Basis and Physical Assumptions, J. Hazard. Mater.66,1999, 211-226.
    [32]R.K.S. Hankin, Heavy gas dispersion:integral models and shallow layer models, J. Hazard. Mater.102 (2003) 1-10.
    [33]R. E. Britter and J. McQuaid,Workbook on the Dispersion of Dense Gases (Sheffield, United Kingdom: Health and Safety Executive,1988).
    [34]S.R. Hanna, et al., Hazardous gas model evaluation with field observations, Atmos. Environ.27,1993, 2265-2285.
    [35]P.W.M. Brighton, A.J. Byrne, R.P. Cleaver, P. Courtiade, B. Crabol, R.D. Fitzpatrick, A. Girard, S.J. Jones, V. Lhomme, A. Mercer, D. Nedelka, C. Proux, D.M. Webber, Comparison of heavy gas dispersion models for instantaneous release, J. Hazard. Mater.36,1994,193-208.
    [36]N.C. Daish, R.E. Britter, P.F. Linden, S.F. Jagger, B. Carissimo, SMEDIS:scientific model evaluation of dense gas dispersion models, Int. J. Environ. Pollut.14 (1-6),2000,39-51.
    [37]B. Carissimo, S.F. Jagger, N.C. Daish, A. Halford, S. Selmer-Olsen, K. Riikonen, J.M. Perroux, J. Wurtz, J.G. Bartzis, N.J. Duijm, K. Ham, M. Schatzmann, R. Hall, The SMEDIS database and validation exercise, Int. J. Environ. Pollut.16 (2001) 614-629.
    [38]http://www.ofcm.noaa.gov
    [39]席学军,邓云峰.井喷硫化氢扩散分析.中国安全生产科学技术.2007,(04):20-24.
    [40]席学军.关于井喷H2S扩散数值模拟初步研究.中国安全生产科学技术.2005,(01):21-25.
    [41]席学军,董文彤,郭再富.复杂山区地形高含硫气井安全防护距离研究.中国安全科学学报.2009,(12):66-73.
    [42]陈胜,江田汉,邓云峰等.复杂地形对含硫气井应急计划区划分的影响.中国安全生产科学技术.2010.0(04):5-8.
    [43]邱奎,庞晓虹,刘定东.高含硫天然气井喷的扩散范围估计与防范对策.石油天然气学报.2008,(02):114-118.
    [44]李剑峰,刘茂,王靖文.山地地形重气扩散模拟中湍流模型的选择.安全与环境学报,2008,8(4)118-124.
    [45]李剑峰,姚晓晖,刘晓琴.基于Fluent的开县井喷事故后果模拟与分析.环境科学研究.2009,(05).
    [46]朱红钧,林元华,王怡等.井喷后含硫气体的扩散模拟分析.油气田地面工程.2010.29(10):1-3.
    [47]罗音宇,蒋仲安,席学军等.基于S-A模型的气田井喷失控射流数值模拟的研究.中国安全生产科学技术.2008,4(03):30-33.
    [48]练章华,周兆明,王辉等.特大井喷H2S扩散的数值模拟分析.天然气工业.2009,29(11):112-115.
    [49]欧阳传湘,吕露,马成.高含硫化氢气井井喷后天然气扩散数值模拟.当代化工.2011,40(06):615-618.
    [50]刘振翼,张应安,郑远攀等.含CO2天然气井井喷流场特征.石油勘探与开发.2011.38(01).
    [51]王旭东,陈平,郭昭学等.高含硫天然气复杂地面扩散模拟研究.钻采工艺.2010.(06).
    [52]郭红燕,于五一,丁树柏等.基于3DGIS的龙岗高含硫气田安全应急应用系统的设计与实现.国土资源遥感.2011.(02).
    [53]杨志国,伍彬彬,李群.基于Arcgis Engine下毒气扩散后事故伤害程度等值线的生成与应用.中国安全生产科学技术.2011.(05).
    [54]吴枝国,汪文军.基于蝴蝶结模型的钻井现场井控作业风险分析.甘肃科技2008(12)
    [55]周慧霞,徐东群.突发危险化学品泄漏事故人群健康风险评价方法的应用.环境与健康杂志,2010(11)
    [56]马庆春,张来斌,樊建春.基于状态监测的井喷风险动态安全评价.安全与环境学报.2009(06)
    [57]吴庆善,钱新明,郭再富.含硫气井定量风险分析技术标准探讨.天然气工业.2009(11)
    [58]徐东超,罗云,卢成等.石油井下作业井喷风险预警分级模型.研究中国安全科学学报.2010(03)
    [59]席仲琛,孙明,谷晓鹏等.基于模糊数学的修井井喷风险评价方法.科学技术与工程.2011(33)
    [60]柳芋,王林元,黄志宇.含硫气田井喷事故后果风险模糊综合评价.天然气勘探与开发.2011(3)
    [61]李玉军,任美鹏,李相方等.疆油田钻井井喷风险分级及井控管理.中国安全生产科学技术.2012(7)
    [62]高永海,孙宝江,曹式敬等.应用事故树法对深水井控进行风险评估.石油钻采工艺,2008,30(2):23-27.
    [63]许金华,孙德强,范英.基于FTA仿真的三高气田事故风险概率.系统工程理论与实践.2012(04).
    [64]李刚,王世泽,郭新江.天然气常见事故预防与处理.北京:中国石化出版社,2007.
    [65]赵俊平.油气钻井工程项目风险分析与管理研究.[博士学位论文].大庆石油学院,2007.
    [66]陈庭根,管志川.钻井工程理论与技术.东营:石油大学出版社,2000,第1版.
    [67]李文华.石油工程HSE风险管理.北京:石油工业出版社,2008.
    [68]张桂林,张之悦,颜廷杰.井下作业井控技术.北京:中国石化出版社.2006.
    [69]孙振纯,夏月泉,徐明辉.井控技术.北京:石油工业出版社.1997.
    [70]王林,唐少锋,陈显进等.井下作业井控技术.北京:石油工业出版社.2007.
    [71]王文秀,王建学.井控技术.北京:石油工业出版社.1996.
    [72]卫晓亭.石油矿场水力机械.北京:石油工业出版社.1989.
    [73]隋鹏程,陈宝智,隋旭.安全原理.北京:化学工业出版社,2005.
    [74]郝凤台.井喷与失控.天然气工业.1985,(03).
    [75]王维斌,唐家琼,庞江平等.川东地区井喷显示特征及地质因素分析.天然气工业,2007,27(11):19-23.
    [76]中国石油天然气集团公司工程技术与市场部石油工程技术承包商协会.井喷事故案例汇编.北京:石油工业出版社,2006.
    [77]蒲军,史学东,赵玲军等.浅层气处理技术在哈萨克斯坦蒙泰克地区M-3A井中的应用.石油钻采工艺.2006
    [78]徐志胜,吴超.安全系统工程.北京:机械工业出版社,2007.
    [79]陈明,文仁树.鱼刺图法对城市景观环境的安全性评价初探.科技信息.2009(01).
    [80]GB/T27921-2011风险管理风险评估技术.
    [81]邢冬梅,叶义成,赵雯雯等.我国矿山透水事故致因分析及安全管理对策.中国安全生产科学技术.2011.7(12):130-135.
    [82]张力.概率安全评价中人因可靠性分析技术研究.[博士学位论文]湖南大学.2004.
    [83]戴树和.人因失误分析——当代设备安全管理日益受到重视的新领域.第六届全国压力容器学术会议压力容器先进技术精选集.2005.09
    [84]孙旋,牛秦洲,徐和飞等.基于贝叶斯网络的人因可靠性评价.中国安全科学学报.2006,168:22-27.
    [85]刘莉,徐浩军,井凤玲.基于贝叶斯网络的飞行安全人因可靠性评估模型.空军工程大学学报(自然科学版),2009,3(10):5-9.
    [86]轩永波,黄长强,崔亮等.基于贝叶斯网络的导弹系统人因可靠性分析.电光与控制2009,168:32-35.
    [87]施乃骏.基于贝叶斯网络软件项目风险管理系统的研究.[硕士学位论文]上海:上海交通大学.2008
    [88]尚云龙.基于贝叶斯网络的船舶碰撞事故致因分析.[硕士论文]大连:大连海事大学.2009.
    [89]曹鑫.油港储运综合安全评价和预警应急系统研究.[博士学位论文].武汉:武汉理工大学,2010.
    [90]张华东,陈新,潘仲刚.开县特大井喷事件灾害损失及社会影响分析.现代预防医学.2007,34(10).
    [91]张华东,陈新,徐少华.开县特大天然气井喷事件对灾区环境影响评估.现代预防医学2007,34(9).
    [92]阳作明,白青松,伍亚光.开县“12.23”天然气井喷硫化氢扩散气象条件分析.中国气象学会2006年年会“大气成分与气候、环境变化”分会场论文集.2006.
    [93]刘凯.气井失控井喷数学模型及其计算机模拟.西南石油学院学报,1988,10(1):42-51.
    [94]张启平.重大危险源(液态烃类)泄散过程智能化实时预测方法的理论研究及其动态数值模拟.[博士学位论文].北京化工大学,1999.
    [95]朱渊.高含硫气田集输系统泄漏控制与应急方法研究[博士学位论文].中国石油大学.2010.
    [96]K.J. Eidsvik, A model for heavy gas dispersion in the atmosphere, Atmos. Environ.14,1980,769-777.
    [97]J. Kukkonen and J. Nikmo. Modelling heavy gas cloud transport in sloping terrain. Journal of Hazardous Materials,31,1992,:155-176.
    [98]R.E. Britter, J. McQuaid, Workbook on the Dispersion of Dense Gases, HMSO,1988.
    [99]宇德明.易燃、易爆、有毒危险品储运过程定量风险评价.北京:中国铁道出版社.2000.
    [100]徐钟济,蒙特卡罗方法.上海:上海科学技术出版社,1985.
    [101]刘茂.事故风险分析理论与方法.北京:北京大学出版社,2011.
    [102]王醒宇,康凌等.核事故后果评价方法及其新发展.北京:原子能出版社,2003.
    [103]于洪彬,蒋维楣.随机游动扩散模式在区域大气环境影响评价中的应用.电力环境保护.1994,(01).
    [104]桑建国.大气扩散的数值计算.北京:气象出版社,1992.
    [105]池兵,方栋,李红.随机游走大气扩散模型在核事故应急中的开发和应用.核科学与工程,2006,26(1):39-45.
    [106]闫政,杨亚新,张叶等.核事故早期烟羽的蒙特卡罗模拟.东华理工大学学报(自然科学版).2009,(04).
    [107]胡二邦等.核电厂大气扩散及其环境影响评价.北京:原子能出版社,1999.
    [108]池兵,方栋,李红.随机游走大气扩散模型在核事故应急中的开发和应用.核科学与工程,2006,26(1):39-45.
    [109]GOPALAKRISHNAN S Q,SHARAN M.A Lagrangian particle model for marginally heavy gas dispersion.AtmosphericEnvironment,1997,31(20):3369-3382.
    [110]于洪彬,蒋维楣.随机游动扩散模式在区域大气环境影响评价中的应用.电力环境保护.1994,(01).
    [111]R. Avila, S.S. Raza. dispersion of particle released into a neutral planetary boundary using a markov chain- monte carlo model, journal of applied meteorology.2005,7,44:1106-1115.
    [112]宋仔标,刘代志,王红霞.重力作用下的粒子扩散模型及数值模拟.空气动力学学报.2010,(02).
    [113]周秀骥,陶善昌,姚克亚.高等大气物理学(上册).北京:气象出版社,1991.
    [114]刘大有.二相流体动力学.北京:高等教育出版社,1993.
    [115]GOPALAKRISHNAN S G,SHARAN M.A Lagrangian particle model for marginally heavy gas dispersion.Atmospheric Environment,1997,31(20):3369-3382.
    [116]HAN Van Dop, Buoyant plume rise in a Lagrangian framework. Boundary-Layer Meteorology,1993,62: 97-105.
    [117]Deardorff, J. W., A Three Dimensional Numerical Investigation of the Idealized Planetary Boundary Layer, J. Geophys. Fluid Dyn.,1970,1:377-410.
    [118]Kaimal, J. S., et al., Turbulence Structure in the Convective Boundary Layer, J. Atmos. Sci.,1977,33: 152-2169.
    [119]Hanna, S. R., Briggs, G A. and Hosker Jr., R. P. Handbook on Atmospheric Diffusion. DE82002045 (DOE/ TIC-11223), Atmospheric Turbulence and Diffusion Lab, NOAA, DOE, Washington, District of Columbia.1982.
    [120]Panofsky, H. A., H. Tennekes, D. H. Lenschow, and J. C. Wyngaard, The haracteristics of Turbulent Velocity Components in the Surface Layer Under Convective Conditions, Boundary-Layer Meteorol.,1977,11: 355-361.
    [121]Irwin, J. S., A Theoretical Variation of the Wind Profile Power Law Exponent as a Function of Surface Roughness, and Stability, Atmos. Enuiron.,1979,13:191-194.
    [122]Wyngaard, J. C., Modeling the Planetary Boundary Layer. Extension to the Stable Case, Boundary-Layer MeteoroL,1975,9:441-460.
    [123]Wyngaard, J. C, O. R. Cote, and K. S. Rao, Modeling the Atmospheric Boundary Layer, Ado. Geophys., 1974,18A:193-211.
    [124]Sharan Maithili, McNider, R. T., Gopalakrishnan, S. G and Singh, M. P. Bhopal gas leak:a numerical simulation of episodic dispersion. Atmospheric Environment.1995.29,2061-2070.
    [125]Pasquill, F. and Smith, F. B. Atmospheric diffusion. Ellis Horwood Limited.1983.
    [126]Kaimal, J. S., et al., Turbulence tructure in the Convective Boundary Layer, J. Atmos. Sci.,1977,33: 2152-2169.
    [127]McNider R. T., Moran M. D. and Pielke R A. Influence of diurnal and inertial boundary layer oscillations on long-range dispersion. Atmosphertc Environment 1988.22,2445-2462.
    [128]Caughey, S. J., J. C. Wyngaard, and J. C. Kaimal, Turbulence in the Evolving Stable Layer, J. Atmos. Sci, 1979,36:1041-1052.
    [129]Cambridge Environmental Research Consultants Ltd. GASTAR Version3 USER MANUAL.2002.10.
    [130]郭凤霞,朱文越,饶瑞中.非均—地形近地层风速廓线特点及粗糙度的研究.气象,2010,36(6):90-94.
    [131]刘小平,董治宝.空气动力学粗糙度的物理意义与实践意义.中国沙漠,2003,23(4):337-346.
    [132]Kondo J and Yamazawa H. Aerodynamic roughness over an inhomogeneous ground surface. Bound Layer Meteor,1986,35:331-348.
    [133]Lettau H. Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. J Appl Meteor,1969,8:828-832.
    [134]岳天祥,王薇,于强等.中性条件下垂直风速廓线及其参数模拟分析.资源科学.2006,28(1):136-144.
    [135]孟庆珍,冯艺.成都大气混合层厚度的计算和分析.成都气象学院学报.1996,(Z1).
    [136]Businger J.A., Wyngaard J.C., Izumi Y., and Bradley E.F., Flux profile relationship in the atmospheric surface layer, J.Atmos. Sci.,1971,28,181-189.
    [137]Paulson, C. A.,The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor.,1970.9,857-861.
    [138]张相庭.风能耗散原理确定粗糙度指数及其应用.同济大学学报(自然科学版).1997,25(02):161-165.
    [139]张相庭.风工程中地貌分类与地面粗糙度指数的研究与应用.建筑科学.2000,16(06):15-17,21.
    [140]张相庭.地貌新分类及在高耸结构抗风分析中的应用研究.特种结构.1996,13(03):11-14.
    [141]李胜利.复杂地表形态下天然气泄漏扩散的三维数值模拟研究.[硕士学位论文]中国石油大学.2010
    [142]蒋维楣、曹文俊、蒋瑞宾.空气污染气象学教程.北京:气象出版社1993.
    [143]杨振斌,薛析,桑建国.复杂地形风能资源评估研究初探.太阳能学报,2004,25(6):744-749.
    [144]曾旭斌、周明煜、李兴生,斜坡地形下城市热岛和陆风相互作用的三维数值模拟,大气科学,1989,,(03).
    [145]张美根,韩志伟,雷孝恩,大亚湾核电站厂址区域大气扩散研究,气候与环境研究,2000,(01).
    [146]韩志伟,张美根,雷孝恩.复杂地形局地环流的数值模拟研究,气候与环境研究,1999,(02).
    [147]刘红年,蒋维楣.凹坑地形风流结构对污染物散布的模拟研究.大气科学,1999,(01).
    [148]周幂,蒋维楣,胡非.精细PBL模式及其诊断应用,热带气象学报,2000,(02).
    [149]刘罡,蒋维楣,深凹地形边界层风场与湍流场结构及扩散规律的数值研究,气候与环境研究,1998,(02).
    [150]吴涧,蒋维楣,王卫国.山谷地形流场和扩散的数值研究,高原气象,2001,(02).
    [151]张燕,徐玉貌.三维非静力二阶闭合PBL模式的初步研究,南京气象学院学报,2002,(01).
    [152]李俊,彭春华.中尺度数值天气预报模式——MM5V3.湖北气象,2001,(02).
    [153]林行,青岛地区8月份沿海近地层风场数值模拟和三维结构研究,[硕士学位论文]中国海洋大学,2004.
    [154]刘树华,刘振鑫,马雁军等.京津冀地区局地大气环流耦合效应与区域可持续发展的战略思考,前沿科学,2008,(04).
    [155]辛渝,汤剑平,赵逸舟等.模式不同分辨率对新疆达坂城—小草湖风区地面风场模拟结果的分析,高原气象,2010,(04).
    [156]曾雪兰,余志,邓院昌等SRTM数字高程模型在MM5风场模拟中的应用.资源科学,2008,(05).
    [157]李磊,胡非,姜金华等.北京地区地面风场的数值模拟研究,科学技术与工程,2005,(10).
    [158]李江林陈玉春吕世华等,利用RAMS模式对山谷城市冬季局地风场的数值模拟,高原气象,2009年第06期
    [159]成秋影.天气分析和诊断方法.北京:气象出版社,1992.
    [160]胡二邦.环境风险评价实用技术和方法.北京:中国环境科学出版社,1999.
    [61]余琦,刘原中.复杂地形上的风场内插方法.辅射防护,2001,21(4):213-218.
    [162]赵亮,刘鹏举,周宇飞等.复杂地形下风场插值与林火蔓延模拟应用研究.北京林业大学学报.2010,32(4):12-16.
    [163]E. Georgieva, E. Canepa, A.Mazzino: WINDS, Release 4.2, Users Guide,2002,August.
    [164]http://www.arl.noaa.gov/HYSPLIT_workshop.php
    [165]章志英.核污染长距离输送的数值模拟.[硕士学位论文].浙江大学.2005
    [166]石油工业安全专业标准化技术委员会.SY/T5087-2005含硫化氢油气井安全钻井推荐做法[S].北京:国家发展和改革委员会,2005.
    [167]孙爱军.工业园区事故风险评价研究.[博士学位论文].南开大学.2011.
    [168]袁晓芳,李红霞,田水承.突变理论在工业事故预警中的应用.西安科技大学学报.2011,31(4).
    [169]丹尼尔A.克劳尔,卢瓦尔著.蒋军成,潘旭海译.化工过程安全理论及应用:第二版.北京:化学工业出版社,2006.
    [170]章博.高含硫天然气集输管道腐蚀与泄漏定量风险研究.[博士学位论文]中国石油大学.2010.
    [171]CCPS. Guidelines for Consequence Analysis of Chemical Releases. New York:American Institute of Chemical Engineers,1999:254-255.
    [172]吴宗之.危险评价方法及其应用.北京:冶金工业出版社.2001.
    [173]阳作明,白青松,伍亚光.开县“12.23”天然气井喷硫化氢扩散气象条件分析.中国气象学会2006年年会“大气成分与气候、环境变化”分会场论文集.2006.
    [174]http://news.sina.com.cn/c/2003-12-26/09442473806.shtml重庆开县川东北气矿井喷事故抢险备忘录2003,12月26日,重庆晚报.
    [175]汤淳.重庆市开县“12.23”特别重大天然气井喷失控事故调.劳动保护.2004.24-26.
    [176]陈新,张华东,陈荣光.开县特大井喷事件及严重后果成因与反思.现代预防医学2007,34(12).
    [177]王自齐.化学事故与应急求援.北京:化学工业出版社,1997.
    [178]李春民,王立根,王云海.矿山企业构建应急管理体系有关问题研究.中国矿业,2007,16(11):7-12.
    [179]郑东,李美庆.事故灾难应急管理法规体系探讨.工业安全与环保,2008,34(7):54-58.
    [180]曾明荣,魏利军,高建明.化学工业园区事故应急救援体系构建.中国安全生产科学技术,2008,4(5):58-61.
    [181]胡继华,章云龙,莫善军.省域安全生产应急救援指挥平台框架体系研究.中国安全科学学报,2009,19(1):137-144.
    [182]郭荆.钻井事故灾难应急救援系统的设计与开发.[硕士学位论文]西安石油大学.2010
    [183]《石油天然气井下作业井控》编写组.石油天然气井下作业井控.北京:石油工业出版社.2008.
    [184]吴宗之,刘茂.重大事故应急救援系统及预案导论.北京:冶金工业出版社,2003.
    [185]张沛,潘锋.现代城市公共安全应急管理概论.北京:清华大学出版社,2007.
    [186]朱本廷,吴明,陈军.油气输送管道事故应急响应现存问题及解决方案.石油工业计算机应用,2010,(3):28-31.
    [187]郑茂杰.煤与瓦斯突出预测及应急响应机制研究.[博士学位论文].中国矿业大学(北京).2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700