用户名: 密码: 验证码:
仿生机器眼运动系统建模与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
给机器人配备智能双眼,使其像人类和动物眼睛一样灵活、协调地改变视线、快速准确地识别和跟踪目标,是人们梦寐以求的愿望。为此,人们进行了大量的研究和多种尝试,在机器人视觉控制研究领域取得了一系列重要成果,开始从实验室走向实际应用阶段。但目前机器人眼的研究多是基于工学的视角和研究方法,在双目协调运动、头眼协调控制、视线偏离补偿、不确定目标的跟踪等方面面临诸多困难和问题,需要采用新思路、新方法进行研究和探讨。
     生物视觉系统经过千百万年的进化已极其精确和完善,它是机器人视觉研究的重要灵感源泉。本文以“学习自然界的现象作为技术创新的模式”为理念,从复杂的生物视觉系统中发现机理、获得灵感,采用仿生学、控制理论和计算机视觉等多学科交叉融合的方法,建立仿生机器眼运动控制模型,探索仿生视觉控制方法,模拟生物视觉的优异性能,为解决机器视觉控制面临的技术难题和开发智能机器人视觉系统提供新的思路和方法。
     论文从分析生物视觉原型、建立仿生机器眼控制模型、对模型进行计算机仿真与分析、与生理学实验数据比较论证及构建仿生机器眼实验环境等几个方面展开研究。
     分析了人类眼球的解剖结构和生理特征、视觉通路、眼球和头部运动神经回路及视觉中枢控制机理等;总结了各种眼球运动的特点和形式;在灵长类动物视觉神经生理学实验数据和前人研究成果的基础上,详细分析了注视转移过程中头眼协调运动的关系和生理学机理;在对生物视觉原型的分析和研究中,提取、归纳和总结与眼球运动控制和头眼协调运动相关的部分,给出了头眼运动控制和注视转移控制的神经生理模型;分析了视网膜中央凹区和周边区域视敏度非均匀分布的特点及其利用价值等。
     在生物视觉生理模型的基础上,分析系统中各单元间的因果关联和动态演化,提取和抽象出各部分的数学表达,建立了快速眼球运动控制模型、慢速眼球运动控制模型和注视转移控制模型。提出一种仿生头眼协调运动控制策略,将注视转移过程分为初始的快相和随后的慢相两个阶段。快相组合了高速扫视眼球运动和缓慢的头部运动,两者协调配合迅速切换注视点至新的目标;慢相通过前庭动眼反射,依靠头和眼的等量反向旋转运动维持目标稳定的同时,调整头部位置,使其朝向目标。在模型中引入了灵长类动物视觉跟踪过程中快速眼球扫视与慢速平滑追踪运动相结合的控制机制,避免大的位置误差和大的滞后延迟。
     对建立的仿生头眼运动控制模型进行了计算机仿真,并与生理学实验结果进行了对比和分析。结果表明,模型仿真结果与生理学实验结果基本一致,较好地模拟了生物眼球的扫视运动(Saccade)、平滑追踪运动(Smooth pursuit)、异向运动(Vergence movement)、前庭动眼反射运动(VOR)、注视转移(Gaze shift)过程中的头眼协调运动及跟踪过程中快慢两种眼球运动模式的切换等。仿真结果证明所建立的仿生机器眼运动控制模型正确、可行,为仿生机器眼的开发和工程应用奠定了基础。
     基于视觉生理学的概念,把仿生机器视觉系统分为视觉感知层和视觉控制层两个基本层次。视觉感知层通过感光细胞、前庭感受器和本体感受器获取环境中感兴趣目标的信息、感受头颈及身体在空间运动和位置的变更,向中枢神经提供信息,经过视网膜、外侧膝状体等视觉通路和前庭神经通路,送大脑皮层加工处理,确定运动策略,发出运动控制命令给下层视觉控制机构,控制眼球运动系统和头部运动系统协调工作,共同完成各种头眼运动等视觉控制任务。上层的视觉感知层模拟人类视网膜非均匀分辨率兼顾全局性与选择性的机制,用全方位摄像机系统模拟人眼视网膜周边功能,完成大视野范围的目标检测与定位,用双目头眼装置的高分辨率摄像机模拟中央凹视觉,两者有机结合构建一种便于工程实现的仿生机器视觉系统。介绍了系统总体结构与控制策略、软硬件系统组成、图像处理与控制算法等,并利用构建的系统进行了静止目标注视点转移控制实验和人体运动检测与跟踪实验。
     模拟生物视觉的优异性能是提高机器视觉控制水平的有效途径,本文所做的尝试性研究对我国仿生机器人视觉系统的研究和仿生机器眼的开发具有一定的参考价值。
It is a long-cherished dream of equipping robot with a pair of intellectualized binocular artificial eyes, which change the line of sight deftly and coordinately, recognizing and tracking target rapidly and accurately like humans and primates. Therefore, the researchers have done a lot of researches and various efforts, plentiful fruits have been got in machine vision domain, and have gone into practical application from laboratory. So far, however, the existing research approaches based on technology are faced with many difficulties:binocular coordination movement, eye-head coordination control, visual deflected compensation, uncertain target tracing etc, and need to adopt new idea and new method to carry out research and exploration.
     Over millions of years, biological vision has evolved into a consummate and extremely accurate system. It is the original and important inspiration of machine vision research. Based on the idea of learning from the natural phenomenon and inspired by the complex biological vision system, this paper makes use of bionics, control theory, computer vision and interdisciplinary study to create bionic eye-head coordination control model, to explore the bionic vision control method, to simulate the high performance of biological vision system and subsequently provide idea and method to solve the technical problems faced by the development of intelligent robot vision system.
     This paper focus on the analysis of biological visual prototype, establishment of bionic eye control model, analysis of simulation results, comparison of experimental data and the construction of bionic vision experimental environment, etc.
     In this work, we analyzed the anatomical structure and physiological characteristics of human eyes, the visual pathway, head and eye motor neural circuit as well as the central control mechanism and summarized various eye movement characteristics and forms. Beside these, this paper also provided a detailed analysis of the relation of eye-head coordination and physiological mechanisms during gaze shift which based on the experimental data of visual neurophysiology of primates and previous research. During the analysis of biological visual prototypes, we extracted and summarized the relevant portions of eye movement control and eye-head coordination. Based on the analysis, we generated an eye movement control and gaze shift control neurophysiologic model which further analyzed the non-uniform distribution characteristics of visual acuity from the foveal region and peripheral region of the retina.
     Based on biological vision model, this paper analyzed the causal links between the units of the system and the dynamic evolution to extract the mathematical expression of the various parts and build the rapid eye movement control model, the slow eye movement control model as well as the gaze shift control model. This paper proposed a novel oculomotor control strategy, which divided the process of gaze shift into the initial fast phase and the subsequent slow phase two stages. The fast phase combined the high-speed saccadic eye movement and slow head movements which cooperate with each other to switch the fixation point to new target rapidly. The slow phase adjusts the head position towards the target through vestibular ocular reflex action while maintaining a stable target by relying on commensurable reverse eye-head rotation. The combined control strategy of rapid saccade and slow smooth pursuit in the visual tracking process of primates are adopted in the proposed model, which is able to avoid large position error and delay.
     We conducted the computer simulation based on the proposed bionic eye-head movement control model and compared the obtained results with physiology experimental results. The results show that simulation results and the physiology experimental results are basically the same, which represent that the proposed model is able to well simulate the biological eye saccade, smooth pursuit, vergence movement, VOR, eye-head coordination during the process of gaze shift and the switching between fast and slow oculomotor patterns during the tracing process, etc. The simulation results also show that the proposed model is correct and reliable, which establish the foundation for developing and applying the bionic eye system.
     Bionic vision system can be divided into visual perception and visual control two basic stages based on the idea of visual physiology. The visual perception obtains information from interested targets and senses the change of position and movement from the neck and body through photoreceptor cell, vestibular receptors and proprioception, and provides the information to central nervous system. Via the visual pathways and vestibular nervous pathways such as retina and lateral geniculate body, the information will be sent to cerebral cortex for further processing and determination of the movement strategy, and subsequently pass the movement control commands to the lower visual controls to control the coordination work of oculomotor and head movement and complete various tasks of eye-head movements. The upper layer of the visual perception simulates the nonuniform resolution of both global and selective mechanisms from the human retina, and with omnidirectional camera system, it stimulates the peripheral retinal functions and completes a large field of view of target detection and location, and by using of the high resolution of binocular device, it stimulates the foveal vision. The combination of these two constructs a bionic vision system that facilitates the implementation. We introduced the overall system structure and control strategy, the system composition of hardware and software, image processing and control algorithm, etc, as well as conducted the experiment on gaze shift control of static target and human movement detection and tracking experiment based on this system.
     The outstanding performance of biological visual simulation is an effective way to bring up the standard of machine vision control. The research trial that this paper made can be a reference for our research and development on the bionic vision system and bionic eye machine.
引文
[1]许宏岩,付宜利,王树国等.仿生机器人的研究[J].机器人,2004.05,26(3):283~288
    [2]张秀丽,郑浩峻,陈恳等.机器人仿生学研究综述[J].机器人,2002.03,24(2):188~192
    [3]张虎军,黄晓明,顾建文.人工视觉的最新进展[J].中国医学装备,2005.05,2(5):8~10
    [4]Broerse A, Crawford T. J, Boer J. A. Parsing cognition in schizophrenia using saccadic eye movements:a selective overview. Neuropsychologia,2001,39:742~756
    [5]Attneave F. Some informational aspects of visual perception [J]. Psychological Review, 1954,61(3):183~193
    [6]Kosslyn S, Flynn R. Components of high-level vision:a cognitive neuroscience analysis and accounts of neurological syndromes[J]. Cognition,1990,34(3):203~277
    [7]罗四维等.视觉感知系统信息处理理论[M].北京:电子工业出版社,2006
    [8]章海军.视觉及其应用技术[M].杭州:浙江大学出版社,2004
    [9]李言俊,张科.视觉仿生成像制导技术及应用[M].北京:国防工业出版社,2006
    [10]毛晓波,陈铁军.仿生型机器视觉研究[J].计算机应用研究,2008.10,25(10):2903~2905,2910
    [11]邹海荣,龚振邦,罗均.仿生眼的研究现状与发展趋势[J].机器人,2005,27(5):469~474
    [12]福岛邦彦,马万禄等译.视觉生理与仿生学[M].北京:科学出版社,1980
    [13]杨雄里.视觉的神经机制[M].上海:上海科学技术出版社,1996
    [14]Robinson D A. The Oculomotor Control System:A Review[J]. Proceedings of the IEEE, 1968.06,56(6):1032~1049
    [15]Young L R, Stark L. Variable feedback experiments testing a sampled data model for eye tracking movements. IEEE Transactions on Human Factors in Electronics,1963.09,4(1):38~51
    [16]Robinson D A. The Mechanics of human Saccadic eye movement[J]. The Journal of Physiology,1964,174(2):245~264
    [17]Robinson D A. Models of the Saccadic Eye Movement Control System[J]. Kybernetik, 1973,14(2):71~83
    [18]Robinson D A. Oculomotor control signals; in Lennerstrandand G, Bach-y-Rita P (eds): Basic Mechanisms of Ocular Motility and Their Clinical Implications[M]. Oxford, Pergamon Press,1975,337~374
    [19]Quaia, Christian, Philippe Lefe'vre, Lance M. Optican. Model of the control of saccades by superior colliculus and cerebellum[J]. J.Neurophysiol,1999,82:999~1018
    [20]Robinson D A. The Mechanics of Human Smooth Pursuit Eye Movement[J]. Journal of Physiology,1965,39(5):569~591
    [21]Robinson D A, Gordon J L, Gordon S E. A model of the smooth pursuit eye movement system [J]. Biological Cybernetics,1986,55(1):43~57
    [22]Lisberger S G, Morris E J, Tychsen L. Visual motion processing and sensory-motor integration for smooth pursuit eye movements [J]. Annual Review of Neuroscience,1987,10: 97~129
    [23]Deno D. C, Keller E. L, Crandall W. F. Dynamical neural network organization of the visual pursuit system[J]. IEEE Transactions on Biomedical Engineering,1989.01,36(1):85~92
    [24]Christopher Brown. Gaze Controls with Interactions and Delays[J]. IEEE Transactions on Systems, Man, and Cybernetics.1990.03,20(1):518~527
    [25]Young L R. Pursuit eve movement-What is being pursued? In:Baker R, Berthoz A (eds), Control of Gaze by Brain Stem Neurons[M]. Elsevier, Amsterdam,1977,29~36
    [26]Lunghi F, Lazzari S, Magenes G. Neural adaptive predictor for visual tracking system[C]. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1998.10, (3):1389~1392
    [27]Gomi H, Kawato M. Adaptive feedback control models of the vestibulocerebellum and spinocerebellum [J]. Biological Cybernetics,1992,68(2):105~114
    [28]Coenen O.J, Sejnowski T. A dynamical model of context dependencies for the vestibulo-ocular reflex[M]. In G. Tesauro, D. S. Touretzky & T. K. Leen, Advances in neural information processing systems. Cambridge, MA:MIT Press.1996,85~95
    [29]Raymond J, Lisberger S. Neural learning rules for the vestibulo-ocular reflex[J]. Journal of Neuroscience,1998.11,18(21):9112~9129
    [30]Quinn K, Schmajuk N, Baker J F, et al. Simulation of adaptive mechanisms in the vestibulo-ocular reflex[J]. Biological Cybernetics,1992,67(2):103~112
    [31]Shibata T, Schaal S. Fast learning of biomimetic oculomotor control with nonparametric regression networks[C]. Proceedings of the IEEE International Conference on Robotics and Automation.2000.04, (4):3847~3854
    [32]Shibata T, Schaal S. Biomimetic gaze stabilization based on feedback-error-learning with nonparametric regression networks[J]. Neural Networks,2001.03,14(2):201~216
    [33]Jefferson E R, Kathleen E C. A neural correlate for vestibulo-ocular reflex suppression during voluntary eye-head gaze shifts[J].Nature neuroscience,1998.09,1(5):404~410
    [34]Das, V. E, Louis F D, Leigh R J. Enhancement of the vestibulo-ocular reflex by prior eye movements[J]. Journal of Neurophysiology,1999.06,81(6):2884~2892
    [35]Merfeld, Daniel M., Sukyung Park, Claire Gianna-Poulin F, et al. Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during Translation and Tilt[J]. J. Neurophysiol,2005.02,94:186~198
    [36]Ramat S, Dominik S, David S. Zee. Interaural translational VOR:suppression, enhancement, and cognitive control[J]. J Neurophysiol,2005.05,94:2391~2402
    [37]Musallam W S. Tomlinson R D. Model for the translational vestibuloocular reflex (VOR)[J]. J. Neurophysiol.1999.10,82(4):2010~2014
    [38]Murray D W, Bradshaw K J, McLauchlan P F. Driving saccade to pursuit using image motion[J]. International Journal of Computer Vision,1995,16(3):205~228
    [39]Rotstein H, Rivlin E. Control of a Camera for Active Vision:Foveated Vision, Smooth Tracking and Saccade[C]. Proceedings of the IEEE International Conference on Control Applications, Dearborn,1996.09:691~696
    [40]Rotstein H P, Rivlin E. Optimal servoing for active foveated vision[C]. Proceedings of the 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1996.06,177~182
    [41]Rivlin Ehud, Rotstein H'ector, and Zeevi Y Y. Two-Mode Control:An Oculomotor-Based Approach to Tracking Systems[J]. IEEE Transactions on automatic control,1998.06,43(6): 833~842.
    [42]Rivlin Ehud, Rotstein H'ector. Control of a Camera for Active Vision:Foveal Vision, Smooth Tracking and Saccade[J]. International Journal of Computer Vision,2000,39(2),81~96
    [43]Jessica Lee W, Galiana H L. An Internally Switched Model of Ocular Tracking With Prediction [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005.06, 13(2):186~193
    [44]Rivlin E, Rotstein H, Zeevi Y Y. Two-mode control:an oculomotor-based approach to tracking systems[J]. IEEE Transactionson Automatic Control,1998,43(6):833~842
    [45]Sophie de Brouwer, Marcus Missal, Graham Barnes, at al. Quantitative analysis of catch-up saccades during sustained pursuit[J]. J Neurophysiol,2002.04,87(4):1772~1780.
    [46]Blohm G, Marcus M, Philippe L. Interaction between smooth anticipation and saccades during ocular orientation in darkness[J]. J Neurophysiol,2003.03,89:1423~1433
    [47]Blohm, G, Marcus M, Philippe L. Direct evidence for a position input to the smooth pursuit system[J].J Neurophysiol,2005.02,94:712~721
    [48]Orban de Xivry Jean-Jacques, Simon J Bennett, Philippe Lefe'vre, at al. Evidence for synergy between saccades and smooth pursuit during transient target disappearance[J]. J Neurophysiol,2005.09,95:418~427
    [49]Burke M R, Barnes G R. Quantitative differences in smooth pursuit and saccadic eye movements[J]. Exp Brain Res,2006.07,175(4):596~608
    [50]Jean-Jacques Orban de Xivry, Philippe Lefevre. Saccades and pursuit:two outcomes of a single sensorimotor process[J]. Journal of Physiology,2007.08,584(1):11~23
    [51]Wakamatsu H, Kuwano M, Suda H. Realization of physiological eye movements by automatic selection of control laws using artificial neural network[A]. Third International Conference on Artificial Neural Networks[C]. England:IEEE,1993.05,113~117
    [52]Ojima S, Yano S. Eye movement model with neural oscillators[C]. Proceedings of the IEEE International Conference on Neural Networks,1995.11,2297~2302
    [53]Xiaolin Zhang. An Object Tracking System Based on Human Neural Pathways of Binocular Motor System[C].2006 9th Int. Conf. Control, Automation, Robotics and Vision,2006.12, 285~292
    [54]X. Zhang. A Conceptual Discussion on relationship between Vergence and Conjugate Eye Movements on the Viewpoint of System and Control Engineering[C]. Proc. ISCAS 2005 IEEE, 2005.05:4783~4786
    [56]X. Zhang and H. Wakamatsu:An Unified Adaptive Oculomotor Control Model[J]. Int. J. Adaptive Control and Signal Processing,1999.07,15(7):697~713
    [59]May P J, Porter J D. The laminar distribution of macaque tectobulbar and tectospinal neurons[J]. Visual Neuroscience,1992,8(3):257~276
    [60]Freedman E G, Sparks D L. Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys[J]. Journal of Neurophysiology,1997.05,77(5):2328~2348
    [61]Freedman E G, Sparks D L. Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey:Evidence for a gaze displacement command[J]. Journal of Neurophysiology,1997.09,78(3):1669~1690
    [62]Freedman E G, Stanford T R, Sparks D L. Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys[J]. Journal of Neurophysiology,1996,76(2),927~952
    [63]Lefevre P, Quaia C, Optican L M. Distributed model of control of saccades by superior colliculus and cerebellum[J]. Neural Networks,1998.10,11(7-8):1175~1190
    [64]Quaia C, Lefevre P, Optican M L. Model of the control of saccades by superior colliculus and cerebellum[J]. Journal of Neurophysiology,1999.08,82(2):999~1018
    [65]Sparks D L. The Neural Control of Orienting Eye and Head Movements.In:Humphrey DR, Freund H J (eds), Motor Control:Concepts and Issues[M], John Wiley & Sons Ltd.,1991, 263~275
    [66]Guitton D, Munoz D P, Galiana H L. Gaze control in the cat:studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks[J]. J Neurophysiol,1990,64:509~531
    [67]Galiana H L, Guitton D. Central organization and modeling of eye-head coordination during orienting gaze shifts[J]. Ann Acad Sci,1992.05,656:452~471
    [68]Krauzlis R J, Basso M A, Wurtz R H. Shared Motor Error for Multiple Eye Movements[J]. Science,1997.06,276(13):1692~1695
    [69]Goossens H.H.L.M, A.J. Van Opstal. Human eye-head coordination in two dimensions under different sensorimotor conditions [J]. Exp Brain Res,1997,114:542~560
    [70]Xiaoxing Wang, Jesse Jin, Marwan Jabri. Neural network models for the gaze shift system in the superior colliculus and cerebellum[J]. Neural Networks,2002,15:811~832
    [71]Andreas A. Kardamakis, Adonis K. Moschovakis. Optimal Control of Gaze Shifts[J]. The Journal of Neuroscience,2009.06,29(24):7723~7730
    [72]Edward G. Freedman. Coordination of the Eyes and Head during Visual Orienting[J]. Exp Brain Res.2008.10,190(4):369~387
    [73]Westheimer G Mechanism of saccadic eye movements[J]. AMA Arch Ophthal,1954, 52:710~724
    [74]Cook G, Stark L. The human eye movement mechanism:experiments, modeling and model testing[J]. Archs Ophthal,1968,79:428~436
    [75]Clark M R, Stark L. Time Optimal Behavior of Human Saccadic Eye Movement [J]. IEEE Transactions on Automatic Control,1975.06,20(3):345~348
    [76]Chan W W P, Galiana H L. Integrator function in the oculomotor system is dependent on sensory context[J]. J Neurophysiol,2005,93:3709~3717
    [77]Chan W W P, Galiana H L. A Non-Linear Model of the Neural Integrator in Oculomotor Control[J]. Proceedings of the 29th Annual International Conference of the IEEE EMBS Cite Internationale, Lyon, France,2007.08,23~26
    [78]Seung H S. How the brain keeps the eyes still [J]. Neurobiology,1996.11, 93(11):13339~13344
    [79]Misslisch H, Tweed D, Vilis T. Neural constraints on eye motion in human eye-head saccades[J]. J. Neurophysiol,1998.02,79(2):859~869
    [80]David L. Sparks. The Brainstem Control of Saccadic Eye Movements[J]. Nature Reviews neuroscience.2002.12, (3):952~964
    [81]Khojasteh E, Galiana H L. Modulation of vergence during the vestibulo-ocular reflex[C]. Proceedings of the 29th Annual International Conference of the IEEE EMBS,2007.08:23~26
    [82]Bernardino A, Santos-Victor J. Visual behaviours for binocular tracking[J]. Robotics and Autonomous Systems,1998,25(3-4):137~146
    [83]Takanishi A, Matsuno T, Kato I. Development of an anthropomorphic head-eye robot with two eyes-coordinated head-eye motion and pursuing motion in the depth direction[C]. Intelligent Robots and Systems,1997.09,2:799~804
    [85]川合拓郎, 宫下则俊, 小林刚, 佐藤诚, 张晓林:固视微动を利用した立体视手法, 情报处理学会第68同全国大会讲演论文集,2006.03,(2):383~384
    [87]Sethu Vijayakumar, Jorg Conradt, Tomohiro Shibata, et al. Overt Visual Attention for a Humanoid Robot[C], Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, USA, Oct.29-Nov.03,2001:2332~2337
    [88]Cullen, Kathleen E., Galiana H L, and Pierre A. Sylvestre. Comparing extraocular motoneuron discharges during head-restrained saccades and head-unrestrained gaze shifts. J. Neurophysiol.2000, (83):630~637
    [89]Lee J. and Galiana H L. A Biologically Inspired Model of Binocular Control on a Free Head[C]. Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September 1-5,2004:4572~4575
    [90]Gunnar Blohm, Lance M. Optican, Philippe Lef ever. A model that integrates eye velocity commands to keep track of smooth eye displacements [J]. J Comput Neurosci,2006,21:51~70
    [91]Y. Bar-Shalom, T. E. Fortmann. Tracking and data association[J]. Mathematics in Science and Engineering. New York:Academic,1988
    [92]谭铁牛主编.智能视觉监控研究进展—第二届全国智能视觉监控学术会议论文集[M].北京:科学出版社,2003
    [93]潘锋.仿人眼颈视觉系统的理论与应用研究[D].杭州:浙江大学博士学位论文,2005.02
    [94]邹海荣.低空跟踪地面目标的机载云台运动仿生控制[D].上海:上海大学博士学位论文.2007
    [95]邹海荣,龚振邦,谢少荣.仿生型机器人眼运动控制系统建模[J].机器人,2007,29(4):342~347
    [96]S. Xie, J. Luo, Z. Gong, et al. Biomimetic Control of Pan-tilt-zoom Camera for Visual Tracking Based-on an Autonomous Helicopter[C], Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems San Diego, CA, USA,2007.10: 2138~2143
    [97]H. Zou, Z. Gong, S. Xie, et al. Modeling of the UAV On-board Pan-tilt Control System Based on Biomimetic Eye[C]. Proceedings of IEEE International Conference on Mechatronics and Automation. Luoyang, China,2006.06:893~897
    [98]肖南峰,黄素媚,刘慧芳.仿人形机器人两眼协调运动控制系统的实现[J].计算技术与自动化,2005.03,24(1):13~16
    [99]黄素媚,肖南峰.仿人形机器人两眼的运动模型和控制方法研究[J].系统仿真学报, 2005.09,17(9):2065~2069
    [100]顾立忠,苏剑波,仿人机器人的头眼协调运动控制研究[J].机器人,2008.02:165~170
    [101]Lizhong Gu; Jianbo Su;Gaze. Control on Humanoid Robot Head[C].Intelligent Control and Automation,2006. WCICA 2006,2:9144~9148
    [102]陈维毅,杨桂通,吴文周等.眼球的运动模型及对钟摆型眼球震颤的模拟分析[J].中国生物医学工程学报,2000.06,19(2):266~271
    [103]陈维毅,杨桂通,吴文周.人体眼球的运动模型及相应的动力学方程组[J].中国生物医学工程学报,2000.09,19(3):266~271
    [104]刘伟,袁修干.生物视觉的研究[J].中国安全科学学报,2000,10(6):51~5
    [105]刘伟,袁修干.人的视觉—眼动系统的研究[J].人类工效学,2000,6(4):41~44
    [106]刘伟,袁修干,庄达民等.眼动测量系统及其在工效学中的应用[J].航空学报,2001.09,22(5):385~389
    [107]徐雨维,高春圃.工程生理学[M].杭州:浙江大学出版社,1997,282~303
    [108]高阳,李言俊,张科.人眼视觉仿生在光电目标信息检测、估计和跟踪技术中的应用[J].航空兵器,2006.02(1):22~25
    [109]葛坚,崔浩.眼科学[M].北京:人民卫生出版社.2002.02:17~40
    [110]Ungerleider L G, Haxby J V.'What'and'where'in the human brain[J]. Current Opinion in Neurobiology,1994,4:157~165
    [111]Zeki S M, Watson J D, Lueck C J, et al. A direct demonstration of functional specialization in human visual cortex[J]. Journal of Neuroscience,1991,11:641~649
    [112]Jean A. Buttner-Ennever. Anatomy of the Oculomotor System. Straube A, Buttner U (eds): Neuro-Ophthalmology[M].Dev Ophthalmol. Basel, Karger,2007,40:1~14
    [113]Nicolas Catz, Peter Their. Neural Control of Saccadic Eye Movements. Straube A, Buttner U (eds):Neuro-Ophthalmology[M]. Dev Ophthalmol. Basel, Karger,2007,40:52~75
    [114]李宗原.跳视眼球运动的独立成分分析与频谱技术[D].国立(台湾)成功大学硕士学位论文.2003.06
    [115]Soetedjo R, Kaneko CR, Fuchs AF:Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. J Neurophysiol 2002(87):679~695
    [116]Choi WY, Guitton D:Responses of collicular fixation neurons to gaze shift perturbations in headunrestrained monkey reveal gaze feedback control. Neuron 2006(50):491~505
    [117]Bergeron A, Matsuo S, Guitton D:Superior colliculus encodes distance to target, not saccade amplitude, in multi-step gaze shifts. Nat Neurosci,2003(6):404~413
    [118]冯成志,贾凤芹.平滑追随眼动的神经机制综述[J].应用心理学,2008.01,14(1):70~76
    [119]Thier P, Ilg U J. The neural basis of smooth pursuit eye movements. Current Opinion in Neurobiology,2005,15(6):645~652
    [120]Fukushima K. Frontal cortical control of smooth-pursui.t CurrentOpinion inNeurobiology, 2003,13(6):647~654
    [121]KrauzlisR J.Recasting the smooth pursuit eye movement system. J Neurophysio,2004, 91(2):591~603
    [122]Lisberger S G, Movshon JA. Visual motion analysis for pursuit eye movements in area mt of macaque monkeys. The Journal of Neuroscience,1999,19(6):2224~2246
    [123]Giolli R A, Gregory K M, Suzuki D A, et al. Cortical and subcortical afferents to the nucleus reticularis tegmenti pontis and basal pontine nuclei in the macaque monkey. Visual Neuroscience,2001,18(5):725~740
    [124]Harting JK. Descending pathways from the superior collicullus:An autoradiographic analysis in the rhesus monkey (macaca mulatta). The Journal of Comparative of Neurology, 1977,173(3):583~61
    [125]Leichnetz G R, Smith D J, SpencerR F.Cortical projections to the paramedian tegmental and basilar pons in themonkey.The Journal of Comparative of Neurology,1984,228 (3): 388~408
    [126]Leichnetz G R, Gonzalo-Ruiz A. Prearcuate cortex in the cebus monkey has cortical and subcortical connections like the macaque frontal eye field and projects to fastigial-recipient oculomotor-related brainstem nucle.i Brain Research Bulletin,1996,41(1):1~29
    [127]Thielert C D, Thier P. Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey:A study using retrograde tracers. The Journal of Comparative of Neurology,1993,337(1):113~126
    [128]YamadaT, Suzuki D. A, Yee R D. Smooth pursuit like eye movements evoked by microstimulation in macaque nucleus reticularis tegmenti pontis. Journal of Neurophysiology, 1996,76(5):3313~3324
    [129]Ito M, Nagao S. Comparative aspects of horizontal ocular reflexes and their cerebellar adaptive control in vertebrates. Comarative Biochemistry and Physiology C,1991,98(1): 221~228
    [130]Hiramatsu T, Ohki M, Kitazawa H, et al. Role of prmiate cerebellar lobulus petrosus of paraflocculus in smooth pursuit eye movement control revealed by chemical lesion. Neuroscience Research,2008,60:250~258
    [131]Takagi M, Zee D S, Tamargo R J. Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate:Smooth pursuit. Journal of Neurophysiology,2000,83(4): 2047~2062
    [132]Kaneko C R. Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. Ⅱ:Pursuit vestibular and optokinetic responses. Journal of Neurophysiology,1999,81(2):668~681
    [133]Krauzlis R J. Extraretinal inputs to neurons in the rostral superior colliculus of the monkey during smooth pursuit eye movements. Journal of Neurophysiology,2001,86(5):2629~2633
    [134]Krauzlis R J. Recasting the smooth pursuit eye movement system. J Neurophysiol.2004, 91(2):591~603
    [135]Nicolas Catz, Peter Their. Neural Control of Saccadic Eye Movements. Straube A, Buttner U (eds):Neuro-Ophthalmology[M]. Dev Ophthalmol. Basel, Karger,2007,40:52~75
    [136]Michael Fetter, Vestibulo-Ocular Reflex. Straube A, Biittner U (eds):Neuro-Ophthalmology [M]. Dev Ophthalmol. Basel, Karger,2007(40):35~51
    [137]沈卫华.前庭功能检测系统关键问题研究[D].中国科学院研究生院硕士学位论文,2002
    [138]于立身.前庭功能检查技术[M].北京:人民军医出版社.1994:1~25
    [139]Wolfgang Becker, Reinhart Jurgens. Human Oblique Saccades:Quantitative Analysis of the Relation Between Horizontal and Vertical Components[J]. Vision Res.1990, Vol.30(6): 893~920
    [140]Jan A. M. Van Gisbergen, D. A. Robinson, Stan Gielen. A Quantitative Analysis of Generation of Saccadic Eye Movements by Burst Neurons[J]. Journal of Neurophysiology, 1981.03,45(3):417~442
    [141]J.A.M. van Gisbergen, A.J. van Opstal, J.J.M. Schoenmakers. Experimental test of two models for the generation of oblique saccades[J]. Exp Brain Res,1985,57:321~336
    [142]Freedman E G, David L S. Interactions between eye and head control signals can account for movement kinematics[J]. Biol.Cybern.2001,84:453~462
    [143]Xiaobo Mao, Tiejun Chen. A Visual Tracking Control Strategy Based on Human Vision Physiological Mechanisms. Proc. of IEEE International Conference on 9th Electronic Measurement & Instruments (ICEMI2009),2009.08, Vol.4:870-875.ISBN:978-4244-3862-4, IEEE PRESS
    [144]Chun KS, Robinson D.A. A model of quick phase generation in the vestibuloocular reflex. Biol Cybern.1978.03,28(4):209~21
    [145]Freedman E G, David L S. Coordination of the eyes and head:movement kinematics. Exp Brain Res[J],2000,131:22~32
    [146]Stefan G Current Models of the Ocular Motor System. Straube A, Buttner U (eds): Neuro-Ophthalmology[M], Dev Ophthalmol. Basel, Karger,2007,40:158~174
    [147]Sylvestre, Pierre A, Galiana H L, Kathleen E. Cullen. Conjugate and vergence oscillations during saccades and gaze shifts:implications for integrated control of binocular movement. J Neurophysiol,2002 (87):257~272
    [148]Xiaobo Mao, Tiejun Chen. A biologically inspired model of robot gaze shift control. The 2011 International Conference on Computers, Communications, Control and Automation (CCCA 2011), Hong Kong, China, Feb.20-21,2011,Vol.1:185-189. IEEE Catalog Number:CFP1127N-PRT, ISBN:978-1-61284-102-1
    [149]Atsushi K Yoshikazu SH, Toshio M. Neurology of the oculomotor[M]. Tokyo, Japan: IGAKU-SHOIN Ltd,1985
    [150]Cannon S C, Robinson D A. Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey[J]. Journal of Neurophysiology,1987,57(5):1383~1409
    [151]Jefferson E. Roy and Kathleen E. Cullen. Brain Stem Pursuit Pathways:Dissociating Visual, Vestibular, and Proprioceptive Inputs During Combined Eye-Head Gaze Tracking[J]. J Neurophysiol,2003(90):271~290
    [152]Wagner R, Galiana H L. Unifying Vestibulo-ocular Reflexes[J]. Proceedings-23rd Annual Conference-IEEE/EMBS Oct.25-28,2001(4):1~4
    [153]Prsa M, Galiana H L. Visual-vestibular interaction hypothesis for the control of orienting gaze shifts by brain stem omnipause neurons[J]. J. Neurophysiol 2007(97):1149~1162.
    [154]H. Liu, W. Pi, H. Zha. Motion Detection for Multiple Moving Targets by Using an Omnidirectional Camera[C]. Proc. IEEE. Intl. Conf. on Robotics, Intelligent Systems and Signal Processing, Changsha, China,2003(1):422~426
    [155]毛晓波,陈铁军.基于人类视觉特性的机器视觉系统.仪器仪表学报,2010.04,Vo1.31(4):832~837
    [156]毛晓波,谢晓芳,张晓林.消除运动物体阴影的最大色度差分检测法,电子技术应用,2007.01,33(1):61~63
    [157]蔡宗慜.嵌入式视觉跟踪系统研究[D],郑州:郑州大学硕士学位论文,2009.05:46-61
    [158]毛晓波,蔡宗慜,陈铁军.嵌入式运动目标跟踪系统设计.电子技术应用,2009.06,Vo1.35(6):57~60
    [159]A. A. Kardamakis, A. Grantyn and A. K. Moschovakis. Neural network simulations of the primate oculomotor system. V. Eye-head gaze shifts [J]. Biol Cybern,2010.01,102:209~225
    [160]皮文凯,刘宏,查红彬.基于自适应背景模型的全方位视觉人体运动检测[J],北京大学学报(自然科学版),2004.05,40(3):61-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700