用户名: 密码: 验证码:
Ⅱ型胶原—透明质酸复合支架材料的构建及在软组织工程应用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     软组织自我修复能力差,如何修复因急性创伤或性关节炎等疾病导致的软缺损已成为科领域面临的一大难题。微小的损伤可能会引起软进一步的损伤和退化。组织工程技术成为软缺损修复新的手段,此技术的关键是建立由细胞和生物材料构成的三维空间复合体。本研究的目的是在体外构建一种模拟软组织成分的Ⅱ型胶原-透明质酸复合支架材料,探讨其作为新型软组织工程支架材料的可行性;并在体外分离培养髓间充质干细胞与Ⅱ型胶原-透明质酸复合支架材料复合培养体外构建组织工程软三维空间复合物,通过绿色荧光蛋白(GFP)标记示踪观察细胞在材料上的黏附、增殖和分化情况并检测软细胞特异性X型胶原的表达,初步评价髓间充质干细胞和Ⅱ型胶原-透明质酸复合支架材料构建的复合物作为软移植物的可行性。
     方法
     用本研究所以往的方法,提取Ⅱ型胶原溶液。利用电泳、紫外最大吸收峰的方法来测定提取胶原的纯度。经聚乙二醇将胶原原液浓缩,从而控制胶原冻干后的孔径大小。采用部分匀浆法和冷冻干燥法制备Ⅱ型胶原-透明质酸复合材料,并采用碳化二亚胺/N-羟基琥珀酰亚胺法对Ⅱ型胶原-透明质酸复合海绵进行交联改性,制备出Ⅱ型胶原-透明质酸复合支架材料(CⅡ-HA)。同时以常规制备的Ⅰ型胶原-透明质酸复合支架材料(CⅠ-HA)作为对照组。通过激光共聚焦显微镜、扫描电镜、红外光谱分析仪、拉力测试机等手段对材料的结构和理化性能进行分析。
     采用全髓培养法分离培养髓间充质干细胞(Bone marrow stem cells, BMSCs)。通过成脂成诱导对分离培养的BMSCs进行鉴定。将BMSCs种植到CⅡ-HA材料上,XTT法测定细胞的增殖情况,并利用免疫荧光法检测细胞的X型胶原表达情况。采用携带有绿色荧光蛋白基因(Green fluorescent protein, GFP)的慢病毒对BMSCs进行基因转染,通过GFP对BMSCs进行标记,用荧光显微镜观察细胞在材料上的生长情况。
     结果
     Ⅱ型胶原的电泳图显示为α和β条带,没有杂蛋白的条带出现;Ⅱ型胶原在233.8nm处有紫外最大吸收峰。Ⅱ型胶原-透明质酸复合支架材料具有良好的三维孔洞结构,孔洞均匀且相互交通,平均孔径为92.63±32.51μm,符合软组织生长的合适孔径大小,而对照组CⅠ-HA材料则为202.16±76.75μm,两者具有统计学差异。CⅡ-HA材料孔隙率和平衡含水率为94.90±6.37%和97.13±0.32%。CⅡ-HA材料具有良好的力学性能,交联后力学性能达到79.67±11.7KPa,与常规制备的CⅠ-HA材料的17.38±1.8KPa相比,具有明显的统计学差异。此外,红外光谱图显示,Ⅱ型胶原与透明质酸复合交联后,形成新的小峰(1402cm-1),说明形成新的化学键。
     髓间充质干细胞(BMSCs)分离培养后,通过成脂成诱导鉴定干细胞特性发现,成脂诱导21天后,有脂滴分布;成诱导21天后形成钙结节,细胞呈成细胞样结构。传代培养的BMSCs种植到CⅡ-HA支架材料上,X型胶原免疫荧光呈阳性。慢病毒能够成功将GFP基因转染到BMSCs中,转染后的BMSCs能够正常增殖。GFP示踪的BMSCs种植到CⅡ-HA支架材料后,细胞生长状况良好。
     结论
     制备的Ⅱ型胶原-透明质酸支架材料经交联后,具有良好的三维孔洞结构,材料孔径大小适合,孔洞分布均匀且相互交通。力学性能优异,孔隙率及平衡含水率均符合组织工程软支架材料的要求。故本研究制备的Ⅱ型胶原-透明质酸支架材料有望成为软组织工程的合适的仿生支架材料。
     髓间充质干细胞能够在CⅡ-HA材料上良好的增殖,且部分髓间充质干细胞已向软细胞方向分化,GFP示踪的髓间充质干细胞能够在材料上生长状况良好。本研究制备的细胞-材料三维复合物基本符合组织工程化移植物要求的条件,能够进一步的进行体内的实验研究。
Objection
     Articular cartilage defects repair is a difficult medical problem in orthopeadic area due to the limited capability for repair and self-regeneration. A minor injury of particular cartilage may lead to progressive damage and degeneration. Tissue engineering can potentially be used for cartilage repair. Establishment of a 3D system consisting of biomaterials and cells plays a vital role in tissue engineering. In this study, we prepared a collagen typeⅡ-hyaluronic acid copolymer porous scaffold(CⅡ-HA) which imitated the ingredients and ratios of natural cartilage matrix. Bone marrow mesenchymal stem cells(BMSCs) were obtained and cultured in vitro, and then seeded in the CⅡ-HA matrices. In order to investigate the feasibility of the BMSC/CⅡ-HA as tissue engineering cartilage graft, the viability and differentiation of BMSCs were detected. The expression of chondrocyte specific collagen type X in the cells were also detected.
     Method
     Type II collagen solutions were obtained by the method of our previously shown, and identified by SDS-PAGE electrophoresis and the maximum absorption wavelength. To control the pore size of materials, the initial collagen solutions were condensed with polyethylene glycol (PEG) at 4℃. The collagen typeⅡ-hyaluronic acid compound were prepared by partial homogenaization and then freeze-dried. CⅡ-HA compound were crosslinked with EDC/NHS. Collagen type I-hyaluronic acid matrics were prepared routinely as control group. The characteristics of the prepared scaffolds were analyzed by laser scanning confocal microscopy (LSCM), scanning electron microscopy (SEM), FT-IR analyzer, tensile tests and so on.
     Bone marrow stem cells were obtained and purified by adhesion culture in vitro. The morphology of BMSCs was observed under the phase contrast microscope Some of BMSCs were induced into adipotic cells or osteoblast cells in special supplement medium. Afterwards, specific markers of differentiation of both adipocytic and osteogenic cells were detected. BMSCs were seeded into the CⅡ-HA matrices, the proliferation of BMSCs was monitored via XTT test, and the expression of collagen type X was detected by immunofluorescence. The GFP labeled BMSCs were planted into crosslinked CⅡ-HA, the cells viability was observed by LSCM.
     Result
     The result of SDS-PAGE electrophoresis shows typical a andβbands of the type II collagen, which indicated that the preparation collagen is pure and free of contaminating proteins. The peak of absorption maximum wavelength was 233.8nm as the same as the collagen should be. Collagen scaffolds had the interconnected porous structure, and the pore were well-distributed. The pore size of CⅡ-HA was 92.63±32.51μm which was more suitable for the growth of cartilage tissue, compared with the control group(CⅠ-HA) that was 202.16±76.75μm, and there was significant difference between two groups. Average porosity and water capacity of CⅡ-HA scaffolds reached to 93.39% and 97.78%, respectively. The mechanical properties of cross-linked CⅡ-HA increased significantly, reached to 79.67±11 .7KPa, While CⅠ-HA was 17.38±1.8KPa. Moreover, the infrared spectrum showed collagen type II and hyaluronic acid formed a new small peak (1402cm-1) after cross-linking that indicated there was a bond formation.
     BMSCs were isolated and cultured in vitro. BMSCs were cultured in osteogenic or adipogenesis medium have been shown that cells we isolated could be differentiated down the osteogenic or adipogenic lineage, as evidenced by calcium deposition or droplet after 21 days. BMSCs were seeded in CⅡ-HA scaffold for 5 days, the expression of collagen type X was positive. The green fluorescent protein (GFP) gene can successfully be transducted into BMSCs by lentivirus. The BMSCs showed in normal condition after the transduction. GFP labeled BMSCs were seeded into CⅡ-HA scaffold, the cells were in normal condition and the expression of collagen type X in these cells was positive.
     Conclusion
     The CⅡ-HA has good three-dimensional pore structure. The pore size of CⅡ-HA matrices was suitable for cell growth, Besides, the pores were interconnective and well-distributed. CⅡ-HA scaffolds had suitable mechanical properties, porosity, and water capacity for cartilage tissue engineering. This type II collagen-hyaluronic acid scaffold suppose to be an ideal biomaterial for cartilage tissue engineering.
     Our results indicated that CⅡ-HA scaffold may create an appropriate environment for the proliferation of BMSCs to chondrocyte differentiation. This CⅡ-HA/BMSCs graft may be suitable for implanting into full-thickness articular cartilage defect in vivo study.
引文
[1]Hootman J, Bolen J, Helmick C, Langmaid G. Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation-United States,2003-2005. MMWR,2006;55 (40):1089-1092.
    [2]Hootman JM, Helmick CG. Projections of U.S. prevalence of arthritis and associated activity limitations. Arthritis Rheum 2006;54(1):266-229.
    [3]Buckwalter JA,Mankin HJ,Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect,2005(54):465-480
    [4]Hu JC, Athanasiou KA. A self-assembling process in articular cartilage tissue engineering. Tissue Eng 2006; 12:969-979.
    [5]Alford JW, Cole BJ. Cartilage restoration, part 1:basic science,historical perspective, patient evaluation, and treatmentoptions[J].Am J SportsMed,2005,2: 295-306.
    [6]Steadman JR,Briggs KK,Rodrigo JJ,et al. Outcomes of microfracture for traumatic chondral defects of the knee:average 11-year follow-up.Arthroscopy,2003 May-Jun,19(5):477-484
    [7]Johnson LL. Arthroscopic abrasion arthroplasty:a review.Clin Orthop,2001, 391S:306-317.
    [8]Tippet JW, Finkelstein JA, Farine I. Articular cartilage osteoarthritis of the knee[A].In:Mc Ginty JB ed.Operative Arthroscopy[M].1st ed, NewYork:Raven Press,1991:325-33
    [9]Kotani A,Ishii Y,Sasaki S. Autogenous osteochondral grafts for osteonecrosis od the femoral condyle.J Orthop Surg,2003,11 (2):117-122.
    [10]Gross AE. Fresh osteochondral allografts for post-traumatic knee defects:surgical technique.Operative Tech Orthop,1997,7(2):334-9.
    [11]H. Chajra, C.F. Rousseau, D. Cortial,et al. Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects[J]. BioMedical Materials and Engineering,2008,18(1 Suppl):33-45.
    [12]Verbruggen QWittoek R,Groeneboer S,et al. Osteochondral repair in synovial joints.Curr Opin Rheumatol.2007,19(3):265-71.
    [13]Riesle J, Hollander AP, Langer R, Freed LE, et al. Collagen in tissue-engineered cartilage:types, structure, and crosslinks[J]. J Cell Biochem,1998,71(3):13-27.
    [14]Gou JW,Kuan HH. Biodegradeable polyactic acid micerstructrues for scaffold applications.Stresa,Italy,2007,April,25-27.
    [15]祁军,陈安民,郭风劲.软组织工程支架材料的研究进展.生物科材料与临床研究.2007,4(1):27-31.
    [16]Kleinman HK, Philp D, Hoffman MP. Role of the extracellular matrix in morphogenesis[J].Curr Opin Biontechnol 2003,14(5):526-532.
    [17]Rosso F, Giordano A, Barbarisi M, Barbarisi A. From cell-ECM interactions to tissue engineering[J] J Cell Physiol 2004,199(2):174-180.
    [18]Brown E, Dejana E, editors. Cell-to-cell contact and extracellular matrix editorial overview:cell-cell and cell-matrix interactions-running, jumping, standing still[J]. Curr Opin Cell Bio 1,2003:15:1-4.
    [19]Buma P, Pieper JS, Tienen TV, et al. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects-a study in rabbits[J]. Biomaterials,2003,24 (19):3255-3263.
    [20]Nehrer S, Breinan HA, Ramappa A, et al. Matrix collagen type and pore size influence behavior of seeded canine chondrocytes [J].Biomaterials,1997,18 (11): 769-776.
    [21]Gigante A, Bevilacqua C, Cappella M, Manzotti S, Greco F. Engineered articular cartilage:influence of the scaffold on cell phenotype and proliferation. J Mater Sci Mater Med,2003,14 (8):713-6.
    [22]Yates KE, Allemann F,Glowacki J. Phenotypic analysis of bovine Chondrocytes cultured in 3D collagen sponges:effect of serum substitutes [J]. Cell Tissue Bank, 2005,6 (1):45-54.
    [23]Willers C,Chen J,Wood D,et al. Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits [J]. Tissue Eng,2005,11(7-8):1065-1076.
    [24]Eyre DR. Collagens and cartilage matrix homeostasis.Clin Orthop Relat Res.2004 Oct,427(1):118-122
    [25]Atsushi funayama,Yasuo niki, et al. Repair of full-thickness articular cartilage defects using injectable type Ⅱ collagen gel embedded with cultured
    chondrocytes in a rabbit model [J]. J Orthop Sci,2008,13(3):225-232.
    [26]Kawasaki Y,Chung UI,Nakamura K,et al. Recent advances in cartilage metabolism research.Clin Calcium.2006 Oct,16(10):1730-1735
    [27]Antonio QClaudia B,Massimo C. Engineered articular cartilage:influence of the scaffold on cell phenotype and proliferation. Journal of Materials Science.Materials in Medicine,2003,14(8):713-6.
    [28]李斯明,杨小红,方力等.高纯度Ⅱ型胶原修复兔膝关节软缺损的实验研究[J].中华创伤科杂志2008,10(9):844-849.
    [29]杨小红,李斯明,叶惠贞等.Ⅱ型胶原海绵修复兔膝关节软缺损的组织学观察[J].中国矫形外科杂志2003,11(3-4):236-239
    [30]力弘,贾永峰,潘雁等.Ⅱ型胶原蛋白诱导的类风湿关节炎的动物模型。上海医科大学学报,1997,24:231-233
    [31]Myers LK, Rosloniec ef, Cremer MA, et al. Collagen induced arthritis, an animal model of autoimmunity. Life Science,1997,61:1861-1878.
    [32]奚正德,王利,柏峻,等.Ⅱ型胶原特异性T细胞系与关节炎发病机制的研究。中华风湿病学杂志,2003,7:527-530.
    [33]Xu D, Shen W. Chicken collagen type II reduces articular cartilage destruction in a model of osteoarthritis in rats[J]. West Indian Med J,2007,56(3):202-207.
    [34]Brand DD,Myers LK, Whittington KB, et al. Detection of early changes in autoimmune T cell phenotype and function following intravenous administration of type Ⅱ collagen in a TCR-transgenic model. J Immunol,2002,168:490-498.
    [35]李斯明,黄雪芳,叶惠珍等.Ⅱ型胶原移植修复关节软缺损过程中抗体水平的动态变化.中华风湿病学杂志,2004,8(6):332-334.
    [36]Ma ZWi, Gao CY, Gong YH, et al. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor[J].Biomaterials,2005,26:1253-1259.
    [37]章庆峻,罗卓荆,李明全等.神经组织工程基体材料的研制及其生物相容性研究.[J]脊柱外科杂志2004,3(2):158-162.
    [38]Tognana E, Borrione A, De Luca C, et al. Hyalograft C:hyaluronan-based scaffolds in tissue-engineered cartilage. Cells Tissues Organs.2007,186(2):97-103.
    [39]Goldberg VM, Buckwalter JA. Hyaluronans in the treatment of osteoarthritis of the knee:evidence for disease-modifying activity. Osteoarthritis Cartilage,2005 Mar,13(3):216-224.
    [40]Liu Y,Shu XZ, Prestwich GD. Osteochondral defect repairwith autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix.Tissue Eng.2006,12(12):3405-3416.
    [41]Tehranzadeh J, Booya F, Root J. Cartilage metabolism in osteoarthritis and the influence of viscosupplementation and steroid: a review. Acta Radiol,2005, 46(3):288-296.
    [42]杨柳.加强软组织工程中关键技术的应用研究.中华实验外科杂志2005,22(3):263-265.
    [43]ZhangY, Cheng X, Wang T, et al. Novel chitosan/collagen scaffold containing transforming growth factor-betal DNA for periodontal tissue engineering. Biochem Biophys Res Commun.2006 May 26; 344(1):362-9.
    [44]Paige KT,Cima L G, Yaremehuk MJ,et al. Injectable cartilage J.Plast Reconstr Surg,1995,96:1390-1398.
    [45]黄永波,卫小春,李鹏翠,等.海藻酸钠载体培养成年兔软细胞的生物学性状研究[J].中国矫形外利杂志.2004.12(1):63-65.
    [46]郭全义、卢世壁,张莉.等.藻酸钙凝胶为载体体外短期培养羊软细胞的生物学性状[J].中国临床康复.2006,10(1):61-63.
    [47]Fragonas E,Valente M,PozziMucelli M,et al. Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate [J].Biomaterials,2002,21 (8):795-801.
    [48]Cateson EJ,Li WJ,Nesti LJ,et al. Polymer/alginate amalgam for cartilage tissue engineering[J],Ann N Y Acad Sci,2002,96(1):134-8.
    [49]Caterson EJ, Nesti LJ, Li WJ et al. Three-dimensional cartilage formation by bone marrow-derived cells seeded in polylactide/alginate amalgam. J Biomed Mater Res 2001;57:394-403.
    [50]Liu Y,Chen F,Liu W,et al. Repairing large porcine full-thinkness defects of artilage using autologous chondrocyte-engineered cartilage[J].Tissue,2002,8(4):709-721.
    [51]Magnussen RA,Dunn WR,Carey JL,et al. Treatment of Focal Articular Cartilage Defects in the Knee:A Systematic Review.Clin Orthop Relat Res,2008 Jan 12
    [52]Gerjo J. V. M, Simone W, Henriette L,et al. In vitro redifferentiation of
    culture-expanded rabbit and human auricular chondrocytes for cartilage reconstruction[J]. Plast Reconstr Surg,2001,107(2):433-40
    [53]Roberts S, IW McCall, AJ Darby, et al. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther,2003,5:R60-R73.
    [54]Knutsen G, L Engebretsen, TC Ludvigsen, et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am,2004,86-A:455-464.
    [55]Schulze-Tanzil G, Mobasheri A, de Souza P, et al. Loss of chondrogenic potential in dedifferentiated chondrocytes correlates with deficient Shc-Erk interaction and apoptosis[J].Osteoarthritis Cartilage 2004;12(6):448-458.
    [56]Kino Oka M, MaedaY,Ota Y,et al. Process design of chondrocyte cultures with monolayer growth for cell expansion and subsequent three-dimensional growth for production of culturedcartilage[J].J Biosci Bioeng,2005,100(1);67-76.
    [57]Wong MW,Qin L,Tai JK,et al. Engineered allogeneic chondrocyte pellet for reconstruction of fibrocartilage zone at bone-tendon junction-a preliminary histological observation[J].Biomed Mater Res,2004,15:70 (2):362-367
    [58]Wong MW,Qin L,Tai JK,et al. Engineered allogeneic chondrocyte pellet for reconstruction of fibrocartilage zone at bone-tendon junction-a preliminary histological observation[J].Biomed Mater Res,2004,15:70 (2):362-367
    [59]Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell,2002,13:4279-4295.
    [60]Huang JI, Kazmi N, Durbhakula MM, et al. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue:a patient-matched comparison. J Orthop Res,2005,23:1383-1389.
    [61]Afizah H, Yang Z, Hui JH, et al. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng,2007,13:659-666.
    [62]Kassem M,Kristiansen M,Abdallah BM. Mesenchymal stem cells cell biology and potential use in therapy [J].Basic Clin Pharmacol Toxicol,2004,5:209-14.
    [63]Pelaez D, CY Huang and HS Cheung. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fi brin gel scaffolds. Stem Cell Dev,2008,in press.
    [64]Tuan RS,Boland QTull R. Adult mesenchymal stem cells and cell-based tissue engineering[J].Arthritis Res Ther,2003,1:32-45.
    [65]Aggarwal S,Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses [J].Blood,2005,105(4):1815-22.
    [66]胡蕴玉.现代科基础与临床[M].北京:人民卫生出版社,2006,168.
    [67]Lee JW, Kim YH, Kimet al. Chondrogenic differentiation of mesenchymal stem cells and its clinical applications.Yonsei Med J.2004;45:41-7
    [68]单玉兴,刘一,徐萃香.兔髓间质干细胞用于构建组织工程软组织的初步报告.中国修复重建外科杂志,2001,15(1):49-52.
    [69]Gao J, Dennis, Solchaga LA, et al. Repair of osteochondral defect with tissue engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge [J]. Tissue Eng,2002,8(5):827-837
    [70]Li WJ, Tuli R, Okafor C et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells.Biomaterials 2005;26:599-609.
    [71]Wang Y, Kim U-J, Blasioli DJ et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 2005;26:7082-7094.
    [72]Kafienah W, Mistry S, Dickinson SC et al. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum 2007;56:177-187.
    [73]Debari C,Dellaccio F,Luyten FP. Failure of in vitro-dirrerentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo[J]. Arthritis Rheum,2004,1:142-50.
    [74]Wakitani S,Mitsuoka T,Nakamura N,et al. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae two case reports [J]. Cell Transplant,2004,5:595-7.
    [75]张亚,王晓东,张德强,等.诱导人髓间充质干细胞向软细胞分化的实验研究[J].实用全科医学,2004,2(2):108-109.
    [76]叶春婷,李斯明,邹海燕.软Ⅱ型胶原的制备及其毒理学评价.中华创伤杂志, 2002.18(5).312-313.
    [77]杨小红,李斯明,叶惠贞.Ⅱ型胶原海绵修复兔膝关节软缺损的组织学观察.中国矫形外科杂志,2003;11(3.4):236-239.
    [78]李斯明,杨小红,方力等.高纯度猪软Ⅱ型胶原修复兔膝关节软缺损的实验研究.中华创伤科杂志,2008,10(9):844-849
    [79]Taguchi T,Ikoma T,Tanaka J. An improved method to prepare hyaluronic acid and type Ⅱ collagen composite matrices[J].J Biomed Mater Res 2002;61(2):330-6.
    [80]吴炜,毛天球,封兴华等.胶原-透明质酸支架的制备及其与软细胞复合培养的实验研究.J中国修复重建外科杂志,2007,4:401-405.
    [81]叶春婷.猪软Ⅱ型胶原的生物相容性研究.中国临床康复,2002,6(6):797-799.
    [82]Parka SN, Leeb HJ, Lee KH, et al. Biological characterization of EDC-crosslinked collagen-hyaluronicacid matrix in dermal tissue restoration.[J]Biomaterials; 2003;23:1631-1641.
    [83]Buma P, Pieper JS, van Tienen T,et al. Cross-linked type I and type Ⅱ collagenous matrices for the repair of full-thickness articular cartilage defects-a study in rabbits.J Biomaterials,2003,24(19):3255-63.
    [84]Chen CS, Yannas IV, Spector M. The effects of cross-linking of collagen-glycosaminoglycan analogues of extracellular matrix. Biomaterials; 1995, 16(10):777-783.
    [85]Liu LS, Thompson AY, Heidaran MA, et al. An osteoeonductive collagen/hy-aluronate matrix for bone regeneration.[J] Biomaterials; 1999,20(12):1097-1108.
    [86]Nagait. Suzukin. Preparation and partial characterization of collagen from paper nautilus(Argonauta argo, Linnaeus)outer skin[J].Food Chemistry.2002, (76):149-153.
    [87]D. Green, D. Walsh, S. Mann, and R. O. C. Oreffo et al. Potential of biomimesis in bone tissue engineering, Bone,2002,30(6):810-5.
    [88]吴炜,毛天球,封兴华等.胶原-透明质酸支架的制备及其与软细胞复合培养的实验研究[J].中国修复重建外科杂志2007 21(4):401-405.
    [89]但年华,但卫华,曾睿.碳化二亚胺改性脱细胞猪真皮基质的性能研究[J].功 能材料,2007,38(8):1389-1392.
    [90]Tjia JS,Mogche PV. Analysis of 3-D microstructure of porous poly(lactide-glycolide)matrices using confocal microscopy [J]. Biomed Mater Res; 1998, 43(3):291-299.
    [91]Kuroda R, Ishida K, Matsumoto T et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage 2007; 15:226-231.
    [92]Lisignoli G,Remiddi G, Cattini L,et al. An elevated number of differentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure[J].Connect Tissue Res,2001,42(1):49-57.
    [93]Zohar R, Sodek J, Mcculloch CA. Characterization of stromal Progenitor cells enriched by flow cytometry[J].Blood,1997,90(9):3471-3480.
    [94]Encina NR, Biiiotte WG, Hofmann MC. Immunomagnetic isolation of osteo progenitors from human bone marrow stroma[J].Lab Invest,1999,79(4):449-455.
    [95]Jose LR, Miguel H, Federico G, et al. Value ofdeoxyribonucleic acid ploidy and nuclear morphometry for disease progression in renal cellcarcinomal [J].The J Urological,1996; 155:459-465.
    [96]Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues [J].Science,1997,276:71-74.
    [97]Abou-Rebyeh'H, Borgmann V, Nagel R, et al. DNA ploidy is a valuable predictor for prognosis of patients with resected renal cell carcinomal[J].Cancer, 2001;92(9):2280-2285.
    [98]Guo XM, Wang CY, Wang YH, et al. Experimental study of the isolation,culture and in chondrogenic differentiation of human bone mesenchymal stem cell [J].Chin J Stomatol,2003,38 (1):63-66.
    [99]Deryugina,EI, Muller-Sieburg CE. Stromal cells in longterm cultures:keys to the elucidation of hematopoietic development[J].Crit Rev Immunol,1993,13:115.
    [100]Barry F, Boynton RE, Liu B, et al. Chondrogenic differentiation of mesenchymal stem cells from bone marrow; differentiation-dependent gene expression of matrix components.Exp Cell Res,2001,268:189-200.
    [101]Sugiura F, Kitoh H, Ishiguro N. Osteogenic potential of rat mesenchymal stem cells after several passages[J]. Biochern Biophvs Res Cornnuln,2004,316(1): 233-239.
    [102]Ter Brugge PI, Jansen JA. In vitro osteogenic differentiation of rat bone marrow cells subcultured with and without dexamethasone[J]. Tissue Eng,2002,8(2): 321-331.
    [103]Chalf ie M, Tu Y, Euski rchen G, et al. Green fluorescent protein as a marker f or gene expression [J].Science,1994,263(5148):802-805
    [104]Krause DS, Theise ND, Collector M1, et al. Multi-organ, Multi-lineage engraftment by a single bone marrow derived stem cells[J].Cell,2001, 105:369-377.
    [105]Stark Y, Suck K, Kasper C, et al. Application of collagen matrices for cartilage tissue engineering [J].Exp Toxicol Pathol,2006,57(4):305-311.
    [106]Pieper JS, Kraan PM, Hanfamans T, et al. Crosslinked type II collagen matrices preparation, characterization, and potential for cartilage engineering [J]. Biomaterials,2002,23:3183-9192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700