用户名: 密码: 验证码:
基于智能体的仿人机器人控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿人机器人具有众多的关节与自由度,包括双臂、颈部、腰部、双腿等,这些关节要连接在一起,进行统一的协调控制,这就对控制系统的可靠性、实时性都提出了更高的要求。因此,控制系统性能的好坏对整个仿人机器人系统的影响是至关重要的。
     为了提高仿人机器人控制系统的稳定性和实时性,特别是遇到异常情况时的稳定性和实时性,本文通过分析了各种控制系统的优缺点后,然后对分布式控制系统进行了改进,提出了基于智能体的仿人机器人分层控制系统。该系统主要由主控层、通讯层和执行层三部分构成,其中执行层被划分为多个智能体,每个智能体具有自己的处理器、关节驱动器和传感器。每个智能体都具有一定的自主性,不仅可以将相应传感器的数据转换为机器人的实际状态,而且可以直接对机器人的一些异常情况进行处理,提高了系统处理突发事件的实时性,还能够协同主控层检测机器人肢体碰撞,缩短了机器人检测肢体碰撞的时间。
     为了满足基于智能体的仿人机器人控制系统的性能,采用TI公司的DSP TMS320F2812和Xilinx公司的CPLD设计了运算、通信能力强大的控制器,提高了控制系统的性能。同时采用实时内核uC/OS-II作为控制器的操作系统,提高了控制系统的实时性。
     将设计好的控制系统软件硬件应用到MIH-1仿人机器人上进行实
Humanoid robot has many joints, such as arms, neck, waist and legs. To combine all these joints together and coordinate them to accomplish desired tasks, what the humanoid robot needs is a control system that has high real-time ability and stability. Therefore, to choose a suitable control system is significant to a humanoid robot system.
     To improve humanoid robot stability and real-time performance in unexpected conditions, this paper presents a novel hierarchical control structure based on multi-agents, including main control layer, communication layer and execution layer. The execution layer consists of some agents and each agent has its own controller, motor drivers and sensors. Each agent not only can detect self-collisions between robot links cooperating with main control layer, but also has the ability to detect and deal with some unexpected conditions of the robot directly. Thus the computation burden on main control layer is reduced and real-time performance of the system is improved.
     To realize the control performance of the control system, I employ the processor of TMS320F2812 of TI Corporation and CPLD of Xilinx Corporation to design the joint controller, which has high computation and communication performance. Besides, I choose the real-time kernel operating system uC/OS-II as the operating system of the controller,
引文
[1] 谢涛,徐建峰,张永学等.仿人机器人的研究历史、现状及展望,机器人,第 24 卷第 4 期,2002.7
    [2] Hashimoto. S, Narita. S, Kasahara. H, etc. Humanoid robot-development of an information assistant robot Hadaly. Robot and Human Communication, 1997. RO-MAN '97. Proceedings 6th IEEE International Workshop on 29 Sept-1 Oct, 1997 :106-111
    [3] 王全福,刘进长.机器人的昨天、今天和明天,中国机械工程,2000 年 Z1 期
    [4] 李允明.国外仿人机器人发展概况, 机器人,2005 年 06 期
    [5] Kazuo Hirai, Masato Hirose, Yuji Haikawa, etc. The Development of Honda Humanoid Robot. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA ’98), pp. 1321–1326, 1998
    [6] Kenji Kaneko, Fumio Kanehiro, Shuuji Kajita, etc. Design of Prototype Humanoid Robotics Platform for HRP. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2002), pp. 2431–2436, 2002
    [7] Masahiro Fujita, Yoshihiro Kuroki, Tatsuzo Ishida, and Toshi T.Doi. Autonomous Behavior Control Architecture of Entertainment Humanoid Robot SDR-4X. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2003), pp. 960-967, 2003
    [8] Noritake K, Kato S, Yamakita T, etc. Amotion generation system for humanoid robots-Tai Chi motion Micromechatronics and Human Science, 2003. MHS2003. Proceedings of 2003 International Symposium on 19-22 Oct. 2003 Page(s):265-269
    [9] A.Kato, A.Takaishi, I.Kato. The realization of the Quasi dynamic walking by the biped walking machine,1981,Romansy:341-351
    [10] A.Takanishi, M.Ishida, Y.Yamazaki, etc. The realization of dynamic walking by biped robot WL-10RD.IEEE Int, Conf.on Autonomous robot 1985,Tokyo: 459-467
    [11] Y.Fujimoto, A.Kawamura. Attitude control experiment of biped walking robot based on environment force. Int. Workshop on advanced motion control, 1998, Coimbra: 70-74
    [12] P.Weyand, J.Pated and E.Bellizzi. Is walking more economical that running for biped.Science,1999,(280): 320-322
    [13] K.Nagasaka, M. Inaba and H.Inoue. Dynamic walking pattern generation for humanoid robot based on optimal gradient method, IEEE Int. Conf, on System, Man, and Cybernetics, 1999, Tokyo: 908-913
    [14] K.Hirai, M.Hirose, and T.Takenaka. The development of Honda humanoid robot. IEEE Int, Conf, on Robotics and Automation, 1998, Leuven: 1321-1326
    [15] Sylvain calinon, Florent Guenter and Aude Billard. Goal-Directed imitation in a humanoid robot.IEEE Int, Conf, on Robotics and Automation, 2005, Barcelona: 300-305
    [16] Yamasaki F, Endo K, Kitano H. Asada M Acquisition of humanoid walking motion using genetic algorithm Considering characteristics of servo modules. ICRA. IEEE International Conference on Volume 3, 11-15 May 2002 Page(s): 3123-3128
    [17] Naoki Kanamori, Kazuo Tanaka. Operating Feeling Based Design in Human-robot Collaborative Control Systems , Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation,July 16-20,2003, Kobe, Japan
    [18] Frank S Cheng, Lin Zhao. The Design of a Control System Testbed for a 2-DOF Robot. 2004 IEEE International Symposium on Computer Aided Control Systems Design Taipei, Taiwan, Sep 24, 2004
    [19] I. E. Paromtchik, H. Asama. A Control System for an Omnidirectional Mobile Robot. Proceedings of the 1999 IEEE lnmational Conference on Convol Applications Kohala Coast-Island of Hawaii, Hawaii, USA, August 22-21. 1999
    [20] Jinxiang Shen, Jiangping Liu, Hui Zhang, etc. Distributed Control System for Modular Self-Reconfigurable Robots. Distributed Control System for Modular Self-Reconfigurable Robots
    [21] 冯金光,周华平,马宏绪.基于 CAN 总线和 DSP 的仿人机器人运动控制系统研究,总线与网络,2004.5
    [22] 钟华,吴镇炜,卜春光.仿人机器人控制系统的研究与实现,机器人,第 27 卷第 5 期,2005.9
    [23] 赵建东,卲黎君,徐凯等.基于 CAN 总线的仿人机器人关节伺服控制系统研究,机器人,第 24 卷第 5 期,2002.9
    [24] 巩星明,段秋红,李淑英.工业计算机控制系统的基本分类及发展趋势,西山科技,No.5,Oct.2001
    [25] Kazuo Hirai, Masato Hirose, Yuji Haikawa, etc. The Development of Honda Humanoid Robot [C]. Proceeding of the 1998 IEEE International Conference on Robotics & Automation Leuven. Belgium May 1998: 1321-1326
    [26] Yoshihiro Kuroki. A Small Biped Entertainment Robot [C]. Proceedings of the IEEE-RAS International Conference on Humanoid Robots, 2001: 181- 186
    [27] Kai Xu, Ken Chen, Jinsong Wang, etc. A New Method of Gait Generation for A Biped Walking Robot [C]. Proceedings of the IEEE2RA S International Conference on Humanoid Robots, 2001
    [28] Marcelo Luis Dultra. Fieldbus Control System [J]. Advances in Instrumentation and Control, 1996, 51
    [29] Jung-Yup Kim, Ill-Woo Park, Jungho Lee, etc. System Design and Dynamic Walking of Humanoid Robot KHR-2, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 1443-1448, Barcelona, Spain, April 2005
    [30] Mingguo Zhao, Li Liu, Jingsong Wang, etc. Control System Design of THBIP-I Humanoid Robot, Proceedings of the 2002 IEEE International Conference on Robotics and Automation, 2253-2258, Washington, DC, May 2002
    [31] 白焰,吴鸿,杨国田.分散控制系统与现场总线控制系统,北京,中国电力出版社,2001,178~189
    [32] 方海军,孙政顺,杜继宏等.基于 CAN 总线的自主式仿人型机器人控制系统,机器人 ROBOT,2002. 24(1): 58-61.
    [33] Wooldridge, M.J. and Jennings, N.R. Intelligent agents: Theory and practice, The Knowledge Engineering Review 10(2) pp, 115-152.
    [34] 汪思源,曹妍,赵永生等.工监控系统中多智能体协调控制的设计,大连海事大学学报,第25 卷第 2 期,1999
    [35] 杨煜普,黄新民,许晓鸣.通用部分全局规划方法在多智能体协调控制中的应用,上海交通大学学报,第 33 卷第 4 期,1999
    [36] 蔡自兴,徐光佑.人工智能及其应用[M],北京:清华大学出版社,1996.1-403
    [37] 郭亮,黄席樾.基于智能体的分布式计算研究,重庆大学硕士毕业论文,2002: 5-6
    [38] 胡海清,傅鹤岗,朱庆生.基于软件 Agent 技术的内容分发网络研究,计算机应用,第 24卷第 6 期,2004.6
    [39] 宁柯军,杨汝清.基于多智能体的机械臂嵌入式系统控制,上海交通大学学报,2005 年 12期
    [40] [39] 宁柯军,杨汝清,翁新华.基于多智能体的机电设备嵌入式控制系统设计方法,上海交通大学学报,2005 年 12 期
    [41] Xusheng Lei, Jing Pan, Jianbo Su. Humanoid Robot Locomotion, IEEE International Conference on Machine Learning and Cybernetics, pp. 882-887, Guangzhou, china, 2005
    [42] 周凤余.基于 CAN 总线的喷浆机器人计算机控制系统的设计与实现[J ],山东矿业学院学报,1999, 18 (2) : 63-65
    [43] 林勇.CAN 总线在中央空调控制系统中的应用[J ],电子技术应用,2001, (7): 33-34
    [44] 邬宽明.CAN 总线原理和应用系统设计[M ],北京:北京航空航天大学出版社,1996
    [45] 阳宪惠.现场总线技术及其应用[M ],北京:清华大学出版社,1998
    [46] J. Kuffner, K. Nishiwaki, S. Kagami, etc. Self-collision detection and prevention for humanoid robots. Proceedings of the 2002 IEEE International Conference on Robotics & Automation, 2265-2270, Washington, DC. May 2002
    [47] 谈世哲,梅志千,杨汝清.基于 DSP 的工业机器人控制器的设计与实现,机器人,第 24 卷第 2 期,2002.3
    [48] 王天然,曲道奎.工业机器人控制系统得开放式体系结构,机器人,第 24 卷第 3 期,2005.5
    [49] 王明辉,马书根,李斌等.可重构星球探测机器人控制系统的设计与实现,机器人,第 27卷第 3 期,2005.5
    [50] 孙立宁,荣伟杉,刘品宽等.主从式遥微操作机器人力反馈控制系统的研究,机器人,第 24卷第 4 期,2002.7
    [51] 张铁,谢存禧,龚树强.基于 DSP 的巡逻保安机器人的运动控制系统,华南理工大学学报自然科学版),2006.7
    [52] Analog Devices Inc.ADMC328 28-Lead ROM-Based DSP Motor Controller with Current Sense. Data Sheet.1998
    [53] DSP56F8xx Data Sheet, http://www.dsprelated.com/motoroladsp/keyword/DSP56F8xx.php
    [54] TMS320F281x Data Sheet (Rev. I), http://focus.ti.com/docs/prod/folders/print/tms320f2810.html
    [55] 康华光,陈大钦.电子技术基础 模拟部分(第四版),高等教育出版社,北京,2001.5
    [56] 王国华,王鸿麟,羊彦等.便携电子设备电源管理技术,西安电子科技大学出版社,2004.1
    [57] 廖日坤.CPLD/FPGA 嵌入式应用开发技术白金手册,中国电力出版社,2005.10
    [58] Jae-Ho Lee, Heung-Nam Kim. Implementing priority inheritance semaphore on uC/OS real-time kernel. Proceedings of the IEEE Workshop on Software Technologies for Future Embedded Systems. May, 2003
    [59] 张小芳,李向华,陆起涌.uC/OS-II 在仪器仪表中的应用[J ].仪器仪表学报,2003,24(8):131-133
    [60] Jean J.Labrosse 著,邵贝贝等.译嵌入式实时操作系统 uC/OS-II (2 版),[M],北京,北京航空航天大学出版社,2003.5
    [61] 楚红雨,李磊民,黄玉清等.实时操作系统 uC/OS-II 在 ARM9 上移植的实现,计算机工程,2005 年 20 期
    [62] 王庆祎,陈曦,刘鲁源.提高移植了 uC/OS-Ⅱ的 ARM 嵌入式系统执行效率和实时性,计算机工程与应用,2005 年 22 期
    [63] 王潞钢,陈林康,曾岳南等.DSP C2000 程序员高手进阶,北京,机械工程出版社,2005.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700