用户名: 密码: 验证码:
仿人机器人运动控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿人机器人是工程上少有的高阶、非线性、非完整约束的多自由度系统,具有强大的运动灵活性,因此,为机器人的运动学、动力学、仿真技术、多传感器融合、控制理论等研究提供了一个非常理想的实验平台。由于运动控制系统直接决定了仿人机器人最终运动表现,其研究和开发也一直是仿人机器人研究领域的一个重点难题。其中小型仿人机器人的运动控制系统更有其特殊之处:必须考虑在有限的空间内实现众多关节的控制、多个关节间协调并保证运动的实时性,同时对系统的尺寸和重量也有更高的要求。
     针对仿人机器人驱动机构和传感装置众多的特点,本文综合了集中式与分布式系统的优势,提出了一种改进的仿人机器人运动控制系统结构。该结构由协同运动处理模块、数据通信模块及四肢运动控制模块组成。每个底层运动控制模块内包括关节控制器、关节驱动器和若干传感器。该种结构充分考虑了仿人机器人位置相邻功能相近的关节间紧密耦合这一状况,进行了适当的功能集中,既保留了分布式结构智能灵活的优点,又降低了数据通信负担,从而更好地适应于仿人机器人的控制和传感的要求。
     在此基础上,以高性能数字信号处理器DSP、专用电机控制模块、功率驱动模块和正交解码模块等为核心完成了仿人机器人运动控制系统硬件设计,配合软件程序与控制算法的设计,提高单颗DSP芯片的控制能力,从而实现对多路不同类型电机的控制及基于多总线的全方位数据通信。最终完成的系统通用性与扩展性好,结构更紧凑,也更易于实现关节之间的耦合控制。
     仿人机器人实验平台上进行了多关节协同控制实验,实验结果表明此种系统软硬件设计可以满足机器人运动行为的基本要求,并可以达到相当的控制精度。
Humanoid robots can be considered as nonlinear high-order systems with multiple degrees of freedom and non-complete constraints, spanning many research fields, such as mechanics, electronics, communication, computer science, bionics, etc. As a result, the research on humanoid robots may serve as an ideal experimental platform for kinetics, dynamics, simulation technology, sensor fusion, control theory and so on. As the kinematic performance of a robot is directly influenced by its motion control system, thus the kinematic research and development has remained as one key area in the research of humanoid robotics. Furthermore, the motion control system of small-sized humanoid robots has several special features. For example, the system must be capable of controlling a quantity of joints within a finite space, responsible for the joint coordination as well as guaranteeing real-time performance. In addition, the motion control system also poses more restrictions for the dimension and weight of the system layout.
     This paper presents an improved motion control system structure for humanoid robots, by incorporating the advantages of both centralized and distributed control systems. Such a structure is made up of coordination motion module, data communication module and the motion control modules distributed on the bottom layer. The bottom control units are responsible for the control of robot arms and legs of, each of which includes joint controller, joint drive, and a number of sensors. The structure takes the actual robot configuration into consideration, which is that those adjacent joints usually share similar functionalities and thus form a tight coupling relationship in-between. By this means, the control system will not only preserve the intelligence and flexibility from distributed structure, but greatly reduce data communication load, so that it will better serve the needs for robot control and sensory.
     The hardware system is then constructed based on high-performance Digital Signal Processor, specialized motor control module, power drive module and Quadrature Encoder Pulse module. The hardware platform, along with the software program and control algorithm design, fully exploits the potentials of DSP chips, and enables the simultaneous control of multiple motors and comprehensive information sharing based on a variety of communication buses. The ultimate integrated system is more universal, more compact, and easier for coupled control between robot joints.
     Experimental results carried out on MIH-I Humanoid Robot platform demonstrate that such a system design is suitable for actual motion behavior requirements and achieves satisfactory control precision.
引文
[1] Hashimoto. S, Narita. S, Kasahara. H, etc. Humanoid robot-development of an information assistant robot Hadaly. RO-MAN '97. Proceedings 6th IEEE International Workshop on Robot and Human Communication, 1997: 106-111
    [2] Frank S. Cheng, Lin Zhao. The design of a control System testbed for a 2-DOF Robot. 2004 IEEE International Symposium on Computer Aided Control Systems Design, 2004: 202-207
    [3] Jinxiang Shen, Jiangping Liu, Hui Zhang, etc. Distributed control system for modular self-reconfigurable robots. Proceedings of the 2003 IEEE International Conference on Robotics, Intelligent Systems and Siganl Processing, 2003: 932-936
    [4] Kenji Kaneko, Fumio Kanehiro, Shuuji Kajita, etc. Design of prototype humanoid robotics platform for HRP. Robotics and Autonomous Systems, 2004, 48(4): 165-175
    [5] Masahiro Fujita, Yoshihiro Kuroki, Tatsuzo Ishida, etc. Autonomous Behavior Control Architecture of Entertainment Humanoid Robot SDR-4X. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003: 960-967
    [6] A. Takanishi, M. Ishida, Y. Yamazaki, etc. The realization of dynamic walking robot WL-10RD. Proceedings of International Conference on Advanced Robotics, 1985: 459-466.
    [7] Noritake K, Kato S, Yamakita T, etc. A motion generation system for humanoid robots-Tai Chi motion. 2003 International Symposium on Micromechatronics and Human Science, 2003: 265-269
    [8] Naoki Kanamori, Kazuo Tanaka. Operating feeling based design in human-robot collaborative control systems. Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2003: 670-675
    [9]谢涛,徐建峰,张永学,强文义.仿人机器人的研究历史、现状及展望.机器人,2002,24(4):367-374
    [10] S. Hashimoto, S. Natita, H. Kasahara, etc. Humanoid robots in Waseda University—Hedaly-2 and Wabian. Autonomous Robots, 2002, 12(1): 25-38
    [11] James J. Kuffner, Satoshi Kagami, Koichi Nishiwaki, etc. Dynamically-stable motion planning for humanoid robots. Autonomous Robots, 2002, 12(1): 105-118
    [12] Kazuo Hirai. The Honda humanoid robot: development and future perspective. Industrial Robot, 1999, 26(4): 260-266
    [13] Kazuo Hirai, Masato Hirose, Yuji Haikawa, etc. The development of Honda humanoid robot. Proceedings of the 1998 IEEE International Conference on Robotics and Automation, 1998: 1321-1326
    [14] Joel Chestnutt, Manfred Lau, German Cheung, etc. Footstep planning for the Honda ASIMO humanoid. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005: 631-636
    [15] Tatsuzo Ishida, Yoshihiro Kuroki. Sensor system of a small biped entertainment robot. Advanced Robotics, 2004, 18(10): 1039-1052
    [16]包志军,马培荪,姜山,程君实,王春雨.从两足机器人到仿人型机器人的研究历史及其问题.机器人,1999,21(4):312-320
    [17] Zhao Mingguo, Liu Li, Wang jingsong, etc. Control system design of THBIP-1 humanoid robot. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, 2002: 2253-2258
    [18]范永,谭民.机器人控制器的现状及展望.机器人,1999,21(1):75-80
    [19]白焰,吴鸿,杨国田.分散控制系统与现场总线控制系统.北京:中国电力出版社. 2001:171-180
    [20]谈世哲,梅志千,杨汝清.基于DSP的工业机器人控制器的设计与实现.机器人,2002,24(2):134-139
    [21]王天然,曲道奎.工业机器人控制系统的开放式体系结构.机器人,2005,24(3):256-261
    [22]Michael Wooldridge, Nicholas R. Jennings. Intelligent agents: theory and practice.Knowledge Engineering Review, 10(2): 115-152.
    [23] Femandez J. A., Gonzalez J. The NEXUS open system for integration robotics software. Robotics and Computer-Integrated Manufacturing, 1999, 15(6): 431-440
    [24] Windows-based PC Robot Controller. YASKAWA News Release, 1997, 10(14): 1-10
    [25] William E Ford. What is an open architecture robot controller? 1994 IEEE International Symposium on Intelligent Control, 1994: 27-32
    [26]方正,杨华,胡益民,徐心和.嵌入式智能机器人平台研究,机器人,2006,28(1):54-58
    [27] Urs Kafader. The selection of high-precision microdrives. Sachseln: Maxon Academy, 2006: 1-2
    [28]雷旭升.小型仿人机器人及关键技术研究.上海交通大学博士学位论文,2006: 32-56
    [29] Maxon Motor. 2004.
    [30]冯金光,周华平,马宏绪.基于CAN总线和DSP的仿人机器人运动控制系统研究.总线与网络,2004,5:29-33
    [31]钟华,吴镇炜,卜春光.仿人机器人控制系统的研究与实现,机器人,2005,27(5):455-459
    [32]赵建东,卲黎君,徐凯等.基于CAN总线的仿人机器人关节伺服控制系统研究,机器人,2002,24(5):421-426
    [33] Eve Coste-Maniere, Reid Simmons. Architecture, the backbone of robotic systems, Proceedings of the 2000 IEEE International Conference on Robotics and Automation, 2000: 67-72
    [34] Marcelo Luis Dultra. Fieldbus control system. Advances in Instrumentation and Control, 1996: 51-53
    [35]陈光明.基于嵌入式系统的机器人控制器研究.天津理工大学研究生学位论文,2005:10-12
    [36]韩安太,刘峙飞,黄海. DSP控制器原理及其在运动控制系统中的应用.北京:清华大学出版社,2003:28-31
    [37]苏奎峰,吕强,耿庆锋. TMS320F2812原理与开发.北京:电子工业出版社, 2005:10-15
    [38] TMS320F281x Data Sheet (Rev. I). http://focus.ti.com/docs
    [39]方海军,孙政顺,杜继宏,韩晓鹏.基于CAN总线的自主式仿人机器人控制系统.机器人,2002,24(1):58-61
    [40] Robert Bosch GmbH. BOSCH CAN specification version 2.0. 1991: 10-20
    [41]谭建成.电机控制专用集成电路.北京:机械工业出版社,1997:8-9
    [42] MC33035, NCV33035 Brushless DC Motor Controller. ON Semiconductor
    [43] MPM3003 ICePAK Power Module. MOTOROLA Semiconductor Technical Data
    [44]Kim Gauen, Jade Alberkrack. Three piece solution for brushless motor controller design. http://www.onsemi.com
    [45] Agilent HCTL-2032, HCTL-2032-SC, HCTL-2022 Quadrature Decoder/Counter Interface ICs Data Sheet. http://www.agilent.com
    [46]彭启琮,管庆. DSP集成开发环境.北京:电子工业出版社,2004:1-2
    [47]王潞钢,陈林康,曾岳南,许贤昶. DSP C2000程序员高手进阶.北京:机械工业出版社,2005:40-43
    [48]任锐. CAN总线通讯协议设计.兵工自动化,2007,26(3):50-58
    [49]杨明,梁小斌,贵献国,徐殿国.控制系统Anti-Windup设计综述.伺服控制,2007,03:16-17
    [50] Bohn C, Atherton D P. An analysis package comparing PID anti-windup strategies. IEEE Control Systems, 1995, 15(2): 34-40
    [51] USB System Architecture Book. http://www.mindshare.com
    [52] 82C250 Datasheet. http://www.semiconductors.philips.com
    [53] SJA1000 Datasheet http://www.semiconductors.philips.com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700