用户名: 密码: 验证码:
SbSn金属间化合物的结构和对石油改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,工农业对原油的需求量越来越大,而原油的品质越来越差,硫和重金属含量不断增高,给后续处理工艺带来很大的麻烦,同时也加剧了环境的污染。另一方面,世界各国对环保的要求越来越高,对原油产品中硫含量的限制越来越苛刻。这两方面的矛盾促使了原油加工中脱硫技术的发展。寻求经济高效的脱硫技术一直是原油加工工业中的一个热点,开发新的脱硫材料和脱硫工艺是一件很有意义的工作。
     本文以Sb、Sn为原料,采用不同的非平衡凝固方法和条件来制备SbSn金属间化合物,借助于差示扫描量热(DSC)、X射线衍射(XRD)、X射线光电子能谱(XPS)、俄歇电子能谱(AES)等现代分析手段对制备的材料进行了表征。考察了制备出的材料对原油中沥青质、硫和重金属等杂质的脱除效果。主要内容如下:
     1.对熔体的过热处理进行了研究,使用DSC表征了Sn和Sb混合物在升温过程中的变化,结果表明:1:1的锡-锑混合物在超过熔点完全转化为液相以后会在900℃附近发生液相微观结构变化,锡单质也会在970℃附近存在着液相结构的转变。不同熔融温度下制备出的材料的结构并不相同,由750℃下熔融快冷制备出的SbSn颗粒为六方晶体,由950℃下熔融快冷制备出的SbSn颗粒为三方晶体。根据标准图谱提供的金属间化合物SbSn的空间点群和晶格参数,用Materials Studio 3.0.1建立了SbSn的单晶胞空间结构图,并计算出了相应的XRD图,计算图与实测图有一致性。不同熔融温度下制备出材料的表面成分和锑元素的价态有所不同,电压30V,电流400A,淬速30m/s的条件下制备出的材料与950℃下熔融快冷制备出的材料的晶体结构一致,并且表面是富锑的,锑的价态是以+3价为主;电压20V,电流20A,淬速30m/s的条件下制备出的材料与750℃下熔融快冷制备出的材料的晶体结构一致,表面是富锡的,锑的价态是以零价态为主。
     2.以沥青质的的脱出率作为评价标准,来确定原油乳化液的最佳配制条件。研究结果表明最优的乳化液配制条件为:表面活性剂为油包水型,含量在0.15%以上,水含量在35%~40%之间。
     3.研究了不同的工艺条件对材料的结构和脱硫性能的影响。对于原油乳化液脱硫过程来说,研究结果表明:不同熔融温度下制备出的材料的脱硫性能不同,
With the development of economy, crude oil plays a more and more important role in the agriculture and industry, but the quality of crude oil is becoming poor, and the content of sulfur and heavy metal is increasing continuously, which brings trouble to the follow-up process of crude oil, and polluted the environment badly. On the other hand, the standards of international community to environmental protection trend towards more strict, and the prescriptive value of the sulfur content in crude oil products are becoming lower and lower. The causes from the above two sides urged the development of the desulfurization technology. Developing a new technology of desulfurization is a focus in the crude oil processing industry, and finding a new desulfurization material and process is a very meaningful work.
     Intermetallic compound SbSn was prepared by using different non-equilibrium solidification methods and conditions using Sb and Sn as raw materials. The prepared materials were analyzed and characterized by modern analytical techniques, such as DSC, XRD, XPS, and AES etc. The effection of decreasing the contents of asphaltene, S and heavy metal in crude oil by using the prepared materials was investigated. The following results have been obtained.
     1. Melt superheat treatment was studied and the transformation of mixture of Sb and Sn with the temperature increasing was characterized by DSC. Result revealed that the mixture of Sb and Sn with a molar proportion of 1:1 has a change of liquid microstructure at about 900℃, which is far above the melting point of Sb or Sn, moreover Sn has a liquid micro structural change at about 970℃. The crystal structures of SbSn prepared at different melting temperatures were not the same. SbSn prepared by melting spraying quencher at the melting temperatures of 750℃is hexagonal crystal, while SbSn prepared at the melting temperatures of 950℃is trigonal crystal. According to the space lattice and crystal lattice parameters given by stand atlas of XRD, the monocrystalline space lattice model of SbSn was obtained using Materials Studio 3.0.1, and XRD pattern of it was calculated. The calculated
引文
1. Lu S H, Yang I C, Mei H, et al. Sulfur filter by intermetallic media [J]. Crude oil Science and Technology. 2000, 18(5&6): 657~670.
    2. Duffield Roger, German Randall M, Fu Yen Teh, et al. A fuel filter and production process [P]. WO 97/27395, 1997.
    3. 刘晓. SbSn 金属间化合物的制备及其脱硫应用[D]. 南京: 南京工业大学,2005.6.
    4. 钱伯章. 含硫原油加工工艺研究[J]. 原油规划设计, 2005. 16(3): 1~6.
    5. 徐志达, 单石灵. 含硫原油的加工工艺[J]. 原油与天然气化工, 2004, 32(1): 34~36.
    6. 徐志达, 单石灵. 加工含硫原油的环保问题与对策[J]. 环境科学与技术, 2004, 27(5): 80~82.
    7. 冯锐,杨旭. 原油炼制过程中的硫化物处理技术及研究进展[J]. 西南原油学院学报,1999,21(3): 70~73.
    8. 杨洪云, 赵德智, 沈耀亚. 油品脱硫工艺技术及其发展趋势[J]. 原油化工高等学校学报,2001,14(3): 26~31.
    9. Leshchev S, Melsitova I V. Extraction of organic sulfur non-electrolytes by polar organic solvents and their aqueous mixtures[J]. Izv Vyssh Uchebn Zaved, 1991, 34(10): 65~68.
    10. Bauer L N. Separation and concentration of sulfur-containing compounds based on compellation[M]. Probl Khim Nefti, 1992: 34~39.
    11. Lehr, James S. Treatment of Spent Refinery Caustic[P]. U S 5434329, 1995.
    12. 夏道宏,苏贻勋, 等. 国内外轻质油品脱臭催化剂研究进展 [J]. 原油大学学报, 1995, 19(3): 102~109.
    13. 夏道宏, 钱家麟. 季铵碱化钛菁钴的合成及脱硫醇动力学[J]. 原油大学学报(自然科学版), 1994, (5): 116~120.
    14. Riaz. Desulfurization of organic sulfur compounds mediated by a molybdenum/cobalt/sulfur cluster[J]. J Am Chem Soc, 1994, 116(10): 78~81.
    15. Sugimoto. Desulfurization of light oils[P]. J P 0446993 .
    16. 于喜贵. 汽油一步法脱硫醇工艺的改造[J]. 炼油设计, 1993, 23(5): 17~18; 39.
    17. Greeley J P. Selective cat naphtha hydrofining with minimal octane loss[A]. 1999 NPRA Annual meeting, AM-99-31.
    18. John, Greeley J P. Technology options for meeting low sulfur mogas targets[A]. 2000 NPRA Annual meeting, AM-00-11.
    19. Jean-Luc Nocca. The domino interaction of refinery processes for gasoline quality attainment[A]. 2000 NPRA Annual meeting, AM-00-61.
    20. Edward J, Houde. Meet gasoline pool sulfur and octane targets with the ISAL? process[A]. 2000 NPRA Annual meeting, AM-00-52.
    21. 达建文, 韩新竹, 徐兴忠, 等. 催化裂化汽油选择性加氢脱硫催化剂的研制及性能评价[J]. 原油炼制与化工. 2002, 33(7): 1~4.
    22. Tryjankowski D A. Mobil’s octainTM process: FCC gasoline desulfurization reaches a new performance level[A]. 1999 NPRA Annual meeting, AM-99-30.
    23. Hearn, Dennis, et al. Gasoline desulfurization process[P]. US 5597476, 1997, 01.
    24. Strawinski R J. Method of desulfurizing crude oil[P]. US 2521761,1950.
    25. Strawinski R J. Purification of substances by microbial action[P]. US 2574070,1951.
    26. Zobell C E. Process of removing sulfur from Crude oil hydrocarbons and apparatus[P]. US 2641564, 1953.
    27. Isidor K. Bacteriological desulfurization of Crude oil[P]. US 2975103, 1961.
    28. Hitzman D O. Treatment of hydrocarbons[P]. US 3069325, 1962.
    29. Trussell P C, Walden C C, Duncan D W. Accelerated microbiological ore extraction process[P]. US 3305353, 1967.
    30. Umezawa H, Takeuchi T, Aoyagi T. Processes for producing physiologically active peptide and its N-acyl derivatives[P]. US 4055468, 1977.
    31. Kilbane J J. Desulfurization of coal: the microbial solution[J]. Trends in Biotechnol. 1989, 7: 97~101.
    32. Izumi Y, Ohshrio T, Ogiro H, et al. Selective desulfurization of dibenzothiophene by Rhodococcus erythropolis D-1[J]. Appl Envion Microbiol. 1994, 60: 223~226.
    33. Rhee S K, Chang J H, Chang Y K, et al. Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain CYKS1[J]. Appl Envion Microbiol, 1998, 64: 2327~2331.
    34. Denome S A, Olson E S, Young K D, et al. Identification and cloning of genes involved in specific desulphurisation of dibenzothiophene by Rhodococcus sp. strain IGTS8[J]. Appl Envion Microbiol. 1994, 59: 2837~2843.
    35. 梁朝林. 高硫原油加工[M]. 北京:中国石化出版社, 2001.
    36. 秦如意, 张晓静, 刘金龙. FCC 汽油吸附脱硫工艺的研究[J]. 原油炼制与化工. 2003, 34(3): 24~28.
    37. Bakr A, Salem S H. Naphtha desulfurization by adsorption[J]. Ind Eng Chem Res, 1994, 33(2): 336~340
    38. Bakr A, Salem S H, Hamid H S. Removal of sulfur compounds from naphtha solutions using solid adsorbents[J]. Chem Eng Technol, 1997,20(5):342~347.
    39. 董惟平, 姚虎卿. 吸附法脱除液体丙烯中硫的化合物[J]. 南京化工学院学报, 1992, 14(3): 32~38.
    40. 居沈贵, 管国锋, 姚虎卿. 载金属离子的氧化铝吸附净化汽油中硫醇[J]. 现代化工, 2002, 22(7): 27~33.
    41. Mikhail S, Zaki T, Khalil L. Desulfurization by an economically adsorption technique[J]. Applied catalysis A: General, 2002,227(1/2):265~278.
    42. 汪雨生, 孟祥堃, 张晓昕, 等. 用镍系非晶态合金脱除苯中硫的研究[J]. 原油化工, 2004, 33(2): 122~125.
    43. Akira T, Frances Y H, Ralph Y T. New Sorbents for Desulfurization by p-Complexation: Thiophene/Benzene Adsorption[J]. Ind Eng Chem Res, 2002, 41(10): 2487~2496.
    44. Irvine R L, Benson B A, Varraveto D M, et al. IRVAD? process-low cost breakthrough for low sulfur gasoline[A]. 1999 NPRA Annual Meetig, AM-99-42.
    45. Khare, Gyanesh P, Bartlesville, et al. Sorbent compositions[P]. US 5710089, 1998.
    46. Khare, Gyanesh P, Bartlesville, et al. Desulfurization and novel sorbents for same [P]. US 6346190, 2002.
    47. Chevron Research and Technology Company. Sulfur removal system for protection of reforming catalysts [P]. US 5259946,1993.
    48. 于凤昌, 娄世松, 徐晓等. 燃油加热炉熔灰腐蚀研究进展[J]. 原油化工腐蚀与防护,2003, 20(5): 1~6.
    49. 任鑫, 杨怀玉, 王福会,等. 重金属钒腐蚀的研究进展[J]. 腐蚀科学与防护技术, 2001, 13(6): 338~341.
    50. 张剑坡, 刘风立, 李会欣. 重油催化裂化装置抗重金属镍污染的措施[J]. 工业催化, 2000, 8(5): 57~62.
    51. Chery Hill. Process for removing metal from crude[P]. US 4646589. 1987.
    52. Kukes S G. Demetalization of heavy oils with phorou acid[P]. US 4522702. 1985.
    53. 克拉默大卫 C. 用硫酸和它的盐脱除烃原料中的金属[P]. CN 105552A. 1991.
    54. G 雷诺兹 约翰. 用二元羧酸及其盐从烃原料中脱金属[P]. CN1036981. 1989.
    55. Rusell. Removing metal from hydrocarbon oil[P]. US 3052627.1975.
    56. 娄世松, 张鸿勋, 沙欧等. 渣油脱除金属杂质工艺研究[J]. 原油化工, 2002, 31(5): 357~360.
    57. 娄世松, 张鸿勋, 楚喜丽等. 重质燃料油脱金属钒、钠技术研究[J]. 北京化工大学学报, 2002, 29(5): 49~52.
    58. 娄世松, 楚喜丽, 左禹. 脱除重油中有害金属杂质新技术[J]. 腐蚀科学与防护技术, 2003, 15(3): 309~311.
    59. Johnson M, Tabler D. Cracking catalyst restoration with antimony compounds[P]. US 3711422, 1973.
    60. Mckay D L. Passivating metals on cracking catalysts[P]. US 4025458, 1977.
    61. Dale G H, Mckay D L. Passivate metals in FCC feeds[J]. Hydrocarbon Process, 1977, 56(9): 97.
    62. 赵振辉, 刘成军. MP-35 金属钝化剂的工业应用[J]. 原油炼制与化工, 1994, 25(1): 66~67.
    63. 申宝剑, 马振东, 郭海卿等. LMP-4 型金属钝化剂的工业应用[J]. 河南原油, 1996, 10(4): 37~40.
    64. 王文婷, 杨凡. YXM-92 型金属钝化剂在催化裂化装置上的应用[J]. 工业催化, 1999, 2: 47~51.
    65. 梁凤印, 杨宝康. YXM-92 型金属钝化剂的工业应用[J]. 石化技术, 1992, (2): 81~85.
    66. 云宏俊, 夏建平, 武振林,等. JK-010 金属钝化剂的工业应用[J]. 炼油设计, 2000, 30(8): 44~46.
    67. Readal C T, Mckinney J D, Titmus R A. Method of negating the effects of metals poisoning on cracking catalysts[P]. US 3977963, 1976.
    68. Mckinney J D, Mitchell B R, Sebulsky R T. Method for preparing crystalline aluminosilicate cracking catalysts[P]. US 4083807, 1978.
    69. Heite R S, English A R, Smith G A. Bismuth nickel passivation effective in FCCU[J]. Oil Gas J, 1990, 88(23): 81.
    70. Mitchell B R, Swift H E. Method of negating the effects of metals poisoning on zeolitic cracking catalysts[P]. US 4101417, 1978.
    71. Kugler E L. Cracking catalysts containing strontium carbonate[P]. US 4824815, 1989.
    72. Kugler E L. Process using cracking calalyst containing strontium carbonate[P]. US 4944864, 1990.
    73. Occelli M L. Modified cracking catalyst composition[P]. US 4465779, 1984.
    74. Liao P C, Klendworth D D, Lee F M. Catalytic cracking process[P]. US 5141624, 1992.
    75. Mitchell B R, Vogel R F. Vanadium passivation in a hydrocarbon catalytic cracking process [P]. US 4451355, 1984.
    76. Mitchell B R, Vogel R F. Vanadium passivation in a hydrocarbon catalytic cracking process [P]. US 4520120, 1985.
    77. Bertus B J, Mckay D L. Cracking catalysts passivated by barium[P]. US 4377494, 1983.
    78. Bertus B J, Mckay D L. Use of cracking catalysts passivated by barium[P]. US 4473463, 1984.
    79. Corbett R A. More refining catalysts available[J]. Oil & Gas Journal, 1985, 83(46):127.
    80. Aalaud L R. New refining catalysts that cope with problems in several areas arereported[J]. Oil & Gas Journal, 1984, 82(48): 104.
    81. Bertsch C F. Passivation of cracking catalyst[P]. EP 147961, 1985.
    82. Chapple A P. Catalyst[P]. US 4948769, 1990.
    83. Neel E, Perret A, Cailho R. Zeolitic cracking catalysts[P]. GB 2037177, 1980.
    84. Bartek R, Wotermann G M. Hydrocarbons cracking process and catalyst for use in same[P]. US 4971935, 1990.
    85. Bertus B J, McKay D L. Cracking catalyst[P]. US 4489169, 1984.
    86. Lasa H I, Farag H I, Nepean S N. Fluidized cracking catalyst with in situ metal traps[P]. US 5424262, 1995.
    87. 石燕. 抗重金属污染的 FCC 催化剂基质[J]. 原油炼制与化工,1996, 27(10):37.
    88. 孙书红, 雷荣孝, 庞新梅. 抗重金属重油催化裂化催化剂的研制[J]. 石化技术与应用, 2001, 19(1): 28-30.
    89. 张慎平, 卓润生. 多功能金属钝化剂在催化裂化装置上的工业应用[J]. 原油炼制与化工, 2001, 32(1): 63-65.
    90. Hettinger W P. Development of a reduce crude cracking catalyst[A]. M. L. Occelli. Fluild catalyst cracking: Role in modern refine[C]. ACS symposium series, 1987, 375: 308~340.
    91. Féron B, Gallezot P, Bourgogne M. Hydrothermal aging of cracking catalysts: V. Vanadium passivation by rare-earth compounds soluble in the feedstock[J]. Journal of Catalysis, 1992, 145(2): 469~478.
    92. Altomare C A, Koermer G S, Martins E, et al. Vanadium interactions with treated silica aluminas[J]. Applied Catalysis, 1988, 45(2): 291~306.
    93. Dougan T J, Alkemade U, Lakhanpal B, et al. New vanadium trap proven in commercial trials[J]. Oil Gas Joural, 1994, 92(39): 81~2, 84, 86, 89~91.
    94. Chester A W, Chu P, Huss J A, et al. Metal passivating agents[P]. US 4919787, 1990.
    95. Chin A A, Sarli M S. Metal passivating catalyst composition for cracking hydrocarbons[P]. US 4921824, 1990-05-01.
    96. Mauge F, Gallezot P, Coucelle J C. Catalytic cracking process[P]. EP 173596, 1986.
    97. 王芳珠, 卓润生, 孙在春. 稀土钝钒剂对钒污染催化剂活性与再生性能的影响[J]. 原油大学学报(自然科学版), 1998, 22(5): 75~82.
    98. 叶天旭, 潘惠芳, 高永灿. 稀土基催化裂化钝镍剂的抗镍性能及其机理[J]. 原油大学学报(自然科学版), 1999, 23(5): 74~76.
    99. 高永灿, 潘惠芳, 叶天旭. 新型金属型钝镍剂的开发与研究[J]. 原油大学学报(自然科学版), 2000, 24(3): 46~53.
    100.李嘉庆, 张在龙, 马淑杰, 等. 高岭土负载稀土-碱土复配钝化剂的研究[J]. 青岛化工学院学报, 2002, 23(4): 7~9.
    101.Pelet R, Behar F, Monin J C. Resin and asphaltenes in the generation and migration of Crude oil [J]. Org Geochem, 1986, 10: 481-498.
    102.Tissot B P. The geochemistry of resins and asphaltenes [M]. In characterization of Heavy Crude oil and Crude oil Residues (in Chinese), translated by Wu L Y and Yang C D. Beijing: Crude oil Industry Press, 1989: 2~10.
    103.Speight J G, Long R B. The concept of asphaltenes revisited[J]. Fuel Science and Technology Int, 1996, L.14(1&2): 1~12.
    104.赵凤兰, 鄢捷年. 沥青质沉积抑制剂和清除剂研究[J]. 油田化学, 2004, 21(4): 310~312, 309.
    105.田建锋, 陈振林. 原油沥青质的吸附、沉淀机理及其影响因素[J]. 海相油气地质, 2005, 10(3): 37~42.
    106.李美霞. 沥青质沉积问题文献综述[J]. 特种油气藏. 1996, 3(3):59~62.
    107.陈胜利, 贾生盛, 罗运华, 等. 渣油超临界脱沥青过程[J]. 炼油设计, 1993, 23(4):17~21.
    108.沈本贤. 我国溶剂脱沥青工艺的主要技术进展[J]. 炼油设计, 2000, 30(3): 5~9.
    109.张培甫. 原油中金属杂质的危害及脱除方法[J]. 原油化工腐蚀与防护, 1996, 13(1): 9~11.
    110.张永刚, 韩雅芳, 陈国良, 等. 金属间化合物结构材料[M]. 北京: 国防工业出版社, 2001.1.
    111.陈国良, 林均品. 有序金属间化合物结构材料物理金属学基础[M]. 北京: 冶金工业出版社, 1999.
    112.刘晓, 曹晶晶, 云志, 等. 金属间化合物及其制备方法—1. 燃烧合成技术[J]. 江苏工业学院学报, 2003, 15(2): 33~36.
    113.刘晓, 曹晶晶, 云志, 等. 金属间化合物及其制备方法—2. 机械合金化、熔炼和熔铸、气相沉积技术[J]. 江苏工业学院学报, 2003, 15(3): 5~8.
    114.陈光, 傅恒志. 非平衡凝固新型金属材料[M]. 北京: 科学出版社, 2004.8.
    115.李月珠. 快速凝固技术和材料[M]. 北京: 国防工业出版社, 1993.
    116.马卫红, 坚增运, 严文. 液态金属的深过冷及其凝固组织[J]. 西安工业学院学报, 2000, 20(1): 49-54.
    117.孙万里, 张忠明, 徐春杰, 等. 深过冷快速凝固技术的研究进展[J]. 兵器材料科学与工程, 2005, 28(1): 66-71.
    118.坚增运, 杨根仓, 周尧和. Al-4.5%Cu 合金的过冷及凝固组织特征[J]. 航空学报, 1996, 17(6): 53-56.
    119.谢明, 刘建良, 邓忠民等. 粉末冶金快速凝固技术与材料[J]. 云南冶金, 2000, 29(3): 26-32.
    120.陈冠荣. 化工百科全书, 第 17 卷 无机聚合物——心血管疾病药物[M]. 北京:化学工业出版社, 1998.4.
    121.陈冠荣. 化工百科全书, 第 15 卷 水产养殖——天然树脂[M]. 北京:化学工业出版社, 1997.12.
    122.Reinders W. über die Legierungen von Antimon und Zinn[J]. Zeitschrift für anorganische Chemie, 1900, 25:113.
    123.Gallagher F E. The Alloys of Antimony and Tin[J]. Journal of Physical Chemistry, 1906, 10(2): 93.
    124.Bijlert. Zeitschrift für Physikalische Chemie, 1891, 8: 843.
    125.Hansen M, Anderk K. Constitution of Binary Alloys[M]. New York: McGraw-Hill Book Co, 1958: 1175~1177.
    126.Predel B, Schwermann W. Constitution and thermodynamics of the antimony-tin system[J]. Journal of the institute of metals, 1971,99:169~173.
    127.赵天从. 锑[M]. 北京:化学工业出版社, 1987.
    128.Vassiliev V, Lelaurain M, Hertz J. A new proposal for the binary(Sn, Sb) phasediagram and its thermodynamic properties based on a new e.m.f. study[J]. Journal of alloy and compounds, 1997, 247:223~233.
    129.IwaséK, Aoki N, A Osawa. Science Reports, Tóhoku University, 1931, 20: 353.
    130.Allen W P, Perepezko J H. Constitution of the tin-antimony system[J], Scripta Metallurgica et Materiala, 1990, 24: 2215.
    131.Osawa A, Nature, 1929, 124: 124.
    132.Hagg G, Hybinette AG. Philosophical Magazine, 1935, 20: 913.
    133.Hanowalt J, Rinn H, Frevel L. Chemical Analysis by X-Ray Diffraction[J]. Anal Chem, 1938, 10: 457.
    134.Balan L, Schneider R, Billaud D, et al. A novel solution-phase and low-temperature synthesis of SnSb nano-alloys[J]. Materials Letters, 2005, 59: 2898 – 2902.
    135.刘宇, 解晶莹, 杨军等.锂离子电池中的高容量合金/碳复合电极研究[J]. 无机材料学报, 2003, 18(1): 163~168.
    136.黄学杰, 李泓, 王庆. 纳米储锂材料和锂离子电池[J]. 物理, 2002, 31(7): 444~449.
    137.陈玉全. SnSb 合金电化学研磨工艺的研究[J]. 哈尔滨理工大学学报, 1998, 3(6): 9~12.
    138.高守雷, 戚飞鹏, 龚永勇等. 高能超声处理对锡锑包晶合金凝固组织的影响[J]. 铸造, 2003, 52(1): 21~23.
    139.段海平, 冯弘, 赵清华. 低频振动凝固改善 Sn-Sb 合金偏析的机理[J]. 铸造, 2004, 53(12): 1015~1018.
    140.段海平, 冯弘, 赵清华. 振动对改善 Sn-Sb 合金密度偏析的研究[J]. 机械工程材料, 2005, 29(7):50~52.
    141.Hong Li, Guangyan Zhu, Xuejie Huang, et al. Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature[J], Journal of materials science, 2000, 10: 693~696.
    142.Balan L, Schneider R, Billaud D, et al. A novel solution-phase and low-temperature synthesis of SnSb nano-alloys[J]. Materials Letters, 2005, 59:2898~2902.
    143.Andre Levi. Heredity in cast iron[J]. The Iron Age, 1927, 6: 960~967.
    144.周振平, 李荣德. 合金熔体过热处理研究的国内发展状况[J]. 铸造, 2003, 52(2): 79~83.
    145.边秀房, 刘相法, 马家骥. 铸造金属遗传学[M]. 济南: 山东科学技术出版社, 1998.
    146.陈光, 傅恒志. 过热合金熔体的几种物性滞后效应[J]. 材料科学与工程, 2002, 20(4): 549-551.
    147.方奇, 于文涛. 晶体学原理[M]. 北京:国防工业出版社, 2002.1.
    148.梁敬魁. 粉末衍射法测定晶体结构(上、下册)[M]. 北京:科学出版社, 2003.4.
    149.Accelrys Incorporation. Materials Studio version 3.0.1[Z]. Accelrys Inc. San Diego, 2003.
    150.王建祺, 吴文辉, 冯大明. 电子能谱学(XPS/XAES/UPS)引论[M]. 北京:国防工业出版社, 1992.
    151.宝鸡有色金属研究所, 粉末冶金多孔材料[J], 北京;冶金工业出版社, 1978, 11.
    152.Saracco G, Versteeg G F, Van Swnaij W P M. J Membrane Sci, 1994 ,95: 105;
    153.郝彤, 膜科学与技术[J], 1998, 18(6): 25.
    154.Speight J G. Asphaltenes and the structure of Crude oil[J]. Pet Chem Refin, 1998, 103~120.
    155.廖泽文. 沥青质地球化学行为研究及其在原油勘探开发中的应用前景[D]. 中国科学院博士学位研究生学位论文, 2001.
    156.朱美茜, 李执, 毛弘毅. 沥青质的结构组成特征及地球化学应用-塔里木东北地区油源研究[A],《第四届全国有机地球化学会议论文集》, 中国地质大学出版社(武汉)1990, 148~163.
    157.王玉琨, 荣耀森, 岳延盛, 等. 分光光度法测定沥青质含量[J]. 西安原油学院学报. 1998,13(5): 35~39.
    158.陈国珍, 黄贤智, 刘文远, 等. 紫外—可见光分光光度法[M]. 原子能出版社, 1980.
    159.王云峰, 张春光, 侯万国. 表面活性剂及其在油气田中的应用[M]. 原油工业出版社, 1995.
    160.周连君, 毕思伟, 尤进茂等. 2.5 次微分溶出伏安法测定镍[J]. 广东微量元素科学, 1994, 1(4): 45~49.
    161.陈迎霞, 胡鹏程. ICP/AES 法测定原油和残渣燃料油中镍、钒、铁含量[J]. 高桥石化, 2001,16(1): 31~34.
    162.姜颖虹, 高素芝. 5-Br-PADAP 分光光度法测定水中微量镍[J]. 中国卫生检验杂志, 1995, 5(5): 277~279.
    163.刘树仁, 任晓娟, 贺庆义.催化光度法测定原油及柴油中痕量钒[J]. 原油学报(原油加工), 2003, 19(4): 52~56.
    164.孙登明. 萃取抑制动力学光度法测定痕量镍[J]. 分析化学, 1999, 27(7): 821~824.
    165.赵中一, 胡超勇, 金继红. 固相反射分光光度法测定镍的研究[J]. 分析测试学报, 1997, 16(3): 10~12.
    166.赵进沛, 杨志魁, 李清亚. 固相目视比色法简易测定水中痕量镍[J]. 环境保护, 1995,9: 27~28.
    167.虞学俊, 李在均, 潘教麦. 吸光光度法测定食用氢化油中痕量镍[J]. 理化检验-化学分册, 2001, 37(12): 560~562.
    168.赵杉林, 李萍, 肖光等. 多波长线性回归-一阶导数分光光度法同时测定原油中的钴和镍[J]. 原油化工, 1998, 27(1): 46~49.
    169.石胜尧, 陈奇洲, 梁军. 工业废水中镍的快速测定方法[J]. 中国公共卫生, 1994, 10(4): 170~171.
    170.靳焜, 张蓉, 彭勤纪等. 典型表面活性剂结构和组成的波谱表征--山梨醇酐脂肪酸酯和聚氧乙烯山梨醇酐[J]. 分析测试学报, 2002, 21(1): 33~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700