用户名: 密码: 验证码:
一维TiO_2与ZnO纳米阵列的设计、制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米有序阵列,尤其是在透明导电基底上制备的无支撑自立纳米棒与纳米管有序阵列可在多种器件上进行应用。当将纳米阵列用于光伏器件时,这些结构可以增加电荷生成层与电荷传递层之间的界面面积,提高提取电荷的效率。本论文选取TiO_2与ZnO两种目前研究最广泛的宽禁带金属氧化物半导体材料,通过不同技术手段制备了TiO_2与ZnO的纳米棒与纳米管阵列,研究探讨了这些纳米阵列在纳米器件领域,尤其是在有机-无机杂化太阳能电池器件领域的应用。
     在ITO玻璃表面磁控溅射Al层,然后阳极氧化可制得多孔阳极氧化铝(AAO)膜/ITO玻璃复合模板。为了避免阳极氧化过程中AAO膜的破裂和脱落,在溅射高纯Al前,添加了Ti和W层分别作为连接层和缓冲层。磁控溅射后,通过热处理消除了溅射层的内应力,改善了各溅射层之间的结合力。在阳极氧化过程中,当发展较快的孔洞到达Al层底部时,会氧化底部的W缓冲层,对孔洞的快速发展起到缓冲作用,从而延缓了AAO膜底部的破裂和脱层,使大面积纳米孔洞阵列得以生成。
     采用溶胶-凝胶电泳法在AAO/ITO复合模板内填充TiO_2纳米棒与纳米管有序阵列,电泳法制备的TiO_2纳米结构随TiO_2溶胶陈化时间的延长,由纳米棒逐渐转变为纳米管结构。研究发现,在AAO模板孔洞底部的环状W电极是形成不同结构的前提,而溶胶溶液中带电粒子的扩散速度和纳米阵列的沉积速度的竞争则是形成不同结构的原因。将制备的TiO_2纳米阵列与p型聚合物聚3-己基噻酚(P3HT)结合,制成TiO_2纳米阵列/P3HT无机-有机杂化太阳能电池。纳米棒和纳米管太阳能电池的光电转换效率分别是0.38%和0.48%。相比文献中类似方法制备的TiO_2纳米晶结构杂化太阳能电池0.22%的转换效率,本文中制备的TiO_2纳米棒与纳米管阵列太阳能电池效率提高了约73%到118%的效率,显示了纳米有序阵列结构的巨大优势。
     通过磁控溅射、热处理二步法在独立AAO模板上制备出TiO_2纳米阵列。AAO模板参数对TiO_2的纳米结构具有决定作用,200 nm的孔径导致纳米管结构的生成,80 nm孔径的双面开孔模板导致纳米棒结构的生成,而80 nm的单孔模板导致闭口纳米管的生成。XRD分析显示TiO_2纳米管阵列为多晶锐钛矿结构,光致发光(PL)谱分析发现制备的纳米管与纳米棒阵列都为间接带隙半导体,纳米棒中的氧空位缺陷多于纳米管结构。将TiO_2纳米管阵列层从AAO模板脱离,转移到ITO玻璃上,旋涂一层P3HT,组成TiO_2纳米管/P3HT杂化太阳能电池。研究发现,具有TiO_2结合层结构的TiO_2纳米管/P3HT杂化太阳能电池性能比无结合层的电池显著提高,光电转换效率提高了8倍,达到0.34%。而采用n型富勒烯衍生物PCBM与P3HT充分混合后,由于电子-空穴对的有效分离,短路电流密度提高了近5倍,达到9.98 mA cm-2;光电转换效率提高了近6倍,达到2.07%。
     利用电沉积、热处理二步法在AAO模板中制备出了ZnO纳米管阵列和Cu@ZnO纳米同轴电缆阵列。在光致发光测试中,Cu@ZnO纳米同轴电缆被激发出绿光发射带,说明在Cu@ZnO纳米同轴电缆界面处的ZnO被Cu掺杂。还将独立AAO模板上的ZnO纳米阵列合成技术转移到AAO/ITO复合模板,在ITO玻璃上制备出ZnO纳米棒与纳米管有序阵列,ZnO有序阵列的载流子密度约为2.67×1020 cm-3,在透明导电氧化物领域具有很好的应用前景。
     通过一步电沉积法在ITO导电玻璃上制得ZnO纳米棒阵列。在温度为55℃时,得到的是致密的ZnO膜,而在85℃时,得到的是ZnO纳米棒阵列,说明ZnO膜的形貌取决于沉积温度。用85℃电沉积得到的ZnO纳米棒阵列组装的ITO/ZnO/P3HT:PCBM/Ag太阳能电池具有与ZnO纳米棒阵列共型形貌。对于未退火ZnO纳米棒阵列制备的太阳能电池,暴露在ZnO底部的主导缺陷区与共混聚合物直接接触,导致了严重的电流泄露。而通过退火消除ZnO底部暴露在外的缺陷,以及通过沉积更致密的ZnO纳米棒来阻止共混聚合物与主导缺陷区的接触都可以有效避免电流的泄露,从而进一步提高电池的开路电压。由于P3HT与PCBM的混合极其密切,它们的接触面积非常大,P3HT:PCBM混合物生成的光电流在总电流中占主导地位。通过ALD法在ZnO纳米棒表面覆盖一层TiO_2有效减少了电子和空穴的复合几率,进而提高了光电转换效率,电池的转换效率达到2.10%,高于无壳层的ZnO纳米棒阵列组装的太阳能电池。
Ordered nanomaterial arrays, especially arrays of free-standing nanorods and nanotubes on conducting substrates have been applied in many different fields. When implemented in photovoltaics, these structures can increase the surface area between the charge-generating and charge-transporting layers, improving the efficiency of charge extraction. In this study, we choose TiO_2 and ZnO which are two of the most extensively studied wide band gap metallic oxide semiconductors. The nanorod and nanotube arrays of the two materials were prepared by different techniques. The applications of these arrays in nanodevices, especially in organic-inorganic hybrid solar cells were researched in detail.
     Porous anodic aluminum oxide (AAO) membrane/ITO glass composite templates were prepared by anodizing the magnetron sputtered Al on the ITO glass. For avoiding the delaminating and cracking of the AAO at the bottom of the pores during anodization, Ti and W layers were sputtered before the magnetron sputtering of Al. Annealing was carried out to eliminate the inner stress of the sputtered layers, improving the connection between these layers. During anodization, the faster developing pores would oxidize the W barrier layer when it reached the bottom. The oxidation of the W slowed down the development of the pores, preventing the cracking of the AAO membrane and ensuring the completion of the whole array of the nanopores.
     Arrays of TiO_2 nanorods and nanotubes were embedded in AAO/ITO template by sol-gel electrophoresis. The structure of the TiO_2 changed from nanorod to nanotube with the sol aging time. The W ring electrode was the precondition to the formation of different structures. The competition between the diffusion rate of the charged particles and the deposition rate caused the formation of different structures. The as-prepared TiO_2 arrays were fabricated in hybrid solar cells by spin coating P3HT in the arrays. The conversion efficiencies were up to 0.38% and 0.48% for the TiO_2 nanorod and nanotube solar cells. The efficiency of the nanotube array solar cell was improved by 26% compared to the nanorod cell due to the larger specific surface area.
     TiO_2 arrays were also prepared in free-standing AAO template by magnetron sputtering and annealing. The parameters of the porous AAO template were highly influential in determining the nanostructure of the sputtered film. The template with a 200 nm pore diameter would result in the formation of nanotubes, while the double-sided through hole template with a 80 nm pore diameter would result in the formation of nanorods, and the one-sided blind hole template with a 80 nm pore diameter would result in the formation of closed-end tubes. The XRD measurement showed the annealed TiO_2 nanotubular film was polycrystalline anatase phase without preferred orientation. The photoluminescence (PL) spectrum revealed the as-prepared TiO_2 nanostructural film was an indirect bandgap semiconductor with oxygen vacancy defects that exist more in rods than in tubes. Then, the TiO_2 nanotubular film were removed from the AAO and transferred onto an ITO glass. A layer of P3HT was spin coated into the TiO_2 nanotube array to fabricate a hybrid solar cell. By adding a TiO_2 connecting layer between TiO_2 nanotubular film and ITO glass, the performance of the solar cell improved obviously, the conversion efficiency was increased 3.5 times and up to 0.34%. After mixing fullerene derivative PCBM with P3HT, due to the efficient separation of the electron-hole pair, the short circuit current density was improved 8 times and up to 9.98 mA cm-2, and the conversion efficiency was increased 6 times and up to 2.07%.
     ZnO nanotube arrays and Cu@ZnO coaxial nanocables were fabricated in free-standing AAO template by electrodeposition and then annealing. During the PL test, a green emission band was excited from the Cu@ZnO coaxial nanocable array, indicating that the ZnO was doped by Cu at the interface of the coaxial heterojunction. ZnO free-standing arrays of nanorods and nanotubes on ITO glass were prepared using similar technique. The carrier density of the ZnO array was 2.67×1020 cm-3, indicating the great potential of application in transparent conducting oxides.
     ZnO nanorod arrays were prepared by a simple one-step electrodeposition from aqueous solution. The 55℃deposition produced a dense ZnO film, while the 85℃deposition produced a nanorod array, indicating that the morphology of the deposited film depended on the temperature. The ITO/ZnO/P3HT:PCBM/Ag solar cell fabricated with the 85℃deposited ZnO array had a conformal morphology with the array. For the solar cell using the unannealed ZnO array, the direct contact between the polymer and the dominant defect region at the bottom would cause serious current leakage. By eliminating those defects through annealing, or preventing the direct contact using a denser array, the leakage could be avoided, in turn the open circuit voltage could be increased. The current was mainly generated by the P3HT:PCBM polymer blend. Thus, the effective way to increase the short circuit current density was to increase the density of ZnO rods so as to increase the load of the polymer blend and the interface between the ZnO rods and the polymer. The TiO_2 shell deposited on the ZnO by ALD decreased the rate of recombination between electrons and holes, in turn improved the conversion efficiency, which was up to 2.10% and was higher than all the ZnO array cells without TiO_2 shell.
引文
[1] Feynman, R.P., There is plenty of room at the bottom. Miniaturiation, New York: Reinhold, 1961.
    [2]张立德,牟季美,纳米材料与纳米结构.第一版.科学技术出版社:北京, 2001.
    [3] Peng, Y., H.L. Zhang, S.L. Pan, H.L. Li, Magnetic properties and magnetization reversal of alpha-Fe nanowires deposited in alumina film. Journal of Applied Physics, 2000. 87(10): 7405-7408.
    [4] Li, J.L., X.J. Liang, J.F. Jia, X. Liu, J.Z. Wang, E.G. Wang, Q.K. Xue, Spontaneous formation of ordered indium nanowire array on Si(001). Applied Physics Letters, 2001. 79(17): 2826-2828.
    [5] Nielsch, K., R.B. Wehrspohn, J. Barthel, J. Kirschner, S.F. Fischer, H. Kronmuller, T. Schweinbock, D. Weiss, U. Gosele, High density hexagonal nickel nanowire array. Journal of Magnetism and Magnetic Materials, 2002. 249(1-2): 234-240.
    [6] Shen, X.P., A.H. Yuan, F. Wang, J.M. Hong, Z. Xu, Fabrication of well-aligned CdS nanotubes by CVD-template method. Solid State Communications, 2005. 133(1): 19-22.
    [7] Gu, Z.J., F. Liu, J.Y. Howe, M.P. Paranthaman, Z.W. Pan, Germanium-catalyzed hierarchical Al2O3 and SiO2 nanowire bunch arrays. Nanoscale, 2009. 1(3): 347-354.
    [8] Chen, J.J., R.B. Wu, Y. Pan, Synthesis of the Tube-Brush-Shaped SiC Nanowire Array on Carbon Fiber and Its Photoluminescence Properties. Journal of Nanoscience and Nanotechnology 2010. 10(10): 6550-6555.
    [9] Wang, J.C., C.Z. Zhan, F.G. Li, The synthesis of highly oriented GaN nanowire arrays. Applied Physics a-Materials Science & Processing, 2003. 76(4): 609-611.
    [10] Huang, J., S. Virji, B.H. Weiller, R.B. Kaner, Nanostructured polyaniline sensors. Chemistry-a European Journal, 2004. 10(6): 1315-1319.
    [11] Cerrina, F., C. Marrian, A path to nanolithography. MRS Bulletin, 1996. 21(12): 56-62.
    [12] Xia, Y.N., P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials, 2003. 15(5): 353-389.
    [13] Stejny, J., R.W. Trinder, J. Dlugosz, Preparation and structure of poly (sulphur nitride) whiskers. Journal of Materials Science 1981. 16(11): 3161-3170.
    [14] Zhang, Y.J., N.L. Wang, S.P. Gao, R.R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, A simple method to synthesize nanowires. Chemistry of Materials 2002. 14(8): 3564-3568.
    [15] Wagner, R.S., W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters 1964. 4(5): 89-90.
    [16] Duan, X.F., C.M. Lieber, General synthesis of compound semiconductor nanowires. Advanced Materials, 2000. 12(4): 298-302.
    [17] Huang, M.H., Y.Y. Wu, H. Feick, N. Tran, E. Weber, P.D. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Advanced Materials, 2001. 13(2): 113-116.
    [18] Wu, Y., P. Yang, Direct observation of vapor-liquid-solid nanowire growth. Journal of the AmericanChemical Society 2001. 123(13): 3165-3166.
    [19] Peng, X.G., L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals. Nature, 2000. 404(6773): 59-61.
    [20] Jones, E.T.T., O.M. Chyan, M.S. Wrighton, Preparation and characterization of molecule-based transistors with a 50-nm source-drain separation with use of shadow deposition techniques: Toward faster, more sensitive molecule-based devices [5]. Journal of the American Chemical Society 1987. 109(18): 5526-5528.
    [21] Kapon, E., K. Kash, E.M. Clausen Jr, D.M. Hwang, E. Colas, Luminescence characteristics of quantum wires grown by organometallic chemical vapor deposition on nonplanar substrates. Applied Physics Letters 1992. 60(4): 477-479.
    [22] Fasol, G., Nanowires: Small is beautiful. Science, 1998. 280(5363): 545-546.
    [23] Penner, R.M., Mesoscopic metal particles and wires by electrodeposition. Journal of Physical Chemistry B 2002. 106(13): 3339-3353.
    [24] Song, H.H., K.M. Jones, A.A. Baski, Growth of Ag rows on Si(5 5 12). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999. 17(4): 1696-1699.
    [25] Ringsdorf, H., B. Schlarb, J. Venzmer, Molecular architecture and function of polymeric oriented systems: Models for the study of organization, surface recognition, and dynamics of biomembrnaes. Angewandte Chemie - International Edition in English, 1988. 27(1): 113-158.
    [26] Li, M., H. Schnablegger, S. Mann, Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 1999. 402(6760): 393-395.
    [27] Yu, Y.Y., S.S. Chang, C.L. Lee, C.R.C. Wang, Gold nanorods: Electrochemical synthesis and optical properties. Journal of Physical Chemistry B 1997. 101(34): 6661-6664.
    [28] Obare, S.O., N.R. Jana, C.J. Murphy, Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Letters 2001. 1(11): 601-603.
    [29] Mayya, K.S., D.I. Gittins, A.M. Dibaj, F. Caruso, Nanotubles prepared by templating sacrificial nickel nanorods. Nano Letters 2001. 1(12): 727-730.
    [30] Qiu, J.J., W.D. Yu, X.D. Gao, X.M. Li, Sol-gel assisted ZnO nanorod array template to synthesize TiO_2 nanotube arrays. Nanotechnology, 2006. 17(18): 4695-4698.
    [31] Martin, C.R., Nanomaterials: A membrane-based synthetic approach. Science, 1994. 266(5193): 1961-1966.
    [32] Brumlik, C.J., V.P. Menon, C.R. Martin, Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques. Journal of Materials Research, 1994. 9(5): 1174-1183.
    [33] Yoo, W.C., J.K. Lee, Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes. Advanced Materials, 2004. 16(13): 1097-1101.
    [34] Lakshmi, B.B., P.K. Dorhout, C.R. Martin, Sol-gel template synthesis of semiconductor nanostructures. Chemistry of Materials, 1997. 9(3): 857-862.
    [35] Lakshmi, B.B., C.J. Patrissi, C.R. Martin, Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chemistry of Materials, 1997. 9(11): 2544-2550.
    [36] Limmer, S.J., T.P. Chou, G.Z. Cao, A study on the growth of TiO_2 nanorods using sol electrophoresis.Journal of Materials Science, 2004. 39(3): 895-901.
    [37] Martin, C.A., J.K.W. Sandler, M.S.P. Shaffer, M.K. Schwarz, W. Bauhofer, K. Schulte, A.H. Windle, Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. Composites Science and Technology, 2004. 64(15): 2309-2316.
    [38] Tan, L.K., M.A.S. Chong, H. Gao, Free-standing porous anodic alumina templates for atomic layer deposition of highly ordered TiO_2 nanotube arrays on various substrates. Journal of Physical Chemistry C, 2008. 112(1): 69-73.
    [39] Hornyak, G., M. Kr?ll, R. Pugin, T. Sawitowski, G. Schmid, J.O. Bovin, G. Karsson, H. Hofmeister, S. Hopfe, Gold clusters and colloids in alumina nanotubes. Chemistry - A European Journal, 1997. 3(12): 1951-1956.
    [40]翁瑞宏.二氧化钛奈米管阵列的合成及其和聚噻吩复合材料性质的研究[硕士论文].台北:国立中央大学. 2008
    [41] Ryu, W.H., C.J. Park, H.S. Kwon, Synthesis of Highly Ordered TiO_2 Nanotube in Malonic Acid Solution by Anodization. Journal of Nanoscience and Nanotechnology, 2008. 8(10): 5467-5470.
    [42] Yang, Y., X.H. Wang, L.T. Li, Synthesis and growth mechanism of graded TiO_2 nanotube arrays by two-step anodization. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2008. 149(1): 58-62.
    [43] Wang, J., Z.Q. Lin, Freestanding TiO_2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chemistry of Materials, 2008. 20(4): 1257-1261.
    [44] Watcharenwong, A., W. Chanmanee, N.R. de Tacconi, C.R. Chenthamarakshan, P. Kajitvichyanukul, K. Rajeshwar, Self-organized TiO_2 nanotube arrays by anodization of Ti substrate: Effect of anodization time, voltage and medium composition on oxide morphology and photoelectrochemical response. Journal of Materials Research, 2007. 22(11): 3186-3195.
    [45] Mor, G.K., O.K. Varghese, M. Paulose, C.A. Grimes, Transparent highly ordered TiO_2 nanotube arrays via anodization of titanium thin films. Advanced Functional Materials, 2005. 15(8): 1291-1296.
    [46] Miyauchi, M., H. Tokudome, Y. Toda, T. Kamiya, H. Hosono, Electron field emission from TiO_2 nanotube arrays synthesized by hydrothermal reaction. Applied Physics Letters, 2006. 89(4): 043114.
    [47] Miyauchi, M., H. Tokudome, Super-hydrophilic and transparent thin films of TiO_2 nanotube arrays by a hydrothermal reaction. Journal of Materials Chemistry, 2007. 17(20): 2095-2100.
    [48] Chi, B., E.S. Victorio, T. Jin, Synthesis of TiO_2-based nanotube on Ti substrate by hydrothermal treatment. Journal of Nanoscience and Nanotechnology, 2007. 7(2): 668-672.
    [49] Zhou, Y.K., L. Cao, F.B. Zhang, B.L. He, H.L. Li, Lithium insertion into TiO_2 nanotube prepared by the hydrothermal process. Journal of the Electrochemical Society, 2003. 150(9): A1246-a1249.
    [50] Cui, Y.T., J.S. Wang, H.Y. Li, Z.Z. Wang, Effects of AAO Template on the Surface Microstructure of TiO_2 Nanoarray Films Fabricated by Liquid Phase Deposition. Chinese Journal of Inorganic Chemistry, 2009. 25(7): 1274-1278.
    [51] Zwilling, V., M. Aucouturier, E. Darque-Ceretti, Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochimica Acta 1999. 45(6): 921-929.
    [52] Gong, D., C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research 2001. 16(12): 3331-3334.
    [53] Cai, Q.Y., M. Paulose, O.K. Varghese, C.A. Grimes, The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. Journal of Materials Research 2005. 20(1): 230-236.
    [54] Mor, G.K., K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Enhanced photocleavage of water using titania nanotube arrays. Nano Letters 2005. 5(1): 191-195.
    [55] Mor, G.K., O.K. Varghese, M. Paulose, N. Mukherjee, C.A. Grimes, Fabrication of tapered, conical-shaped titania nanotubes. Journal of Materials Research 2003. 18(11): 2588-2593.
    [56] Mor, G.K., O.K. Varghese, M. Paulose, C.A. Grimes, Transparent highly ordered TiO_2 nanotube arrays via anodization of titanium thin films. Advanced Functional Materials 2005. 15(8): 1291-1296.
    [57] Macak, J.M., H. Tsuchiya, P. Schmuki, High-aspect-ratio TiO_2 nanotubes by anodization of titanium. Angewandte Chemie-International Edition, 2005. 44(14): 2100-2102.
    [58] Feng, X.J., K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Vertically Aligned Single Crystal TiO_2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications. Nano Letters 2008. 8(11): 3781-3786.
    [59] Barnard, A.S., L.A. Curtiss, Prediction of TiO_2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Letters 2005. 5(7): 1261-1266.
    [60] Chu, S.Z., S. Inoue, K. Wada, D. Li, H. Haneda, Highly porous TiO_2/Al2O3 composite nanostructures on glass by anodization and the sol-gel process: fabrication and photocatalytic characteristics. Journal of Materials Chemistry, 2003. 13(4): 866-870.
    [61] Khan, R., S.W. Kim, T.J. Kim, H. Lee, A novel acid-base catalyzed sol-gel synthesis of highly active mesoporous TiO_2 photocatalystst. Bulletin of the Korean Chemical Society, 2007. 28(11): 1951-1957.
    [62] Zhou, W.Y., S.Q. Tang, S.Y. Zhang, T. Cui, Effect of preparation conditions on the size of TiO_2 powders prepared with the sol-emulsion-gel method. Journal of Inorganic Materials, 2005. 20(3): 587-592.
    [63] Limmer, S.J., S. Seraji, Y. Wu, T.P. Chou, C. Nguyen, G.Z. Cao, Template-based growth of various oxide nanorods by sol-gel electrophoresis. Advanced Functional Materials 2002. 12(1): 59-64.
    [64] Miao, Z., D.S. Xu, J.H. Ouyang, G.L. Guo, X.S. Zhao, Y.Q. Tang, Electrochemically induced sol-gel preparation of single-crystalline TiO_2 nanowires. Nano Letters, 2002. 2(7): 717-720.
    [65] Attar, A.S., M.S. Ghamsari, F. Hajiesmaeilbaigi, S. Mirdamadi, K. Katagiri, K. Koumoto, Sol-gel template synthesis and characterization of aligned anatase-TiO_2 nanorod arrays with different diameter. Materials Chemistry and Physics 2009. 113(2-3): 856-860.
    [66] Kang, T.S., A.P. Smith, B.E. Taylor, M.F. Durstock, Fabrication of Highly-Ordered TiO_2 Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells. Nano Letters 2009. 9(2): 601-606.
    [67] Raulio, M., V. Pore, S. Areva, M. Ritala, M. Leskela, M. Linden, J.B. Rosenholm, K. Lounatmaa, M. Salkinoja-Salonen, Destruction of Deinococcus geothermalis biofilm by photocatalytic ALD and sol-gel TiO_2 surfaces. Journal of Industrial Microbiology & Biotechnology, 2006. 33(4): 261-268.
    [68] Mor, G.K., M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimes, A room-temperature TiO_2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. Journal of Materials Research 2004. 19(2): 628-634.
    [69] Varghese, O.K., G.K. Mor, C.A. Grimes, M. Paulose, N. Mukherjee, A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. Journal of Nanoscienceand Nanotechnology 2004. 4(7): 733-737.
    [70] Fujishima, A., K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972. 238(5358): 37-38.
    [71] Mor, G.K., O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Effect of anodization bath chemistry on photochemical water splitting using titania nanotubes. Materials for Photovoltaics, 2005. 836: 29-34.
    [72] Mor, G.K., K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO_2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 2006. 6(2): 215-218.
    [73] Ogata, K., K. Maejima, S. Fujita, S. Fujita, ZnO growth toward optical devices by MOVPE using N2O. Journal of Electronic Materials, 2001. 30(6): 659-661.
    [74] Chang, P.C., Z.Y. Fan, D.W. Wang, W.Y. Tseng, W.A. Chiou, J. Hong, J.G. Lu, ZnO nanowires synthesized by vapor trapping CVD method. Chemistry of Materials, 2004. 16(24): 5133-5137.
    [75] Park, N.K., G.B. Han, J.D. Lee, S.O. Ryu, T.J. Lee, W.C. Chang, C.H. Chang, The growth of ZnO nano-wire by a thermal evaporation method with very small amount of oxygen. Current Applied Physics, 2006. 6(SUPPL. 1): e176-e181.
    [76] Sun, Y., G.M. Fuge, N.A. Fox, D.J. Riley, M.N.R. Ashfold, Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film. Advanced Materials, 2005. 17(20): 2477-2481.
    [77] Li, Q.C., V. Kumar, Y. Li, H.T. Zhang, T.J. Marks, R.P.H. Chang, Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chemistry of Materials 2005. 17(5): 1001-1006.
    [78] Lakshmi, B.B., P.K. Dorhout, C.R. Martin, Sol-gel template synthesis of semiconductor nanostructures. Chemistry of Materials 1997. 9(3): 857-862.
    [79] Li, Y., G.W. Meng, L.D. Zhang, F. Phillipp, Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Applied Physics Letters 2000. 76(15): 2011-2013.
    [80] Li, L., S.S. Pan, X.C. Dou, Y.G. Zhu, X.H. Huang, Y.W. Yang, G.H. Li, L.D. Zhang, Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes. Journal of Physical Chemistry C, 2007. 111(20): 7288-7291.
    [81] Peulon, S., D. Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films. Advanced Materials, 1996. 8(2): 166-170.
    [82] Tang, Y.W., L.J. Luo, Z.G. Chen, Y. Jiang, B.H. Li, Z.Y. Jia, L. Xu, Electrodeposition of ZnO nanotube arrays on TCO glass substrates. Electrochemistry Communications 2007. 9(2): 289-292.
    [83] Sun, X.M., X. Chen, Z.X. Deng, Y.D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Materials Chemistry and Physics, 2003. 78(1): 99-104.
    [84] Konenkamp, R., R.C. Word, C. Schlegel, Vertical nanowire light-emitting diode. Applied Physics Letters, 2004. 85(24): 6004-6006.
    [85] Arnold, M.S., P. Avouris, Z.W. Pan, Z.L. Wang, Field-effect transistors based on single semiconducting oxide nanobelts. Journal of Physical Chemistry B 2003. 107(3): 659-663.
    [86] Fan, Z.Y., D.W. Wang, P.C. Chang, W.Y. Tseng, J.G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property. Applied Physics Letters 2004. 85(24): 5923-5925.
    [87] Zhao, M.H., Z.L. Wang, S.X. Mao, Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Letters 2004. 4(4): 587-590.
    [88] Kearns, D., M. Calvin, The photovoltaic effect and photoconductivity in laminated organic systems.Journal of Chemical Physics, 1958. 29: 950-951.
    [89] Tang, C.W., Two-layer organic photovoltaic cell. Applied Physics Letters, 1986. 48(2): 183-185.
    [90] O'Regan, B., M. Gr?tzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films. Nature, 1991. 353: 737-740.
    [91] Nazeeruddin, M.K., I.R. A. Kay, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc., 1993. 115(14): 6382-6390.
    [92] Gebeyehu, D., C.J. Brabec, F. Padinger, T. Fromherz, S. Spiekermann, N. Vlachopoulos, F. Kienberger, H. Schindler, N.S. Sariciftci, Solid state dye-sensitized TiO_2 solar cells with poly(3-octylthiophene) as hole transport layer. Synthetic Metals, 2001. 121(1-3): 1549-1550.
    [93] Fan, Q., B. McQuillin, D.D.C. Bradley, S. Whitelegg, A.B. Seddon, A solid state solar cell using sol-gel processed material and a polymer. Chemical Physics Letters, 2001. 347(4-6): 325-330.
    [94] Liu, Y.X., M.A. Summers, S.R. Scully, M.D. McGehee, Resonance energy transfer from organic chromophores to fullerene molecules. Journal of Applied Physics 2006. 99(9): 093521.
    [95] Peumans, P., A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics 2003. 93(7): 3693-3723.
    [96] Itoh, E., Y. Takamizawa, K. Miyairi, Fabrication of double layered hybrid solar cells consisting of low-temperature anatase titanium oxide and conducting polymer. Japanese Journal of Applied Physics, 2008. 47(1): 509-512.
    [97] Kim, S.S., J. Jo, C. Chun, J.C. Hong, D.Y. Kim, Hybrid solar cells with ordered TiO_2 nanostructures and MEH-PPV. Journal of Photochemistry and Photobiology a-Chemistry, 2007. 188(2-3): 364-370.
    [98] Beek, W.J.E., M.M. Wienk, R.A.J. Janssen, Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Advanced Materials, 2004. 16(12): 1009-1013.
    [99] Lin, Y.Y., Y.Y. Lee, L.W. Chang, J.J. Wu, C.W. Chen, The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells. Applied Physics Letters 2009. 94(6): 063308.
    [100] Gur, I., N.A. Fromer, C.P. Chen, A.G. Kanaras, A.P. Alivisatos, Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Letters 2007. 7(2): 409-414.
    [101] Lee, W., S. Shin, S.H. Han, B.W. Cho, Manipulating interfaces in a hybrid solar cell by in situ photosensitizer polymerization and sequential hydrophilicity/hydrophobicity control for enhanced conversion efficiency. Applied Physics Letters 2008. 92(19): 193307.
    [102] Watt, A.A.R., D. Blake, J.H. Warner, E.A. Thomsen, E.L. Tavenner, H. Rubinsztein-Dunlop, P. Meredith, Lead sulfide nanocrystal: conducting polymer solar cells. Journal of Physics D-Applied Physics, 2005. 38(12): 2006-2012.
    [103] Cui, D.H., J. Xu, T. Zhu, G. Paradee, S. Ashok, M. Gerhold, Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Applied Physics Letters 2006. 88(18): 183111.
    [104] Kudo, N., Y. Shimazaki, H. Ohkita, M. Ohoka, S. Ito, Organic-inorganic hybrid solar cells based on conducting polymer and SnO2 nanoparticles chemically modified with a fullerene derivative. Solar Energy Materials and Solar Cells 2007. 91(13): 1243-1247.
    [105] Huang, J.S., C.Y. Hsiao, S.J. Syu, J.J. Chao, C.F. Lin, Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass. Solar Energy Materials and Solar Cells 2009. 93(5): 621-624.
    [106] Helgesen, M., R. Sondergaard, F.C. Krebs, Advanced materials and processes for polymer solar cell devices. Journal of Materials Chemistry 2010. 20(1): 36-60.
    [107] Saunders, B.R., M.L. Turner, Nanoparticle-polymer photovoltaic cells. Advances in Colloid and Interface Science 2008. 138(1): 1-23.
    [108] van Hal, P.A., M.M. Wienk, J.M. Kroon, W.J.H. Verhees, L.H. Slooff, W.J.H. van Gennip, P. Jonkheijm, R.A.J. Janssen, Photoinduced electron transfer and photovoltaic response of a MDMO-PPV : TiO_2 bulk-heterojunction. Advanced Materials, 2003. 15(2): 118-+.
    [109] Her, H.J., J.M. Kim, C.J. Kang, Y.S. Kim, Hybrid photovoltaic cell with well-ordered nanoporous titania-P3HT by nanoimprinting lithography. Journal of Physics and Chemistry of Solids, 2008. 69(5-6): 1301-1304.
    [110] Wang, Z.J., S.C. Qu, X.B. Zeng, J.P. Liu, C.S. Zhang, F.R. Tan, L. Jin, Z.G. Wang, Hybrid bulk heterojunction solar cells from a blend of poly(3-hexylthiophene) and TiO_2 nanotubes. Applied Surface Science, 2008. 255(5): 1916-1920.
    [111] Kuo, C.Y., W.C. Tang, C. Gau, T.F. Guo, D.Z. Jeng, Ordered bulk heterojunction solar cells with vertically aligned TiO_2 nanorods embedded in a conjugated polymer. Applied Physics Letters 2008. 93(3): 033307.
    [112] Olson, D.C., J. Piris, R.T. Collins, S.E. Shaheen, D.S. Ginley, Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films 2006. 496(1): 26-29.
    [113] Ravirajan, P., A.M. Peiro, M.K. Nazeeruddin, M. Graetzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. Journal of Physical Chemistry B, 2006. 110(15): 7635-7639.
    [114] Peiro, A.M., P. Ravirajan, K. Govender, D.S. Boyle, P. O'Brien, D.D.C. Bradley, J. Nelson, J.R. Durrant, Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. Journal of Materials Chemistry, 2006. 16(21): 2088-2096.
    [115] Greene, L.E., M. Law, B.D. Yuhas, P.D. Yang, ZnO-TiO_2 core-shell nanorod/P3HT solar cells. Journal of Physical Chemistry C, 2007. 111(50): 18451-18456.
    [116] Hideki, M., S. Masahiro, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask Japanese Journal of Applied Physics, 1996. 35(1B): L126-L129.
    [117]徐金霞.多孔氧化铝模板制备与纳米阵列体系组装[硕士论文].合肥:合肥工业大学. 2002
    [118]徐金霞,黄新民,钱利华,二次阳极氧化方法制备有序多孔氧化铝膜.化学物理学报, 2003. 16(3): 223-226.
    [119] Abdelmoti, L.G., F.P. Zamborini, Potential-Controlled Electrochemical Seed-Mediated Growth of Gold Nanorods Directly on Electrode Surfaces. Langmuir 2010. 26(16): 13511-13521.
    [120] Chen, J., J. Li, J.H. Li, G.Q. Xiao, X.F. Yang, Large-scale syntheses of uniform ZnO nanorods and ethanol gas sensors application. Journal of Alloys and Compounds 2011. 509(3): 740-743.
    [121] Hsieh, C.T., J.M. Chen, H.H. Lin, H.C. Shih, Field emission from various CuO nanostructures. Applied Physics Letters 2003. 83(16): 3383-3385.
    [122] Huynh, W.U., J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science, 2002.295(5564): 2425-2427.
    [123] Schmidt-Mende, L., J.L. MacManus-Driscoll, ZnO - nanostructures, defects, and devices. Materials Today, 2007. 10(5): 40-48.
    [124] Mayer, A.C., S.R. Scully, B.E. Hardin, M.W. Rowell, M.D. McGehee, Polymer-based solar cells. Materials Today, 2007. 10(11): 28-33.
    [125] Shingubara, S., Fabrication of nanomaterials using porous alumina templates. Journal of Nanoparticle Research, 2003. 5(1-2): 17-30.
    [126] Wu, C.L., L. Chang, H.G. Chen, C.W. Lin, T.F. Chang, Y.C. Chao, J.K. Yan, Growth and characterization of chemical-vapor-deposited zinc oxide nanorods. Thin Solid Films 2006. 498(1-2): 137-141.
    [127] Vayssieres, L., Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials, 2003. 15(5): 464-466.
    [128] Sander, M.S., H. Gao, Aligned arrays of nanotubes and segmented nanotubes on substrates fabricated by electrodeposition onto nanorods. Journal of the American Chemical Society 2005. 127(35): 12158-12159.
    [129] Chang, C.J., S.T. Hung, C.K. Lin, C.Y. Chen, E.H. Kuo, Selective growth of ZnO nanorods for gas sensors using ink-jet printing and hydrothermal processes. Thin Solid Films 2010. 519(5): 1693-1698.
    [130] Robinson, A.P., G. Burnell, M.Z. Hu, J.L. MacManus-Driscoll, Controlled, perfect ordering in ultrathin anodic aluminum oxide templates on silicon. Applied Physics Letters 2007. 91(14): 143123.
    [131] Musselman, K.P., G.J. Mulholland, A.P. Robinson, L. Schmidt-Mende, J.L. MacManus-Driscoll, Low-Temperature Synthesis of Large-Area, Free-Standing Nanorod Arrays on ITO/Glass and other Conducting Substrates. Advanced Materials, 2008. 20(23): 4470-4475.
    [132] Musselman, K. Ordered Metal Oxide Nanostructures for Hybrid Solar Cells [Certificate of Postgraduate Study].Cambridge:Cambridge. 2007
    [133] Zhang, Z.B., C.C. Wang, R. Zakaria, J.Y. Ying, Role of particle size in nanocrystalline TiO_2-based photocatalysts. Journal of Physical Chemistry B, 1998. 102(52): 10871-10878.
    [134] Alibabaei, L., J.H. Kim, M. Wang, N. Pootrakulchote, J. Teuscher, D. Di Censo, R. Humphry-Baker, J.E. Moser, Y.J. Yu, K.Y. Kay, S.M. Zakeeruddin, M. Gratzel, Molecular design of metal-free D-pi-A substituted sensitizers for dye-sensitized solar cells. Energy & Environmental Science, 2010. 3(11): 1757-1764.
    [135] O'Regan, B., M. Gr?tzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films. Nature (London) 1991. 353(6346): 737-740.
    [136] Bach, U., D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO_2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998. 395(6702): 583-585.
    [137] Nazeeruddin, M.K., P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Gratzel, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO_2-based solar cells. Journal of the American Chemical Society 2001. 123(8): 1613-1624.
    [138] Carp, O., C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry 2004. 32(1-2): 33-177.
    [139] Mor, G.K., K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO_2 nanotube arrays in dye-sensitized solar cells. Nano Letters 2006. 6(2): 215-218.
    [140] Mor, G.K., O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO_2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells 2006. 90(14): 2011-2075.
    [141] Lee, W., R. Scholz, K. Niesch, U. Gosele, A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angewandte Chemie-International Edition, 2005. 44(37): 6050-6054.
    [142] McGehee, M.D., C. Goh, Y. Liu, M. Summers, S. Scully, M. Coakley, Pacific Rim Conference on Lasers and Electro-Optics, Tokyo, Japan, July. 2005(11-15).
    [143] Bott, A.W., Electrochemistry of semiconductors. Current separations. 1998. 17(3): 88-91.
    [144] Mora-Sero, I., F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, C. Levy-Clement, Determination of carrier density of ZnO nanowires by electrochemical techniques. Applied Physics Letters 2006. 89(20): 203117.
    [145] Morrison, S.R., Electrochemistry at Semiconductor and Oxidized Metal Electrodes. Plenum Press, 1980.
    [146] Ma, W.L., C.Y. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials, 2005. 15(10): 1617-1622.
    [147] Kim, K., J. Liu, M.A.G. Namboothiry, D.L. Carroll, Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Applied Physics Letters, 2007. 90(16): 163511.
    [148] Li, G., V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005. 4(11): 864-868.
    [149] Brajsa, A., K. Szaniawska, R.J. Barczynski, L. Murawski, B. Koscielska, A. Vomvas, K. Pomoni, The photoconductivity of sol-gel derived TiO_2 films. Optical Materials, 2004. 26(2): 151-153.
    [150] Wahlstrom, E., E.K. Vestergaard, R. Schaub, A. Ronnau, M. Vestergaard, E. Laegsgaard, I. Stensgaard, F. Besenbacher, Electron transfer-induced dynamics of oxygen molecules on the TiO_2(110) surface. Science, 2004. 303(5657): 511-513.
    [151] Xiao-e, L., A.N.M. Green, S.A. Haque, A. Mills, J.R. Durtant, Light-driven oxygen scavenging by titania/polymer nanocomposite films. Journal of Photochemistry and Photobiology a-Chemistry, 2004. 162(2-3): 253-259.
    [152] Her, H.J., W.H. Baek, H.H. Lee, C.J. Kang, Y.S. Kim, Influence of Titania Thin Film Morphology on the Photovoltaic action of Hybrid Titania-P3HT Solar Cell. Proceedings of the 17th International Vacuum Congress/13th International Conference on Surface Science/International Conference on Nanoscience and Technology, 2008. 100: 4850-4855.
    [153] Ghicov, A., J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Ion implantation and annealing for an efficient N-doping of TiO_2 nanotubes. Nano Letters, 2006. 6(5): 1080-1082.
    [154] Na, S.I., S.S. Kim, W.K. Hong, J.W. Park, J. Jo, Y.C. Nah, T. Lee, D.Y. Kim, Fabrication of TiO_2 nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells. Electrochimica Acta, 2008. 53(5): 2560-2566.
    [155] Limmer, S.J., G.Z. Cao, Sol-gel electrophoretic deposition for the growth of oxide nanorods. Advanced Materials, 2003. 15(5): 427-431.
    [156] Ren, X., T. Gershon, D.C. Iza, D. Munoz-Rojas, K. Musselman, J.L. MacManus-Driscoll, The selective fabrication of large-area highly ordered TiO_2 nanorod and nanotube arrays on conductive transparent substrates via sol-gel electrophoresis. Nanotechnology, 2009. 20(36): 365604.
    [157] Kang, T.S., A.P. Smith, B.E. Taylor, M.F. Durstock, Fabrication of Highly-Ordered TiO_2 Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells. Nano Letters, 2009. 9(2): 601-606.
    [158]李东栋. Pt、Co和TiO_2一维纳米阵列的制备、表征及性能研究[博士论文].上海:上海交通大学. 2010
    [159] Park, J.H., T.W. Lee, M.G. Kang, Growth, detachment and transfer of highly-ordered TiO_2 nanotube arrays: use in dye-sensitized solar cells. Chemical Communications, 2008(25): 2867-2869.
    [160] Turkevych, I., Y. Pihosh, M. Goto, A. Kasahara, M. Tosa, S. Kato, K. Takehana, T. Takamasu, G. Kido, N. Koguchi, Photocatalytic properties of titanium dioxide sputtered on a nanostructured substrate. Thin Solid Films, 2008. 516(9): 2387-2391.
    [161] Wu, S.J., P. Brault, C. Wang, Deposition and diffusion of plasma sputtered platinum nanoparticles in porous anodic aluminum oxide. Journal of Optoelectronics and Advanced Materials, 2010. 12(3): 451-455.
    [162] Abazovic, N.D., M.I. Comor, M.D. Dramicanin, D.J. Jovanovic, S.P. Ahrenkiel, J.M. Nedeljkovic, Photoluminescence of anatase and rutile TiO_2 particles. Journal of Physical Chemistry B, 2006. 110(50): 25366-25370.
    [163] Serpone, N., D. Lawless, R. Khairutdinov, Size Effects on the Photophysical Properties of Colloidal Anatase TiO_2 Particles: Size Quantization or Direct Transitions in This Indirect Semiconductor? Journal of Physical Chemistry, 1995. 99: 16646-16654.
    [164] Padinger, F., R.S. Rittberger, N.S. Sariciftci, Effects of postproduction treatment on plastic solar cells. Advanced Functional Materials 2003. 13(1): 85-88.
    [165] Yang, X.N., J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, R.A.J. Janssen, Nanoscale morphology of high-performance polymer solar cells. Nano Letters 2005. 5(4): 579-583.
    [166] Chirvase, D., J. Parisi, J.C. Hummelen, V. Dyakonov, Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology, 2004. 15(9): 1317-1323.
    [167] Al-Ibrahim, M., H.K. Roth, U. Zhokhavets, G. Gobsch, S. Sensfuss, Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene. Solar Energy Materials and Solar Cells 2005. 85(1): 13-20.
    [168] Yu, B.Y., A. Tsai, S.P. Tsai, K.T. Wong, Y. Yang, C.W. Chu, J.J. Shyue, Efficient inverted solar cells using TiO_2 nanotube arrays. Nanotechnology, 2008. 19(25): 255202.
    [169] Kanai, Y., Admittance Spectroscopy of Cu-Doped ZnO Crystals. Japanese Journal of Applied Physics, 1991. 30: 703-707.
    [170] Xu, C.X., X.W. Sun, X.H. Zhang, L. Ke, S.J. Chua, Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotechnology, 2004. 15(7): 856-861.
    [171] Kim, J.B., D. Byun, S.Y. Ie, D.H. Park, W.K. Choi, J.W. Choi, B. Angadi, Cu-doped ZnO-based p-n hetero-junction light emitting diode. Semiconductor Science and Technology 2008. 23(9): 095004.
    [172] Dou, X.C., G.H. Li, X.H. Huang, L. Li, Abnormal growth of electrodeposited BiSb alloy nanotubes. Journal of Physical Chemistry C, 2008. 112(22): 8167-8171.
    [173] Taberna, L., S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials, 2006. 5(7): 567-573.
    [174] Sekiguchi, T., K. Haga, K. Inaba, ZnO films grown under the oxygen-rich condition. Journal of Crystal Growth, 2000. 214: 68-71.
    [175] Mahamuni, S., K. Borgohain, B.S. Bendre, V.J. Leppert, S.H. Risbud, Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. Journal of Applied Physics, 1999. 85(5): 2861-2865.
    [176] Brabec, C.J., S.E. Shaheen, T. Fromherz, F. Padinger, J.C. Hummelen, A. Dhanabalan, R.A.J. Janssen, N.S. Sariciftci, Organic photovoltaic devices produced from conjugated polymer/methanofullerene bulk heterojunctions. Synthetic Metals, 2001. 121(1-3): 1517-1520.
    [177] Egelhaaf, H.J., D. Oelkrug, Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO. Journal of Crystal Growth, 1996. 161(1-4): 190-194.
    [178] Bethke, S., H. Pan, B.W. Wessels, Luminescence of Heteroepitaxial Zinc-Oxide. Applied Physics Letters, 1988. 52(2): 138-140.
    [179] Hu, J.Q., X.L. Ma, Z.Y. Xie, N.B. Wong, C.S. Lee, S.T. Lee, Characterization of zinc oxide crystal whiskers grown by thermal evaporation. Chemical Physics Letters, 2001. 344(1-2): 97-100.
    [180] Shen, X.P., A.H. Yuan, Y.M. Hu, Y. Jiang, Z. Xu, Z. Hu, Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays. Nanotechnology, 2005. 16(10): 2039-2043.
    [181] Alivov, Y.I., M.V. Chukichev, V.A. Nikitenko, Green luminescence band of zinc oxide films copper-doped by thermal diffusion. Semiconductors, 2004. 38(1): 31-35.
    [182] Dean, P.J., D.J. Robbins, S.G. Bishop, J.A. Savage, P. Porteous, The Optical-Properties of Copper in Zinc-Oxide. Journal of Physics C-Solid State Physics, 1981. 14(20): 2847-2858.
    [183] Garces, N.Y., L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Role of copper in the green luminescence from ZnO crystals. Applied Physics Letters, 2002. 81(4): 622-624.
    [184] A. J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications. 2nd ed. 2001, New York: Wiley.
    [185] Al-Ibrahim, M., O. Ambacher, S. Sensfuss, G. Gobsch, Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene. Applied Physics Letters, 2005. 86(20): 201120.
    [186] Perzon, E., X.J. Wang, F.L. Zhang, W. Mammo, J.L. Delgado, P. de la Cruz, O. Inganas, F. Langa, M.R. Andersson, Design, synthesis and properties of low band gap polyfluorenes for photovoltaic devices. Synthetic Metals, 2005. 154(1-3): 53-56.
    [187] Padinger, F., R.S. Rittberger, N.S. Sariciftci, Effects of postproduction treatment on plastic solar cells. Advanced Functional Materials, 2003. 13(1): 85-88.
    [188] Schmidt, R., B. Rheinlander, M. Schubert, D. Spemann, T. Butz, J. Lenzner, E.M. Kaidashev, M. Lorenz, A. Rahm, H.C. Semmelhack, M. Grundmann, Dielectric functions (1 to 5 eV) of wurtzite MgxZn1-xO (x <= 0.29) thin films. Applied Physics Letters, 2003. 82(14): 2260-2262.
    [189] Olson, D.C., J. Piris, R.T. Collins, S.E. Shaheen, D.S. Ginley, Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films, 2006. 496(1): 26-29.
    [190] Greene, L.E., M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P.D. Yang, General route tovertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters, 2005. 5(7): 1231-1236.
    [191] Greene, L.E., M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R.J. Saykally, P.D. Yang, Low-temperature wafer-scale production of ZnO nanowire arrays. Angewandte Chemie-International Edition, 2003. 42(26): 3031-3034.
    [192] Li, Q.C., V. Kumar, Y. Li, H.T. Zhang, T.J. Marks, R.P.H. Chang, Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chemistry of Materials, 2005. 17(5): 1001-1006.
    [193] Nakagawa, M., H. Mitsudo, Anomalous temperature dependence of the electrical conductivity of zinc oxide thin films. Surface Science, 1986. 175(1): 157-176
    [194] Fan, H.J., R. Scholz, F.M. Kolb, M. Zacharias, U. Gosele, F. Heyroth, C. Eisenschmidt, T. Hempel, J. Christen, On the growth mechanism and optical properties of ZnO multi-layer nanosheets. Applied Physics a-Materials Science & Processing, 2004. 79(8): 1895-1900.
    [195] Fan, H.J., R. Scholz, F.M. Kolb, M. Zacharias, Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals. Applied Physics Letters, 2004. 85(18): 4142-4144.
    [196] Zhang, S.B., S.H. Wei, A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Physical Review B, 2001. 6307(7): 075205.
    [197] Vanheusden, K., C.H. Seager, W.L. Warren, D.R. Tallant, J. Caruso, M.J. HampdenSmith, T.T. Kodas, Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis. Journal of Luminescence 1997. 75(1): 11-16.
    [198] Studenikin, S.A., N. Golego, M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. Journal of Applied Physics 1998. 84(4): 2287-2294.
    [199] Vanheusden, K., W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders Journal of Applied Physics, 1996. 79(10): 7983-90.
    [200] Janotti, A., C.G. Van de Walle, Native point defects in ZnO. Physical Review B, 2007. 76(16): 165202.
    [201] Janotti, A., C.G. Van de Walle, Oxygen vacancies in ZnO. Applied Physics Letters 2005. 87(12): 122102.
    [202] Janotti, A., C.G. Van de Walle, New insights into the role of native point defects in ZnO. Journal of Crystal Growth 2006. 287(1): 58-65.
    [203] van Dijken, A., E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, Identification of the transition responsible for the visible emission in ZnO using quantum size effects. Journal of Luminescence, 2000. 90(3-4): 123-128.
    [204] Tay, Y.Y., T.T. Tan, M.H. Liang, F. Boey, S. Li, Specific defects, surface band bending and characteristic green emissions of ZnO. Physical Chemistry Chemical Physics, 2010. 12(23): 6008-6013.
    [205] Zhou, H., H. Alves, D.M. Hofmann, W. Kriegseis, B.K. Meyer, G. Kaczmarczyk, A. Hoffmann, Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)(2) core-shell structure. Applied Physics Letters, 2002. 80(2): 210-212.
    [206] Law, M., L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P.D. Yang, ZnO-Al2O3 and ZnO-TiO_2 core-shell nanowire dye-sensitized solar cells. Journal of Physical Chemistry B, 2006. 110(45): 22652-22663.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700