用户名: 密码: 验证码:
物联网中大规模感知节点建模与性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物联网是智能体、智能控制及智能体之间的通信关系的有机融合体,它正在改变着人们的生产和生活方式,将会引起一场重大的信息革命。物联网技术融合了多个学科,包括无线传感器网络、嵌入式系统、智能控制、数据处理及数据融合等多个领域。对于这样一个庞大的综合体,如何在设计阶段就能够全面地评估其实际运行时的性能,并反馈回来指导设计,成为人们当前研究的热点。
     论文提出了基于排队网络的物联网建模分析方法及性能优化策略。针对物联网中大规模的感知节点,建立带阻塞的排队网络模型。对其路径时延、最佳的缓存大小配置、基于嵌入式多核SoC的汇聚节点设计及改进传统的无线传感器网络定位策略方面进行了深入研究。基于以上研究成果,开发了图形化排队网络建模仿真软件,这些对物联网前期的设计工作与性能评价提供了重要的参考。论文完成的主要工作如下:
     (1)提出了基于开放式排队网络的大规模感知节点建模和时延分析方法。通过对节点路径端到端时延和整个排队网络平均时延分析,确定多路径选取机制,设计了开放式排队网络节点到达率的近似计算迭代算法。为了降低多路径时延计算量,设计了路径查找树预选取算法,去除冗余路径,使预选取路径数目远小于实际路径数。利用端到端时延分析方法,得出最优路径和备用路径。该方法为大规模无线传感器网络数据传输路径的选择,提高物联网中大规模感知节点的数据传输效率,提供了有效的解决方案。
     (2)提出了针对不同类型的感知节点硬件数据包缓存的最佳配置方法,应用带阻塞的排队网络对大规模的感知节点建立数据包排队网络模型。为了对模型的阻塞情况进行分析,将无线传感器开放式排队网络加入有限个保持节点,获得等价的排队网络模型,根据保持节点使用情况确定数据包缓存大小。并将所得到的计算值与实验测量值进行对比分析,验证了模型计算结果与无线传感器网络实验测量统计值的一致性。该方法为设计高性价比的物联网中感知节点的硬件缓存配置与优化提供了理论建模依据。
     (3)针对物联网中分布式数据特点,提出了利用带有优先级的排队网络对基于嵌入式多核SoC的汇聚节点进行建模和性能分析。各个执行核分配不同优先级的缓存,根据各个核的阴塞情况进行调度,大大地提升了嵌入式多核SoC的性能。设计了嵌入式多核SoC(?)队网络模型评估算法,得出在能够获得最佳的系统性能时,所需的硬件缓存容量的最佳设置值。通过对嵌入式多核SoC应用自适应调度算法前后任务到达率进行对比,验证了自适应调度算法使系统中各执行核的任务分配量明显趋于均衡。
     (4)改进了传统的基于RSSI定位方法,提高了定位精度。论文将三边定位与质心定位相结合,并对定位参考坐标考虑权值,增加三边质心法在一次定位中的次数,提出了N次三边质心加权定位算法。在众多信标节点中选取更可靠的多个信标节点。利用这些信标节点使用N次三边质心加权法进行移动节点的实时定位。实验表明,N次三边质心加权法的定位精度比三边质心法有很大的提高,这对物联网中与定位相关的智能移动体监控提供了重要的技术支撑。
     (5)开发了针对物联网性能评估仿真的工具软件。完成了排队网络建模仿真软件的设计,并给出了一个典型的物联网节点拓扑仿真性能分析实例。搭建了实际物联网测试硬件环境,根据仿真数据和硬件实际测试数据对比,验证了论文所设计的物联网排队建模仿真软件与实际硬件应用中所得出的统计情况是基本一致的,这些为物联网平台建设提供了重要的参考。
Internet of Things (IoT) is an organic interconnected syntheses of the agent, the intelligent control and communication relationship between the agents. It is changing people's production and life and will cause an important information revolution. IoT combines many fields of science and technology, which include wireless sensor networks, embedded system, intelligent control, data processing and merging. For the large synthesis, how to evaluate the performance in the design step and feedback to guide the design, become a research focus.
     This dissertation presents modling analysis methods based on queueing networks and performance optimization strategy for IoT. The queueing network model with blocking is established for large scale sensor nodes in IoT. The path delays, configurations of the optimal buffer size, design of sink node based on embedded multi-core SoC and improving the node positioning accuracy are in-depth study. Based on the above research, the graphical tool software of queueing network modeling and simulation is developed. These works provide the important reference to the pre-design and design evaluation for the building IoT. The main contributions of the dissertation are as follows:
     1. The delay analysis modeling method based on open queueing network for large scale sensor nodes is proposed. By the analysis method of nodes' end-to-end delay and average delay of whole queueing network, the multi-path selection mechanism is determined. An iterative approximation algorithm is proposed for the qualitative analysis of the packet arrival rate of sensor nodes. In order to reduce the complexity of multi-path delay calculation, the pre-selection algorithm based on path search tree is designed. The redundant paths are removed, the number of pre-selection path is much less than the actual number of paths. The optimal path and alternate path are obtained by the end-to-end delay analysis method. The method provides an effective solution for selecting the data transmission path and improving the data transmission efficiency in the large-scale wireless sensor network.
     2. The best configuration method of hardware packet buffer for the different types of sensor nodes is proposed. The packet queueing network model is established for large-scale sensor nodes using queueing networks with blocking. In order to analyze the blocking situation, the finite holding nodes are added to an open queueing network of the wireless sensor networks. Equivalent queueing network model is obtained. According to the usage of holding nodes, packet buffer size is determined. The consistency of model calculations results and statistical experiments measuring results for wireless sensor networks of the value are verified by comparing the calculated and experimental measurement results. The method provides a theoretical modeling basis for hardware buffer configuration and optimization of the designing high cost-effective in large-scale sensor networks.
     3. According to the characteristics of the distributed data in the IoT, the modeling and performance analysis method for sink node based on embedded multi-core SoC has been proposed using queueing networks with different priorities. Each executing core is assigned different buffers with priorities. According to the blocking circumstances of each executing core, scheduling is realized. Embedded multi-core SoC performance is greatly improved. The evaluation algorithm of queueing network model is fulfilled for embedded multi-core SoC. When the system is able to get the best system performance, the optimal values of the required hardware buffer capacity are set. By comparing task arrival rates before and after application of adaptive scheduling algorithm, adaptive scheduling algorithm proportion task allocation of the executing cores is proved.
     4. Traditional RSSI-based positioning method is improved and the positioning accuracy is improved.The N-time trilateral centroid weighted localization algorithm (NTCWLA) is proposed, which can reduce the error considerably. Considering the instability of RSSI, the weighted average of many RSSIs are used for current RSSI. In order to improve the accuracy, a number of reliable beacon nodes are selected to increase the localization times. The mobile node is real time located N times using NTCWLA. The results show that the proposed algorithm performs better than the trilateral centroid algorithm. This method provides an important technical support related to the positioning of the IoT and smart mobile body monitoring.
     5. The simulation tool software for performance evaluation of Things is developed. The simulation software based on queueing network modeling is designed. A typical simulation performance analysis example for IoT node topology is tested. Actual hardware testing environment of IoT is build. According to comparison of the simulation data and actual test data based on hardware, the results of the designed simulation modeling software are basically consistent with statistical results of actual hardware applications for IoT. These constructions provide important references for performance evaluation of IoT
引文
[1]Domingo M C. An overview of the internet of things for people with disabilities[J]. Journal of Network and Computer Applications,2012,35(2):584-596.
    [2]Castellani A P, Bui N, Casari P, et al. Architecture and protocols for the internet of things:A Case Study[C].8th IEEE International Conference on Pervasive Computing and Communications Workshops, Mannheim, Germany, March 29,2010:678-683.
    [3]Bandyopadhyay S, Sengupta M, Maiti S, et al. A survey of middleware for internet of things[C].3rd International Conference on Wireless, Mobile Networks, Ankara, Turkey, June 26-28,2011:288-296.
    [4]Atzori L, Iera A, Morabito G. The internet of things:a survey[J]. Computer Networks, 2010,54(15):2787-805.
    [5]徐尉,孙力娟,王汝传,黄海平,金逸超.基于物联网/传感网的智能节能系统[J].计算机研究与发展,2010,47(s1):366-371.
    [6]Kidd P T. The role of the internet of things in enabling sustainable agriculture in Europe[J]. International Journal of RF Technologies:Research and Applications,2012,3(1): 67-83.
    [7]孙彦景,钱建生,武金磊,罗云国.基于WSN地下无人采煤安全监测系统的研究[J].传感技术学报,2007,20(11):2517-2521.
    [8]丁治明,高需.面向物联网海量传感器采样数据管理的数据库集群系统框架[J].计算机学报,2012,35(6):1175-1191.
    [9]Niedermayer H, Holz R, Pahl M 0, et al. On using home networks and cloud computing for a future internet of things[C].2nd Future Internet Symposium, Berlin, Germany, September 1-3,2009:70-80.
    [10]Petitprez N, Rouvoy R, Duchien L. Connecting your mobile shopping cart to the Internet-of-Things[C].12th IFIP International Conference on Distributed Applications and Interoperable Systems, Stockholm, Sweden, June 13-16,2012:236-243.
    [11]Vazquez B M, Navarro C C, Nieto H J I, et al. A proposal for using the internet of things concept to increase children's health awareness[C].22nd Annual International Conference on Electronics, Communications and Computers, Cholula, Mexico, February 27-29, 2012:168-172.
    [12]Pauvre N, Madelaine J, Moulec J L, et al. Augmented traceability with internet of things: A demonstrator for seafood supply chains[C].1st International Conference on The Impact of Virtual, Remote, and Real Logistics Labs, Bremen, Germany, February 28-March 1,2012: 113-121.
    [13]Dietrich I, Dressler F. On the lifetime of wireless sensor networks[J]. ACM Transactions on Sensor Networks,2009,5(1):1-39.
    [14]Guo B, Yu Z, Zhou X, et al. Opportunistic IoT:Exploring the social side of the internet of things[C].2012 IEEE 16th International Conference on Computer Supported Cooperative Work in Design, Wuhan, China, May 23-25,2012:925-929.
    [15]ITU Internet Reports 2005. The Internet of Things[R], ITUPublications,2005. http://www.itu.int/osg/spu/publications/internetofthings.
    [16]Lo'pez T S, Ranasinghe D C, Harrison M, et al. Adding sense to the internet of things: An architecture framework for smart object systems[J]. Personal and Ubiquitous Computing: Special Issue on User Driven RFID Applications and Challenges.2012,16(3):291-308.
    [17]Ma H. Internet of things:Objectives and scientific challenges[J]. Journal of Computer Science and Technology,2011,26(6):919-924.
    [18]Chang K D, Chen J L, Chen C Y, et al. IoT operations management and traffic analysis for future internet[C].2012 Computing, Communications and Applications Conference. Hong Kong, China, January 11-13,2012:138-142.
    [19]Haller S, Karnouskos S, Schroth C. The internet of things in an enterprise context [C]. Proceedings of the first future internet symposium, Vienna, Austria, September 29-30,2008: 14-28.
    [20]Giner P, Cetina C, Fons J, Pelechano V. Developing mobile workflow support for the internet of things[J]. IEEE Pervasive Computing,2010,9(2):18-26.
    [21]王刚.上海浦东国际机场防入侵系统[J].物联网技术,2011,(1):30-31.
    [22]企业视窗.中星微电子物联网解决方案成功应用上海世博会[J].中国安防,2010,(6):74.
    [23]Onur E, Ersoy C, Delic H, et al. Surveillance with wireless sensor networks in obstruction:Breach paths as watershed contours[J]. Computer Networks,2010,54(3): 428-441.
    [24]李建中,高宏.无线传感器网络的研究进展[J].计算机研究与发展,2008,45(1):1-15.
    [25]Jeon H, Choi J, Lee H, et al. Channel-aware energy efficient transmission strategies for large wireless sensor networks[J]. IEEE Signal Processing Letters,2010,17(7): 643-646.
    [26]Sausen P S, Spohn M A, Perkusich A. Broadcast routing in wireless sensor networks with dynamic power management and multi-coverage backbones[J]. Information Sciences,2010, 180(5):653-663.
    [27]唐勇,周明天,张欣.无线传感器网络路由协议研究究进展[J].软件学报,2006,17(3):410-421.
    [28]Chen H, Tse C K, Feng J. Impact of topology on performance and energy efficiency in wireless sensor networks for source extract ion[C]. IEEE Transactions on Parallel and Distributed Systems,2009,20(6):886-897.
    [29]Martyna J. Simulation study of the mobility models for the wireless mobile ad hoc and sensor networks[C],19th International Conference on Computer Networks, Szczyrk, Poland, June 19-23,2012:324-333.
    [30]Raza U, Camerra A, Murphy A L, et al. What does model-driven data acquisition really achieve in wireless sensor networks[C].10th IEEE International Conference on Pervasive Computing and Communications, Lugano, Switzerland, March 19-23,2012:85-9-1.
    [31]Tague P, Poovendran R. A canonical seed assignment model for key predistribution in wireless sensor networks[J]. ACM Transactions on Sensor Networks,2007,3(4):1-39.
    [32]Mura M, Fabbri F, Sami M G. Modelling the power cost of security in wireless sensor networks:The case of 802.15.4[C].2008 International Conference on Telecommunications, St. Petersburg, Russia, June 16-19,2008:1-8.
    [33]Chung C C, Yu J Y, Jang S R, et al. A 90 nm all-digital smart temperature sensor with wireless body area network baseband transceiver for biotelemetry applications[J]. Journal of Signal Processing Systems,2011,64(2):241-248.
    [34]Ionel S M, Popescu D. Wireless sensor network for monitor ing applications [C].6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Prague, Czech republic September 15-17,2011:867-871.
    [35]Tsou Y L, Berber S. Design, development and testing of a wireless sensor network for medical applications[C].7th International Wireless Communications and Mobile Computing Conference, Istanbul, Turkey, July 4-8,2011:826-830.
    [36]Chen D, Tao Z, Ma G. Application of wireless sensor networks for monitoring emergency events[C].2008 International Conference on Wireless Communicat ions, Networking and Mobi le Computing, Dalian, China, October 12-14,2008:1-4.
    [37]Gajjar S H, Pradhan S N, Dasgupta K S. Wireless sensor network:Application led research perspective[C].2011 IEEE Recent Advances in Intelligent Computational Systems, Trivandrum, Kerala, India, September 22-24,2011:25-30.
    [38]Yedavalli R K, Belapurkar Rohit K. Application of wireless sensor networks to aircraft control and health management systems [J]. Journal of Control Theory and Applications,2011, 9(1):28-33.
    [39]Taris T, Begueret J B, Deval Y. A 60W I.NA for 2.4 GHz wireless sensors network applications[C].2011 IEEE Radio Frequency Integrated Circuits Symposium, Baltimore, MD, United states, June 5-7,2011:1-4.
    [40]Hoon K, Jeon Y J, Shin S H. Platform of rich internet application for wireless sensor network[C]. International Conference on Computer Science and Software Engineering, Wuhan, Hubei, China, December 12-14,2008:531-536.
    [41]Tsai C Y, Chen Y F, Lu H C, et al. An application of the wireless sensor network technology for foehn monitoring in real time[C].8th International Conference on Ubiquitous Intelligence and Computing, Banff, Canada, September 2-4,2011:12-24.
    [42]Fischione C. Fast-Lipschitz optimization with wireless sensor networks applications[J]. IEEE Transactions on Automatic Control,2011,56(10):2319-2331.
    [43]Bruneo D, Puliaf ito A, Scarpa M. Energy control in dependable wireless sensor networks: a modelling perspective Energy control in dependable wireless sensor networks:a modelling perspective[J]. Proceedings of the Institution of Mechanical Engineers, Part 0:Journal of Risk and Reliability,2011,225(4):424-434.
    [44]Shareef A, Zhu Y. Energy modeling of processors in wireless sensor networks based on petri nets[C].37th International Conference on Parallel Processing Workshops, Portland, OR, United states, September 8-12,2008:129-134.
    [45]Li T, Zhang Z. Vibration data processing based on petri network in wireless sensor networks[J]. Journal of Networks,2012,7(2):400-407.
    [46]Bao F, Chen I, Chang M. Trust-based intrusion detection in wireless sensor networks [C]. 2011 IEEE International Conference on Communications, Kyoto, Japan, June 5-9,2011:1-6.
    [47]Liu B, Ren F, Lin C, et al. Performance analysis of sleep scheduling schemes in sensor networks using stochastic petri net[C]. IEEE International Conference on Communications, Beijing, China, May 19-23,2008:4278-4283.
    [48]Zeng R, Lin C, Jiang Y, et al. Performance analysis of data management in sensor data storage via stochastic petri nets[C].53rd IEEE Global Communications Conference, Miami, FL, United states, December 6-10,2010:1-5.
    [49]Azgomi M A, Khalili A. Performance evaluation of sensor medium access control protocol using coloured Petri Nets[J]. Electronic Notes in Theoretical Computer Science,2009, 242(2):31-42.
    [50]Sousa J R B, Lima A M N. Perkusich A. Modeling and analyzing power consumption in sensor networks nodes based on differential hybrid petri nets[C].31st Annual Conference of IEEE Industrial Electronics Society, Raleigh, NC, United states, November 6-10,2005:389-394.
    [51]Shuaib A H, Mahmoodi T, Aghvami A H. A timed petri net model for the IEEE 802.15.4 CSMA-CA process [C]. IEEE 20th Personal, Indoor and Mobile Radio Communications Symposium, Tokyo, Japan, September 13-16,2009:1204-1210.
    [52]Strelen J C, Bark B, Becker J, et al. Analysis of queueing networks with blocking using a new aggregation technique[J]. Annals of Operations Research,1998,79:121-142.
    [53]Do T V, Do N H, Chakka R. A new queueing model for spectrum renting in mobile cellular networks[J]. Computer Communications,2012,35(10):1165-1171.
    [54]Smith J M, Kerbache, L. State-dependent models of material handling systems in closed queueing networks[J]. International Journal of Production Research,2012,50(2):461-484.
    [55]Liehr A W, Buchenrieder K J. Simulating inter-process communication with Extended Queuing Networks[J]. Simulation Modelling Practice and Theory,2010,18(8):1162-1171.
    [56]Mann C R, Baldwin R 0, Kharoufeh J P, et al. A queueing approach to optimal resource replication in wireless sensor networks [J]. Performance Evaluation,2008,65(10):689-700.
    [57]Manjeshwar A, Zeng Q; Agrawal D P. An analytical model for information retrieval in Wireless Sensor Networks using enhanced APTEEN protocol[J]. IEEE Transactions on Parallel and Distributed Systems,2002,13(12):1290-1302.
    [58]H M Almasaeid, Kamal A E. Modeling mobility-assisted data collection in wireless sensor networks[C].2008 IEEE Global Telecommunications Conference, New Orleans, LA, United states, November 30,2008:188-192.
    [59]Akkaya K, Younis M, Youssef M. Efficient aggregation of delay-constrained data in wireless sensor networks[C].3rd ACS/IEEE International Conference on Computer Systems and Applications, Cairo, Egypt, January 3-6,2005:943-948.
    [60]Byun H, So J. Queue-based adaptive duty cycle control for wireless sensor networks[C], 11th International Conference on Algorithms and Architectures for Parallel Processing, Melbourne, Australia, October 24-26,2011:205-214.
    [61]Wuchner P, Sztrik J, Meer H. Modeling wireless sensor networks using finite-source retrial queues with unreliable orbit[C]. International Workshop on Performance Evaluation of Computer and Communication Systems:Milestones and Future Challenges, Vienna, Austria, October 14-16,2010:73-86.
    [62]Wang Y, Vuran M, Goddard S. Stochastic analysis of energy consumption in wireless sensor networks[C].7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, Boston, MA, United states, June 23-25,2010:1-10.
    [63]Sumathi R, Srinivasan R. QoS aware routing for end-to-end reliability of delay sensitive events in wireless sensor networks[C].4th International ICST Conference on Communication System Software and Middleware, Dublin, Ireland, June 16-19,2009:1-10.
    [64]Kim K. T-preemptive priority queue and its application to the analysis of an opportunistic spectrum access in cognitive radio networks[J]. Computers and Operations Research,2012,39(7):1394-1401.
    [65]MunirMF, Kherani A A, FilaliF. Stability and delay analysis for multi-hop single-sink wireless sensor networks[C].6th Annual IEEE International Conference on Pervasive Computing and Communications, Hong kong, March 17-21,2008:312-317.
    [66]Othman J B, Mokdad L, Yahya B. An energy efficient priority-based QoS MAC protocol for wireless sensor networks[C].2011 IEEE International Conference on Communications, Kyoto, Japan, June 5-9,2011:1-6.
    [67]Aalsalem M Y, Taheri J, Iftikhar M, et al. Providing QoS guarantees to multiple classes of traffic in wireless sensor networks[C].6th IEEE/ACS International Conference on Computer Systems and Applications, Doha, Qatar, March 31,2008:216-222.
    [68]Jiang F C, Yang C T, Teng S M, et al. Modeling and prolonging techniques on operational lifetime of wireless sensor networks[C].2010 13th IEEE International Conference on Computational Science and Engineering, Hong Kong, China, December 11-13,2010:6-13.
    [69]Jiang F C, Huang D C, Yang C T, et al. Lifetime elongation for wireless sensor network using queue-based approaches[J]. Journal of Supercomputing,2011,59(3):1312-1335.
    [70]Airoldi R, Garzia F, Ahonen T, et al. Implementation of W-CDMA cell search on a FPGA based multi-processor system-on-chip with power management[C].9th International Workshop on Embedded Computer Systems:Architectures, Modeling, and Simulation, Samos, Greece, July 20-23,2009:88-97.
    [71]Miersch E, Goekcen M, Steinecke T. Integral power net integrity analysis of a packaged u-controller system including the u-controller on-chip power net distribution[C].2009 IEEE Workshop on Signal Propagation on Interconnects, Strasbourg, France, May 12-15,2009:1-4.
    [72]Helmstetter C, Maraninchi F, Maillet C L. Full simulation coverage for SystemC transaction-level models of systems-on-a-chip[J]. Formal Methods in System Design,2009, 35(2):152-189.
    [73]Agarwal N, Krishna T, Peh L S, et al. GARNET:A detailed on-chip network model inside a full-system simulator [J]. International Symposium on Performance Analysis of Systems and Software. Boston, United states, April 26-28,2009:33-42.
    [74]Mariani G, Palermo G, Silvano C, et al. A design space exploration methodology supporting run-time resource management for multi-processor systems-on-chip[C].2009 IEEE 7th Symposium on Application Specific Processors, San Francisco, United states, July 27-28, 2009:21-28.
    [75]Tominaka S, Obata H, Osaka T. On-chip direct methanol fuel cells of a monolithic design: Consideration on validity of active-type system[J]. Energy and Environmental Science,2009, 2(8):845-848.
    [76]Kornaros G, Pnevmatikatos D. Hardware-assisted dynamic power and thermal management in multi-core SoCs[C].21st Great Lakes Symposium on VLSI, Lausanne, Switzerland, May 2-4, 2011:115-120.
    [77]Kyung H, Park G, Wook K J, el al. Design and implementation of Performance Analysis Unit (PAU) for AXI-based multi-core System on Chip (SOC)[J]. Microprocessors and Microsystems,2010,34(2-4):102-116.
    [78]Guerin X, Petrot F. A system framework for the design of embedded software targeting heterogeneous multi-core SoCs[C].2009 20th IEEE International Conference on Application specific Systems, Architectures and Processors, Boston, MA, United states, July 7-9,2009: 153-160.
    [79]Guang L, Nigussie E, Isoaho J, et al. Interconnection alternatives for hierarchical monitoring communication in parallel SoCs[J]. Microprocessors and Microsystems,2010,4(5): 118-128.
    [80]Chang D C, Lin T, Wu C, et al. Parallel architecture Core (PAC)-the first multicore application processor SoC in Taiwan Part Ⅰ:Hardware Architecture & Software Development Tools[J]. Journal of Signal Processing Systems,2011,62(3):373-382.
    [81]Assayad I, Yovine S. A scheduler synthesis methodology for joint SW/HW design exploration of SoC[J]. Design Automation for Embedded Systems,2010,14(2):75-103.
    [82]Wang L, Wang Z, Dai K. An approximate method by queuing network model ing for performance evaluation of asynchronous pipeline rings[C]. IEEE Internal Conference on Computer and Information Technology, Seoul, Korea, September 20-22,2006:244-249.
    [83]Herbordt M C, Kosie F, Model J. An efficient 0(1) priority queue for large fpga-based discrete event simulations of molecular dynamics[C].16th IEEE Symposium on Field Programmable Custom Computing Machines, Stanford, United states, April 14-15,2008: 248-257.
    [84]Smith C U, Llad6C M, Puigjaner R. Performance model interchange format, PMIF 2:A comprehensive approach to queueing network model interoperability [J]. Performance Evaluation,2010,67(7):548-568.
    [85]Cruz F R B, Woensel T, Smith J M, et al. On the system optimum of traffic assignment in M/G/c/c state-dependent queueing networks [J]. European Journal of Operational Research, 2010,201(1):183-193.
    [86]Joshi B, Joshi B. Performance analysis of mobi le nodes in ad hoc network using different wireless communication channel models[C].2011 3rd International Conference on Electronics Computer Technology, Kanyakumari, India, April 8-10,2011:86-89.
    [87]Zhang J, Peng H. Selection Forward Routing (SFR):An on-demand routing protocol for mobile wireless ad hoc networks[C].7th International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, September 23-25,2011:1-5.
    [88]Bourenane M. Energy-efficient scheduling scheme using reinforcement learning in wireless ad hoc networks[C].8th IEEE and IFIP International Conference on Wireless and Optical Communications Networks, Paris, France, May 24-26,2011:1-5.
    [89]Konstantinou E. Efficient cluster-based group key agreement protocols for wireless ad hoc networks[J]. Journal of Network and Computer Applications,2011,34(1):384-393.
    [90]Chou S H, Lo C C, Huang C C. Mitigating routing misbehavior in Dynamic Source Routing protocl using trust-based reputation mechanism for wireless ad-hoc networks[C].2011 IEEE Consumer Communications and Networking Conference, Las Vegas, United states, January 8-11, 2011:442-446.
    [91]Islam B M A A, Raghunathan V. Assessing the viability of cross-layer modeling for asynchronous, multi-hop, ad-hoc wireless mesh networks [C].9th ACM International Symposium on Mobility Management and Wireless Access, Miami, United states, October 31,2011:147-151.
    [92]Si W, Boreli R, Mahanti A, et al. Tree-based double-covered broadcast for wireless ad hoc networks[C].9th ACM International Symposium on Mobility Management and Wireless Access, Miami, United states, October 31,2011:45-52.
    [93]Amiri B, Sadjadpour H R, Garcia J J. Cross-layer design of outage optimum routing metric for wireless ad hoc networks [J]. Wireless Communications and Mobile Computing,2011,11(12): 1576-1587.
    [94]Royer E M, Toh, Chai-Keong. Review of current routing protocols for ad hoc mobile wireless networks[J]. IEEE Personal Communications,1999,6(2):46-55.
    [95]Ren X, Zhang J. Review of the cross-layer design in wireless ad hoc and sensor networks. 2010 6th International Conference on Wireless Communications[C]. Networking and Mobile Computing, Chengdu, China, September 23-25,2010:1-3.
    [96]Alobaidy M, Ayesh A, Sheta A F. Optimizing the communication distance of an ad hoc wireless sensor networks by genetic algorithms[J]. Artificial Intelligence Review,2008, 29(3-4):183-194.
    [97]Anantharaman V, Sivakumar R. A microscopic analysis of TCP performance over wireless ad-hoc networks[J]. Performance Evaluation Review,2002,30(1):270-271.
    [98]Reddy T B, Karthigeyan I, Manoj B S, et al. Quality of service provisioning in ad hoc wireless networks:A survey of issues and solutions [J]. Ad Hoc Networks,2006,4(1):83-124.
    [99]Cully W P L, Cotton S L, Scanlon W G, et al. Body shadowing mitigation using differentiated LOS/NLOS channel models for RSSI-based Monte Carlo personnel localizat.ion[C].2012 IEEE Wireless Communications and Networking Conference, Paris, France, April 1-4,2012:694-698.
    [100]Shen M, Lu Y, Zhao M. Study of node localization algorithm based on improved particle swarm optimization and RSSI for WSNs[J]. Lecture Notes in Electrical Engineering,2011, 133(2):185-193.
    [101]Park J, Cho H, Kim S, et al. An adaptive parameter estimation method for wireless localization using RSSI measurements[C].6th International Conference on Future Information Technology, Loutraki, Greece, June 28-30,2011:238-244.
    [102]Nick T, Khan M Z I, Gotze J, et al. Localization of passive UHF RFID label with unscented Kalman filter based on angle-dependent RSSI measurements[C].5th International Conference on Signal Processing and Telecommunication Systems, Honolulu, United states, December 12-14,2011:1-7.
    [103]Dan A, Halder S, Dasbit S. Localization with enhanced location accuracy using RSSI in WSN[C].5th IEEE International Conference on Advanced Networks and Telecommunication Systems, Bengaluru, India, December 18-21,2011:1-6.
    [104]Wang X, Yuan S, Laur R, et al. Dynamic localization based on spatial reasoning with RSSI in wireless sensor networks for transport logistics[J]. Sensors and Actuators, A: Physical,2011,171(2):421-428.
    [105]Chen Y, Pan Q, Liang Y, et al. AWCL:Adaptive weighted centroid target localization algorithm based on RSSI in WSN[C].2010 3rd IEEE International Conference on Computer Science and Information Technology, Chengdu, China, July 9-11,2010:331-336.
    [106]Zaruba G V, Huber M, Kamangar F A, et al. Indoor location tracking using RSSI readings from a single Wi-Fi access point[J]. Wireless Networks,2007,13(2):221-235.
    [107]Kotwal S B, Abrol R, Nigam S. Analysis of one anchor RSSI and AOA based iterative localization algorithm for wireless sensor networks[J]. International Journal of Simulation:Systems, Science and Technology,2010,11(2):35-41.
    [108]He T, Huang C, Blum B M, Stankovic J A, et al. Range-free localization schemes for large scale sensor networks[Cl. Proceedings of the Ninth Annual International Conference on Mobile Computing and Networking, San Diego, United states, September 14-19,2003: 81-95.
    [109]Bahl P, Padmanabhan V N. RADAR:An in-building RF-based user location and tracking system[C].19th Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Isr, March 26-30,2000:775-784. [110] Girod L, Estrin D. Robust range estimation using acoustic and multimodal sensing[Cj. IEEE International Conference on Intelligent Robots and Systems, Maui, United states, October 29,2001:1312-1320.
    [111]Lee W, Patanavijit V. A novel two-step TOA estimation for transmitted-reference receiver in UWB systems[C].7th International Conference on Signal Image Technology and Internet-Based Systems, Dijon, France, November 28,2011:237-244.
    [112]Laaraiedh M, Avrillon S, Amiot N, et al. A semidefinite programming approach to hybrid localization using RSSI and TOA[C].8th Workshop on Positioning Navigation and Communication, Dresden, Germany, April 7-8,2011:106-110.
    [113]Romero L A, Mason J. Evaluation of direct and iterative methods for overdetermined systems of TOA geolocation equations[J]. IEEE Transactions on Aerospace and Electronie Systems,2011,47(2):1213-1229.
    [114]Mazuelas S, Lago F A, Fernandez P, et al. Ranking of TOA measurements based on the estimate of the NLOS propagation contribution in a wireless location system[J]. Wireless Personal Communications,2010,53(1):35-52.
    [115]Xiao W, Weng Y, Xie L. Total least squares method for robust source localization in sensor networks using TDOA measurements[J]. International Journal of Distributed Sensor Networks,2011,2011:1-8.
    [116]Okello N, Fletcher F, Musicki D, et al. Comparison of recursive algorithms for emitter localisation using TDOA measurements from a pair of UAVs[J]. IEEE Transactions on Aerospace and Electronic Systems,2011,47(3):1723-1732.
    [117]Priyantha N B, Chakraborty A, Balakrishnan H. Cricket location-support system[C]. Proceedings of the Annual International Conference on Mobile Computing and Networking, Boston, USA, August 6-11,2000:32-43.
    [118]Alam MS, Alsharif S, Haq N. Efficient CDMA wireless position location system using TDOA method[J]. International Journal of Communication Systems,2011,24(9):1230-1242.
    [119]Gambi J M, Rodriguez M C, Pino M L G, et al. Shapiro time delay within the geolocation problem by TDOA[J]. IEEE Transactions on Aerospace and Electronic Systems,2011,47(3): 1948-1962.
    [120]Lee Y S, Park J W, Barolli L. A localization algorithm based on AOA for ad-hoc sensor networks[J]. Mobile Information Systems,2012,8(1):61-72.
    [121]Gregoire D G, Singletary G B. Advanced ESM AOA and location techniques[C]. Proceedings of the IEEE 1989 National Aerospace and Electronics Conference, Dayton, USA, May 22-26, 1989:917-924.
    [122]Niculescu D, Nath B. Ad hoc position system (APS) using AOA [C].22nd Annual Joint Conference of the IEEE Computer and Communications Societies, San Francisco, United states, March 30,2003:1734-1743.
    [123]Broumandan A, Nielsen J, Lachapelle G. Practical results of high resolution AOA estimation by the synthetic array [C].68th Semi-Annual IEEE Vehicular Technology, Calgary, Canada, September 21-24,2008:1-5.
    [124]Di Stefano G, Petricola A. A distributed AOA based local izat ion algorithm for wireless sensor networks[J]. Journal of Computers,2008,3(4):1-8.
    [125]Park C Y, Cho H S, Park D H, et. al. AoA localization system design and implementation based on Zigbee for applying Greenhouse[C].2010 5th International Conference on Embedded and Multimedia Computing, Cebu, Philippines, August 11-13,2010:1-4.
    [126]Uchida S, Asakura Y, Suzuki H. Deposition of boron on fuel rod surface under sub-cooled boiling conditions-An approach toward understanding AOA occurrence [J]. Nuclear Engineering and Design,2011,241(7):2398-2410.
    [127]Bulusu N, Heidemann J Estrin D. GPS-less low cost outdoor localization for very small devices[J]. IEEE Personal Communications,2000,7(5):28-34.
    [128]Mehmood R, Ali M U, Taj I A. Applying centroid based adjustment to kernel based object tracking for improving localization[C].2009 International Conference on Information and Communication Technologies. Karachi, Pakistan, August 15-16,2009:209-214.
    [129]Nicolescu D, Nath B. DV based positioning in ad-hoc networks [J]. Division of Computer and Information Sciences,2003,22:267-280.
    [130]Wang J, Jin H. Improvement on APIT localization Aalgorithms for wireless sensor networks[C]. International Conference on Networks Security, Wireless Communications and Trusted Computing, Wuhan, China, April 25-26,2009:719-723.
    [131]Radhika N, Howard S, Jonathan B. Organizing a global coordinate system from local information on an ad-hoc sensor network[C].2nd International Workshop on Information Processing in Sensor Networks. Berlin,2003 333-3-18.
    [132]Chen J, Ge W, Tao L. A weighted compensated localization algorithm of nodes in wireless sensor networks[C].3rd International Workshop on Advanced Computational Intelligence, Suzhou, China, August 25-27,2010:379-384.
    [133]Cassano E, Florio F, De Rango F, Marano S. A performance comparison between ROC-RSSI and trilateration localization techniques for WPAN sensor networks in a real outdoor testbed[C].2009 Wireless Telecommunications Symposium, Prague, Czech republic, April 22-24,2009:1-8.
    [134]任维政,徐连明,邓中亮,王川.基于RSSI的测距差分修正定位算法[J].传感技术学报.2008,21(7):1247-1250.
    [135]Zhao J, Jia H. A hybrid localization algorithm based on DV-Distance and the twice-weighted centroid for WSN[C].2010 3rd IEEE International Conference on Computer Science and Information Technology, Chengdu, China, July 9-11,2010:590-594.
    [136]De Oliveira L L, Martins J B, Dessbesel 1 G, et al. CeutroidM:A Cent.ro id-based localization algorithm for mobile sensor networks[C]. Proceedings of the 23rd Symposium on Integrated Circuits and Systems Design, Sao Paulo, Brazil, September 6-9,2010:204-209.
    [137]刘运杰,金明录,崔承毅.基于RSSI的无线传感器网络修正加权质心定位算法[J].传感技术学报,2010,23(5):717-721.
    [138]Zhong Y, Kuang X, Huang P. Improved algorithm for distributed localization in wireless sensor networks [J]. Journal of Shanghai Jiaotong University (Science),2010,15(1):64-69.
    [139]Kong Q, Yang X, Dai X. Research of an improved weighted centroid localization algorithm and anchor distribution[C].2nd International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Huangshan, China, October 10-12,2010:400-405.
    [140]Li J, Li Z, Wang Q, et al. An ellipse-centroid localization algorithm in wireless sensor networks[C].5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, September 24-26,2009:1-4.
    [141]Deng B, Huang G, Zhang L, et al. Improved centroid localization algorithm in WSNs[C]. International Conference on Intelligent System and Knowledge Engineering, Xiamen, China, November 17-19,2008:1260-1264.
    [142]Blumenthal J, Grossmann R, Golatowski F, et al. Weighted centroid localization in Zigbee-based sensor networks[C]. IEEE International Symposium on Intelligent Signal Processing, Alcala de Henares, Spain, October 3-5,2007:1-6.
    [143]Wayne L. Winston. Introduction to Probability Models:Operations Research[M], Volume II,4th Edition. Thomson Learning,2004.
    [144]Daigle J N, Queueing theory with applications to packet telecommunication[M], Boston, MA:Springer Science and Business Media, Inc.,2005.
    [145]盛友招.排队论及其在现代通信中的应用[M].北京:人民邮电出版社,2007.
    [146]Balsamo S, De N P V, Inverardi P. A review on queueing network models with finite capacity queues for software architectures performance prediction[J]. Performance Evaluation,2003,51 (2-4):269-288.
    [147]Kouvatsos D. Mem for arbitrary queueing networks with multiple general servers and repetitive-service blocking[J]. Performance Evaluation,1989,10(3):169-195.
    [148]Kouvatsos D, Denazis S, Georgatsos P. MEM for arbitrary exponential open networks with blocking and multiple job classes[C]. The 7th UK Computer and Telecommunications Performance Engineering Workshop. Edinburgh, UK:Springer-Verlag,1992:163-178.
    [149]Kouvatsos D. Maximum entropy analysis of queueing network models[R]. Lecture Notes in Computer Science, Performance Evaluation of Computer and Communication Systems,1993, 729:245-290.
    [150]Akar N. Moments of conditional sojourn times in finite capacity M/M/1/N-PS processor sharing queues[J]. IEEE Communications Letters,2012,16(4):533-535.
    [151]Samanta S K, Gupta U C, Sharma R K. Analysis of finite capacity discrete-time GI/Geo/1 queueing system with multiple vacations[J]. Journal of the Operational Research Society, 2007,58(3):368-377.
    [152]Tsitsiashvili G, Osipova M. Parameter estimation and cooperative effects in queueing networks [J]. WSEAS Transactions on Mathematics,2012,11(1):10-22.
    [153]Mofleh A D, Hussein A J, Fadi T. Analytical models based discrete-time queueing for the congested network[J]. International Journal of Modeling, Simulation, and Scientific Computing,2012,3(1):1-22.
    [154]Zhu W, Zhou J, Deng R H, et al. Detecting node replication attacks in wireless sensor networks:A survey[J]. Journal of Network and Computer Applications,2012,35(3): 1022-1034.
    [155]Li Guo, Zhu C,Li X. Application of Chaos theory and Wavelet to modeling the traffic of wireless sensor networks[C].2010 International Conference on Biomedical Engineering and Computer Science, Wuhan, China, April 23-25,2010:1-4.
    [156]Vidhyacharan B. State diagrams and steady-state balance equations for open queuing network models[J]. Computers and Electrical Engineering,2005,31(7):460-467.
    [157]Kock A A A, Etman L F P, Rooda J E. Effective process times for multi-server flowlines with finite buffers[J]. IIE Transactions,2008,40:177-186.
    [158]Vuuren M, Adan I J B F, Simone A. Resin S A E. Performance analysis of multi-server tandem queues with finite buffers and blocking[J]. OR Spectrum 2005(27):315-338.
    [159]Bolot J C. Characterizing end-to-end packet delay and loss in the internet [J]. Journal of High Speed Networks,1993,2(3):305-523.
    [160]Gurewitz O, Cidon I, Sidi M. One-way delay estimation using network-wide measurements[J]. IEEE Transactions on Information Theory,2006,52(6):2710-2724.
    [161]Papagiannaki K, Moon S, Fraleigh C, et al. Analysis of measured single-hop delay from an operational backbone network[C]. Proceedings of IEEE INFOCOM'02. New York, United states, June 23-27,2002:535-544.
    [162]Kouvatsos D, Awan I. Entropy maximisation and open queueing networks with priorities and blocking[J]. Performance Evaluation,2003,51(2-4):191-227.
    [163]Awan I. Analysis of multiple-threshold queues for congestion control of heterogeneous traffic streams[J]. Simulation Modelling Practice and Theory,2006,14(6) 712-724.
    [164]Sheu J P, Sahoo P K, Su C H, et al. Efficient path planning and data gathering protocols for the wireless sensor network[J]. Computer Communications,2010,33(3):398-408.
    [165]陈国龙,郭文忠,陈羽中.无线传感器网络任务分配动态联盟模型与算法研究[J].通信学报,2009,30(11):48-55.
    [166]Jennifer Y, Biswanath M, Dipak G. Wireless sensor network survey [J]. Computer Networks, 2008,52(12):2292-2330.
    [167]Akyildiz I F, Melodia T, Chowdhury K R. A survey on wireless multimedia sensor networks[J]. Computer Networks,2007,51(4):921-960.
    [168]Son J, Lee J, Seo S. Topological key hierarchy for energy-efficient group key management in wireless sensor networks[J]. Wireless Personal Communications,2010,52(2): 359-382.
    [169]Qiu T, Feng L, Wang L, et al. A new modeling method for vector processor pipeline using queueing network[C].5th International ICST Conference on Communications and Networking. Beijing, China, August 25-27,2010:1-6.
    [170]Buetler F J. Mean sojourn times in markov queueing networks-Little's formula revisited [J]. IEEE Transactions on Information Theory,1983, IT-30(2):233-241.
    [171]LasassmehS M, Conrad J M. Time synchronization in wireless sensor networks:A survey[C]. IEEE SoutheastCon 2010 Conference:Energizing Our Future, Charlotte-Concord, United states, March 18-21,2010:242-245.
    [172]Soua R, Minet P. A survey on energy efficient techniques in wireless sensor networks [C]. 4th Joint IFIP Wireless and Mobile Networking Conference, Toulouse, France, October 26-28, 2011:1-9.
    [173]孙利民,李建中,陈渝,朱红松.无线传感器网络[M].北京:清华大学出版社,2005.
    [174]Gao S, Zhang H, Song T, et al. Network lifetime and throughput maximization in wireless sensor networks with a path-constrained mobile sink[C].2010 WRI International Conference on Communications and Mobile Computing, Shenzhen, China, April 12-14,2010:298-302.
    [175]Eun D Y, Wang X. Achieving 100% throughput in TCP/AQM under aggressive packets marking with small buffer[J]. IEEE/ACM Transactions on Networking,2008,16(4):945-956.
    [176]Subramanian R, Fekri F. Unicast throughput analysis of finite-buffer sparse mobile networks using Markov chains[C].46th Annual Allerton Conference on Communication, Control, and Computing, Monticello, United States, September 24-26,2008:1161-1168.
    [177]Sridharan A, Krishnamachari B. Maximizing network utilization with max-min fairness in wireless sensor networks[J]. Wireless Networks,2009,15(5):585-600.
    [178]Vupputuri S, Rachuri K K, Murthy C S R. Using mobile data collectors to improve network lifetime of wireless sensor networks with reliability constraints[J]. Journal of Parallel and Distributed Computing,2010,70(7):767-778.
    [179]Han J, Choi S, Park T. Maximizing lifetime of cluster-tree ZigBee networks under end-to-end deadline constraints[J]. IEEE Communications Letters,2010,14(3):214-216.
    [180]Escheikh M, Barkaoui K. Opportunistic MAC layer design with Stochastic Petri Nets for multimedia ad hoc networks[C]. Concurrency Computation Practice and Experience,2010, 22(10):1308-1324.
    [181]Moon C, Chung W. Design of navigation behaviors and the selection framework with generalized stochastic petri nets toward dependable navigation of a mobile robot[C]. Proceedings-IEEE International Conference on Robotics and Automation, Anchorage, United states, May 3-7,2010:2989-2994.
    [182]Bisnik N, Abouzeid A A. Queuing network models for delay analysis of multihop Wireless Ad Hoc networks[J]. Ad Hoc Networks,2009,7(1):79-97.
    [183]Ozdemira M, McDonald A B. On the performance of ad hoc wireless LANs:A practical queuing theoretic model[J]. Performance Evaluation,2006,63(11):1127-1156.
    [184]Chiasserini C F, Garetto M. An analytical model for wireless sensor networks with Sleeping Nodes[J]. IEEE Transactions on Mobile Computing,2006,5(12):1706-1718.
    [185]Paul S, Nandi S, Singh I. A dynamic balanced-energy sleep scheduling scheme in heterogeneous wireless sensor network[C]. Proceedings of the 16th International Conference on Networks, New Delhi, India. December 12-14,2008:1-6.
    [186]Bulut E, Korpeoglu I. Sleep scheduling with expected common coverage in wireless sensor networks[J]. Wireless Networks,2011,17(1):19-40.
    [187]Almeida D D, Kellert P. Analytical queueing network model for flexible manufacturing systems with a discrete handling device and transfer blockings[J]. International Journal of Flexible Manufacturing Systems,2000,12(1):25-57.
    [188]Osorio C, Bierlaire M. An analytic finite capacity queueing network model capturing the propagation of congestion and blocking[J]. European Journal of Operational Research, 2009,196(3):996-1007.
    [189]Kerbache L, Smith J M. Assymptotic behavior of the expansion method for open finite queueing networks[J]. Computers and Operations Research 1988,15(2):157-169.
    [190]Tahilramani H, Manjunath D, Bose S K. Approximate analysis of open network of GE/GE/m/N queues with transfer blocking[C]. Proc. of the 7th Seventh International Symposium on Modeling Analysis and Simulation of Computer and Telecommunication Systems, University of Maryland, October 24-28,1999:164-171.
    [191]Brandwajn A, Begin T. Higher-order distributional properties in closed queueing networks[J]. Performance Evaluation,2009,66(11):607-620.
    [192]Andriansyah R, VanWoensel T, Cruz F R B, et al. Performance optimization of open zero-buffer multi-server Queueing Networks[J]. Computers and Operations Research,2010, 37(8):1472-1487.
    [193]Mario L. Queueing Theory. Applied stochastic processes[R]. Universitext, Springer link,2007:315-356.
    [194]Sheldon M. Ross. Introduction to Probability Models[M].9th Edition. Beijing:Posts & Telecom Press,2007.
    [195]Laszka A, Buttydn L, Szeszler D. Optimal selection of sink nodes in wireless sensor networks in adversarial environments[C].2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, Lucca, Italy, June 20-23,2011:1-6.
    [196]Teng R, Zhang B. Distribution of sink-node's operation for on-demand information retrieval in wireless sensor networks[C].6th Conference on Wireless Advanced, London, United kingdom, June 27-29,2010:1-6.
    [197]Yang L. Determining sink node locations in wireless sensor networks[C].2006 IEEE International Conference on Systems, Taipei, Taiwan, October 8-11,2006:3400-3404.
    [198]张希伟,陈贵海.基于SDNA应用的移动Sink节点的设计与实现[J].计算机研究与发,2012,49(3):541-549.
    [199]Zhang G, Wang Z. Design of the FPGA-based wireless sensor network sink nodes [C].7th International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, September 23-25,2011:1-8.
    [200]Xiao X, Fan T, Wang H, et al. Design and implementation of hardware fusion technology for super sink node[C]. International Conference on Networks Security, Wireless Communications and Trusted Computing, Wuhan, Hubei, China, April 25-26,2009:244-248.
    [201]邱铁,郭禾,冯林,司伟生,刘晓艳.基于排队网络的流水线模拟器任务缓存新分析模型[J].计算机研究与发展,2011,49(1):103-110.
    [202]Sharifi S, Coskun A K, Rosing T S. Hybrid dynamic energy and thermal management in heterogeneous embedded multiprocessor SoCs[C]. The 15th Asia and South Pacific Design Automation Conference, Taipei, Taiwan, January 18-21,2010:873-878.
    [203]Samara S, Schomaker G. Real-time adaptation and load balancing aware OS services for distributed reconfigurable system on chip[C]. The 7th IEEE International Conference on Embedded Software and Systems, Bradford, United Kingdom, June 29-July 1,2010:1743-1750.
    [204]装忠民,邓志东,徐硕,许潇.一种基于N-最优阶次序列的无线传感器网络节点定位方法[J].自动化学报,2010,36(2):119-207.
    [205]Wang X, Bischoff 0, Laur R, et al. Localization in wireless Ad-hoc sensor networks using multilateration with RSSI for logistic applications[J]. Procedia Chemistry,2009, 1(1):461-464.
    [206]Pires R P, Wanner L F, Frohlich A A. An efficient calibration method for RSSI-based location algorithms[C].6th TEEE International Conference on Industrial Informaties, Daejeon, Korea, July 13-16,2008:1183-1188.
    [207]Goldoni E, Savioli A, Risi M, et al. Experimental analysis of RSSI-based indoor localization with IEEE 802.15.4 [C].2010 European Wireless Conference, Lucca, Italy, April 12-15,2010:71-77.
    [208]孙佩刚,赵海,罗玎玎,张晓丹,尹震宇.智能空间中RSSI定位问题研究[J].电子学报.2007,35(7):1240-1245.
    [209]Jin R, Wang H, Peng B, et al. Research on RSST-based localization in wireless sensor networks[C]. International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, October 12-14,2008:1-4.
    [210]Lau E E L, Chung W Y. Enhanced RSSl-based real-time user location tracking system for indoor and outdoor environments[C].2nd International Conference on Convergent Information Technology, Gyongju, Korea, November 21-23,2007:1213-1218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700