用户名: 密码: 验证码:
基于最优估计的传感器网络室内无线测距与定位问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络和物联网方兴未艾,UWB和ZigBee等适用于近距离、低功耗的无线通信技术成为重要的备选方案。室内环境下,常规的GPS定位技术失效,因此无线测距和定位是室内无线通信最基本的应用之一。室内无线通信时,存在多径干扰、非视距误差以及阴影衰落等影响因素,测距和定位面临许多新的需求和挑战。故基于无线传感器网络的室内无线测距和定位算法有待进一步研究和完善。
     本文针对UWB和ZigBee等近距离无线通信技术,基于最优估计理论提出了几种到达时间(TOA)和接收信号强度(RSS)的测距与定位算法。主要工作和贡献包括以下几个方面:
     1.针对能量检测模式下超宽带测距的精度低,算法复杂等问题,提出基于最优门限和次优门限的两种TOA估计算法。最优门限算法以接收机信号统计特性与UWB小尺度衰减特性关系式为基础推导出门限选择的闭合表达式,并在最小均方误差指标下求解TOA估计值;次优门限算法以最优门限分析为基础,在虚警概率约束下使用牛顿迭代给出求解门限的递推算法。
     2.针对非视距条件下TOA测距精度低,正向偏差大的特点,提出一种基于偏置Kalman滤波和极大似然估计的标量加权信息融合算法,以消除UWB测距系统的非视距误差。该算法使用了TOA和RSS两种观测量来提高测距精度。首先,将IEEE802.15.4a给出的测距方法抽象为一个多传感器多尺度的采样过程。然后,分别在视距和非视距条件下使用信息融合算法估计测得的距离信息,并且重点考察了视距/非视距切换过程中误差消除算法的有效性。
     3.针对路径损耗模型与实际信道衰减特性匹配性差,模型参数估计不准确等问题,提出一种先进行路径损耗最优模型筛选的RSS测距算法。首先分析一组路径损耗模型的统计特性,然后考虑RSS观测的非完全数据,提出基于数学期望最大化的参数估计算法,在准则函数的基础上筛选最优模型,进而进行RSS测距。
     4.针对叶酸分布式检测对位置信息的要求及室内环境下RSS定位精度低的问题,提出基于Bayes估计和加权迭代的RSS定位算法。该算法首先使用极大似然估计在线估计路径损耗模型参数,然后利用Bayes准则建立关于位置信息的后验概率,最后在Bayes估计的位置信息的基础上使用加权迭代进行精确定位。该算法可与叶酸的分布检测有效结合。
     总之,本文围绕无线传感器网络的室内测距与定位问题展开了研究,所得结果不仅具有重要的理论价值,而且具有广泛的实际应用价值。
With the rapid development of wireless sensor networks and the internet of things, the UWB and ZigBee technology for short range and low-power wireless communication have become an important alternative. For indoor environment, the conventional GPS location could not do work well, the indoor wireless ranging and positioning becomes one of the most fundamental applications of wireless sensor networks. Due to the multipath interference, non-Iine-of-sight error and shadow fading constraints of the indoor communication, the dynamic changes in the network topology and the nonlinear error of location algorithm, the approaches to indoor ranging and positioning in wireless sensor networks are required to solve the above problems.
     Serval approaches to ranging and positioning with Time of Arrival (TOA) and Received Signal Strength (RSS) measurement in UWB and Zigbee systems are pro-posed based on the optimal estimation theory in this dissertation. The main works and contributions are summarized as follows:
     1. In order to design precise and feasible ranging method with Impulse Radio Ultra Wide Band signal during energy detection, two new TOA estimation algo-rithms based on optimal and suboptimal thresholds are respectively proposed. For optimal method, with the relationship between energy's statistics in receiver and small-scale attenuation, a closed form of threshold is derived, and the TOA esti-mation is obtained under the minimum mean square error. For suboptimal method based on optimal threshold analysis, a recursive form of threshold selection using Newton iteration is developed with false alarm probability constraint.
     2. A scalar weighting information fusion smoother with modified biased Kalman filter and maximum likelihood estimation is proposed to mitigate the ranging errors in UWB systems. The information fusion algorithm uses both the TOA and RSS measurement data to improve the ranging accuracy. At first, the ranging protocol of IEEE802.15.4a is considered as a multi-sensor system with multi-scale sampling. Then a scalar-based IF smoother is proposed to accurately estimate the range mea-surement in the line of sight (LOS) and non-line of sight (NLOS) condition of UWB sensor network. Investigation of the effectiveness of the IF in mitigating errors dur-ing the LOS/NLOS transitions is especially focused.
     3. In order to reflect the actual channel attenuation, a model selection algorithm for path loss in wireless sensor networks is proposed for RSS ranging estimation. Firstly, the statistical properties of some path loss models are analyzed, and then ex-pectation maximization algorithm from incomplete data of received signal strength is proposed for parameter estimation, finally a set of weighted coefficients are given on the basis of criterion function, which could select an appropriate path loss model. Through experiment, the proposed model selection method could estimate parame-ters effectively, compared with other similar algorithms, this method could pick up a model fitting the experimental data better.
     4. Since the location information is required to detect folate distributly and the positioning with RSS measurement in indoor environments faces many problem, a RSS-based positioning algorithm based on Bayes estimation and weighted iteration is proposed to improve the positioning accuracy. At first the maximum likelihood estimation is used for the estimation of path loss model parameters. And then Bayes criteria is utilized to establish the posterior probability of the location information. Finally, a weighted iteration algorithm based on the location information of Bayes estimation is proposed for precise positioning. This mathod is successfully applied to embedded folic acid detection systems.
     In conclusion, this dissertation focuses on the indoor ranging and positioning in wireless sensor networks. The obtained results have not only important theoretic values, but also extensive practical values.
引文
[1]L. Hui, H. Darabi. Survey of Wireless Indoor Positioning Techniques and Systems[J]. IEEE Transactions on Applications and Reviews:Systems, Man, and Cybernetics, Part C,2007,37(6):1067-1080.
    [2]I. F. Akyildiz, W. Su. Wireless sensor networks:a survey[J]. Computer Net-works,2002,38(4):393-422.
    [3]I. Skog, P. Handel. In-Car Positioning and Navigation Technologies:A Sur-vey [J]. IEEE Transactions on Intelligent Transportation Systems,2009,10(1): 4-21.
    [4]I. Guvenc. Towards Practical Design of Impulse Radio Ultrawideband Sys-tems:Paramter Estimation and Adaption, Inteference Mitigaiton, and Perfor-mance Analysis[M]. Ph.d's Thesis, University of South Florida,2006
    [5]C. Otto, A. Milenkovic, C. Sanders, E. Jovanov. System architecture of a wire-less body area sensor network for ubiquitous health monitoring[J]. Journal of Mobile Multimedia,2006,1(4):307-326.
    [6]N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govin-dan, D. Estrin, A wireless sensor network for structural monitoring[C]. Pro-ceedings of the 2nd ACM International Conference on Embedded Networked Sensor Systems, New York, USA,2004:13-24.
    [7]M. Li, Y. Liu. Underground structure monitoring with wireless sensor net-works[C]. Information Proceedings of 6th International Conference in Sensor Networks, Massachusetts, USA,2007:69-78.
    [8]M. Duarte, Y. H. Hu. Vehicle classification in distributed sensor networks [J]. Journal of Parallel and Distributed Computing,2004,64(7):826-838.
    [9]H-M Tsai, W. Viriyasitavat, O. Tonguz, C. Saraydar, T. Talty, A. Macdon-ald. Feasibility of in-car wireless sensor networks:a statistical evaluation[C]. Proceedings of IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, San Diego, CA, USA,2007: 101-111.
    [10]J. Beutel. Geolocation in A PicoRadio Environments[M]. UC Berkeley,1999.
    [11]I. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby, J. Haapola. UWB wireless sensor networks:UWEN-A practical example[J]. IEEE Communications Magazine,2004,42(12):27-32.
    [12]S. Gezici, Z. Tian. Localization via ultra-wideband radios:A look at position-ing aspects of future sensor networks[J]. IEEE Signal Processing Magazine, 2005,22(4):70-84.
    [13]S. H. Wu, Q. Y. Zhang. TOA estimation based on match-filtering detection for UWB wireless sensor networks [J]. Journal of Software,2009,20(11):3010-3022.
    [14]I. Guvenc, C. Chia-Chin. A survey on TOA based wireless localization and NLOS mitigation techniques [J]. IEEE Communications Surveys Tutorials, 2009,11(3):107-124.
    [15]I. Guvenc, Z. Sahinoglu. TOA estimation for IR-UWB systems with differ-ent transceiver types[J]. IEEE Transactions on Microwave Theory and Tech-niques,2006,54(4):1876-1886.
    [16]Z. Sahinoglu, S. Gezici. Ranging in the IEEE 802.15.4a Standard[C]. IEEE Annual Wireless and Microwave Technology Conference, Clearwater Beach, Florida, USA,2006:1-5.
    [17]A. A. D'Amico, U. Mengali. Ranging algorithm for the IEEE 802.15.4a stan-dard[C]. IEEE International Conference on Ultra-Wideband, Vancouver, BC, 2009:285-289.
    [18]I. Guvenc, S. Gezici. Ultra-wideband range estimation:Theoretical limits and practical algorithms[C]. IEEE International Conference on Ultra-Wideband, Hannover, Germany,2008:93-96.
    [19]I. Guvenc, Z. Sahinoglu. Non-coherent TOA estimation in IR-UWB systems with different signal waveforms[C].2nd International Conference on Broad-band Networks, Boston, MA, USA,2005:1168-1174.
    [20]I. Guvenc, H. Arslan. UWB channel estimation with various sampling rate options[C]. IEEE/Sarnoff Symposium on Advances in Wired and Wireless Communication, Princeton, NJ, USA,2005:229-232.
    [21]L. Stoica, I. Oppermann. Modelling and simulation of a non-coherent IR UWB transceiver architecture with TOA estimation[C]. IEEE 17th Interna-tional Symposium on Personal, Indoor and Mobile Radio Communications, Helsinki, Finland,2006:1-5.
    [22]L. Stoica, A. Rabbachin, I. Oppermann. A low-complexity noncoherent IR-UWB transceiver architecture with TOA estimation[J]. IEEE Transaction on Microwave Theory and Techniques,2006,54(4):1637-1646.
    [23]S. W. Lee, Y. J. Park. Design and implementation of energy-collection-based low complexity IR-UWB receiver[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences (Compendex),2008: 704-708.
    [24]I. Guvenc, Z. Sahinoglu. Multiscale energy products for TOA estimation in IR-UWB systems[C]. IEEE Global Telecommunications Conference, St. Louis, MO, USA,2005:209-213.
    [25]I. Guvenc, C. C. Chong. Joint TOA estimation and localization technique for UWB sensor network applications[C]. IEEE 65th Vehicular Technology Con-ference, Dublin, Ireland,2007:1574-1578.
    [26]D. Dardari, M. Z. Win, Threshold-based time-of-arrival estimators in UWB dense multipath channels[C]. IEEE International Communication Confer-ence, Istanbul, Turkey,2006:4723-4728.
    [27]I. Guvenc, Z. Sahinoglu. Threshold-based TOA estimation for impulse ra-dio UWB systems[C]. IEEE International Conference on Ultra-Wideband, Zurich, Switzerland,2005:420-425.
    [28]T. Zhang, Q. Zhang. A two-step TOA estimation method based on energy detection for IR-UWB sensor networks[C].7th Annual Communication Net-works and Services Research Conference, Moncton, NB, Canada,2009:139-145.
    [29]A. Chehri, P. Fortier. Time-of-arrival estimation for IR-UWB systems based on two step energy detection[C].24th Biennial Symposium on Communica-tions, Kingston, Canada,2008:369-373.
    [30]A. A. D'Amico, U. Mengali. TOA Estimation with the IEEE 802.15.4a Stan-dard[J]. IEEE Transactions on Wireless Communications,2010,9(7):2238-2247.
    [31]I. Guvenc, H. Arslan. Comparison of two searchback schemes for non-coherent TOA estimation in IR-UWB systems[C]. IEEE Sarnoff Symposium, Princeton, NJ, USA,2006:1-4.
    [32]I. Guvenc, Z. Sahinoglu. Searchback algorithms for TOA estimation in non-coherent low-rate IR-UWB systems[J]. Wireless Personal Communications, 2009,48(4):585-603.
    [33]A. Y. Z. Xu, E. K.S. A novel threshold-based coherent TOA estimation for IR-UWB systems[J]. IEEE Transactions on Vehicular Technology,2009,58(8): 4675-4681.
    [34]J. Y. Lee, R. A. Scholtz. Ranging in a dense multipath environment using an UWB radio link[J]. IEEE Journal on Selected Areas in Communications, 2002,20(9):1677-1683.
    [35]H. Zhan, J. Ayadi. Impulse radio ultra-wideband ranging based on maximum likelihood estimation[J]. IEEE Transactions on Wireless Communications, 2009,8(12):5852-5861.
    [36]A. Rabbachin, I. Oppermann, B. Denis. ML time-of-arrival estimation based on low complexity UWB energy detection[C]. IEEE International Conference on Ultra-Wideband, Waltham, MA, USA,2006:599-604.
    [37]A. Rabbachin, I. Oppermann. GML ToA estimation based on low complexity UWB energy detection[C]. IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, Helsinki, Finland,2006:1-5.
    [38]A. A. D'Amico, U. Mengali. TOA Estimation with Pulses of Unknown Shape. Communications[C]. IEEE International Conference on Communica-tions,2007:4287-4292.
    [39]R. Ding, Z. H. Qian. UWB positioning system based on joint TOA and DOA estimation [J]. Journal of Electronics and Information Technology,2010, 32(2):313-317.
    [40]B. T. Fang. Simple solutions for hyperbohc and related position fixes[J]. IEEE Trans. on Aerospace and Electronic Systems,1990,26(5):748-753.
    [41]D. J. Torrieri. Statistical theory of passive location system[J]. IEEE Trans. on Aerospace and Electronic Systems,1984,20(2):183-198.
    [42]M. P. Wylie, J. Holtzman. The non-line of sight problem in mobile location es-timation[C].5th IEEE International Conference on Universal Personal Com-munications, Cambridge, MA,1996:827-831.
    [43]J. Borras, P. Hatrack. Decision theoretic framework for NLOS identifica-tion[C].48th IEEE Vehicular Technology Conference, Ottawa,1998:1583-1587.
    [44]J. Khodjaev, Y. Park. Survey of NLOS identification and error mitigation problems in UWB-based positioning algorithms for dense environments[C]. Annals of Telecommunications 65(Compendex),2010:301-311.
    [45]I. Guvenc, C. C. Chong. NLOS identification and mitigation for UWB local-ization systems [C]. IEEE Wireless Communications and Networking Confer-ence, Kowloon, China,2007,2007:1571-1576.
    [46]C. D. Wann, C. S. Hsueh, Non-line of Sight Error Mitigation in Ultra-wideband Ranging Systems Using Biased Kalman Filtering[J]. Journal of Sig-nal Processing Systems,2010,64(3):389-400.
    [47]N. Alsindi, C. Duan. NLOS channel identification and mitigation in ultra wideband ToA-based wireless sensor networks[C].6th Workshop on Posi-tioning, Navigation and Communication, Hannover, Germany,2009:59-66.
    [48]J. Youssef, B. Denis. Enhanced UWB Indoor Tracking through NLOS TOA Biases Estimation[C]. Global Telecommunications Conference, New Orleans, 2008:1-5.
    [49]K. Yu, Y. J. Guo. Statistical NLOS Identification Based on AOA, TOA, and Signal Strength[J]. IEEE Transactions on Vehicular Technology,2009,58(1): 274-286.
    [50]S. Venkatesh, R. M. Buehrer. Non-line-of-sight identification in ultra-wideband systems based on received signal statistics[J]. IET Microwaves, An-tennas Propagation,2007,1(6):1120-1130.
    [51]S. Wu, Y Ma, Q Zhang, NLOS error mitigation for UWB ranging in dense multipath environments[C]. Wireless Communications and Networking Con-ference, Kowloon.2007:1565-1570.
    [52]H. Tang, Y. Park. A TOA-AOA-based NLOS error mitigation method for lo-cation estimation[J]. EURASIP Signal Process,2008:1-14.
    [53]C. D. Wann, H. Y. Lin. Hybrid TOA/AOA estimation error test and non-line of sight identification in wireless location[J]. Wireless Communications and Mobile Computing,2009,9(6):859-873.
    [54]李静,刘琚.用卡尔曼滤波器消除TOA中NLOS误差的三种方法[J].通信学报,2005,26(1):130-135.
    [55]黄清明,刘琚.基于卡尔曼滤波的测量值重构及定位算法[J].电子与信息学报,2007,29(7):1551-1555.
    [56]D. Tao, L. Chen. Mobile location estimator in mixed LOS/NLOS conditions using UKF banks[C].5th International Conference on Wireless Communica-tions, Networking and Mobile Computing, Beijing, China,2009:1-4.
    [57]C. D. Wann, Y. M. Chen. Mobile location tracking with NLOS error mitiga-tion[C]. IEEE Global Telecommunications Conference, Taipei, Taiwan,2002: 1688-1692.
    [58]J. F. Liao, B. S. Chen, Robust Mobile Location Estimator with NLOS Miti-gation using Interacting Multiple Model Algorithm[J]. IEEE Transactions on Wireless Communications,2006,5(11):3002-3006.
    [59]L. Jing, L. Ju. NLOS error mitigation and mobile tracking[C],7th Interna-tional Conference on Signal Processing,2004:2453-2456.
    [60]L. Bao, L. K. Ahmed. Mobile location estimator with NLOS mitigation us-ing Kalman filtering[C]. Wireless Communications and Networking, New Or-leans, LA, USA,2003:1969-1973.
    [61]R. Casas, A. Marco. Robust estimator for non-line-of-sight error mitigation in indoor localization[J]. EURASIP Signal Process,2006:152-156.
    [62]N. J. Thomas, D. G. M. Cruickshank. A robust location estimator architecture with biased Kalman filtering of TOA data for wireless systems[C]. IEEE 6th International Symposium on Spread Spectrum Techniques and Applications, Parsippany, NJ,2000:296-300.
    [63]S. Gezici. A Survey on Wireless Position Estimation[J]. Wireless Personal Communication,2008,44(3):263-282.
    [64]L. Yu-Chiang, C. Chien-Ching. Mitigating NLOS error for UWB positioning system[C]. IET International Conference on Wireless Mobile and Multimedia Networks Proceedings, Hangzhou, China,2006:1-3.
    [65]J. Schroeder, S. Galler. Three-dimensional indoor localization in Non Line of Sight UWB channels[C]. IEEE International Conference on Ultra-Wideband, Singapore,2007:89-93.
    [66]G. Shen, R. Zetik. Range-based localization for UWB sensor networks in re-alistic environments[J]. EURASIP Journal on Wireless Communication Net-working,2010:1-9.
    [67]L. Soo-Young, P. Jong-Tae. NLOS error mitigation in a location estimation of object based on RTLS using Kalman filter[C]. International Joint Conference, Busan,2006:2942-2946.
    [68]章坚武,张璐.基于ZigBee的RSSI测距研究[J].传感技术学报,2009,22(2):285-288.
    [69]詹杰,吴伶锡.无线传感器网络RSSI测距方法与精度分析[J1.电讯技术,2010,50(4):83-87.
    [70]任福君,王龙.基于RSSI的室内移动机器人测距方法分析[J].机床与液压,2011,39(9):8-11.
    [71]T. Stoyanova, F. Kerasiotis. Evaluation of impact factors on RSS accuracy for localization and tracking applications[C]. Proceedings of the 5th ACM international workshop on Mobility management and wireless access. Chania, Crete Island, Greece,2007:9-16.
    [72]X. F. Zhao, L. Razouniov. Path loss estimation algorithms and results for RF sensor networks[C]. IEEE 60th Vehicular Technology Conference,2004: 4593-4596.
    [73]H. Ding, Z. Xu. A path loss model for non-line-of-sight ultraviolet multiple scattering channels[J]. EURASIP Journal on Wireless Communication Net-working,2010:1-11.
    [74]凡高娟,王汝传.基于RSSI的无线传感器网络环境参数分析与修正方案[Jl.南京邮电大学学报:自然科学版,2009,29(6):54-57.
    [75]S. Mazuelas, F. A. Lago. Dynamic estimation of optimum path loss model in a RSS positioning system[C]. IEEE/ION Position, Location and Navigation Symposium, Monterey, CA,2008:679-684.
    [76]S. Srinivasa, M. Haenggi. Path loss exponent estimation in large wireless net-works[C]. Information Theory and Applications Workshop, San Diego, CA, 2009:124-129.
    [77]G. Mao, B. D. O. Anderson. Path loss exponent estimation for wireless sensor network localization[J]. Computer Networks 2007,51(10):2467-2483.
    [78]M. Laaraiedh, S. p. Avrillon. Enhancing positioning accuracy through RSS based ranging and weighted least square approximation[C]. Proceedings of the International Conference on Positioning and Context-Awareness,2009: 1-9.
    [79]M. Laaraiedh, S. Avrillon. Enhancing Positioning Accuracy through Direct Position Estimators Based on Hybrid RSS Data Fusion[C]. IEEE 69th Vehic-ular Technology Conference, Barcelona,2009:1-5.
    [80]A. Fort, C. Desset. Indoor body-area channel model for narrowband commu-nications[J]. IET Microwaves, Antennas Propagation,2007,1(6):1197-1203.
    [81]赵磊,王丽侠.无线传感器网络传输错误统计的测距算法[J].无线电通信技术,2008,34(1):29-31.
    [82]王伟,陈岱.基于测距修正和位置校正的RSSI定位算法[J].计算机工程与设计,2011,32(2):409-412.
    [83]方震,赵湛.基于RSSI测距分析[J]传感技术学报,2008,(11):2526-2530.
    [84]S. J. Halder, C. Tae-Young. On-Line ranging for mobile objects using Zigbee RSSI measurement[C].3rd International Conference on Pervasive Computing and Applications, Alexandria,2008:662-666.
    [85]N. Benvenuto, F. Santucci. Comparison between least squares path loss es-timation and averaging for handover algorithms[C]. Vehicular Technology Conference on Mobile Technology for the Human Race, Atlanta, GA,1996: 1326-1330.
    [86]A. Awad, T. Frunzke. Adaptive distance estimation and localization in WSN using RSSI measures[C].10th Euromicro Conference on Digital System De-sign Architectures, Methods and Tools, Lubeck,2007:471-478.
    [87]张洁颖,孙懋珩.基于RSSI和LQI的动态距离估计算法[J].电子测量技术,2007,30(2):142-145.
    [88]G. Mao, B. Fidan. Wireless sensor network localization techniques[J]. Com-puter Networks,2007,51(10):2529-2553.
    [89]A. Hatami, K. Pahlavan. A comparative performance evaluation of RSS-based positioning algorithms used in WLAN networks[C]. IEEE Wireless Commu-nications and Networking Conference,2005:2331-2337.
    [90]C. Alippi, G. Vanini. A RSSI-based and calibrated centralized localization technique for wireless sensor networks[C].4th Annual IEEE International Conference on Pervasive Computing and Communications Workshops, Pisa, 2006:300-305.
    [91]K. Weng, C. Chen. Using RSS with difference method in localization algo-rithm for sensor networks[C].2nd International Conference on Information Science and Engineering, Hangzhou, China,2010:2500-2502.
    [92]彭渤.基于RSSI测距误差补偿的无线传感器网络定位算法研究[M].大连理工大学,2008.
    [93]P. Tarrio, A. M. Bernardos. A RSS localization method based on paramet-ric channel models[C]. International Conference on Sensor Technologies and Applications, Valencia,2007:265-270.
    [94]X. R. Li. Performance study of RSS-based location estimation techniques for wireless sensor networks[C]. IEEE Military Communications Conference, Atlantic City, NJ,2005:1064-1068.
    [95]周艳.基于RSSI测距的传感器网络定位算法研究[J],计算机科学,200936(4):119-120.
    [96]高国胜,陈俊杰.基于RSSI测距的信标节点自校正定位算法[J].测控技术,2009,28(8):93-97.
    [97]任维政,徐连明.基于RSSI的测距差分修正定位算法[J].传感技术学报,2008,21(7):1247-1250.
    [98]J. Shirahama, T. Ohtsuki. RSS-Based localization in environments with dif-ferent path loss exponent for each link[C]. Vehicular Technology Conference, Singapore,2008:1509-1513.
    [99]C. Morelli, M. Nicoli. Particle filters for RSS-based localization in wireless sensor networks:an experimental study[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse,2006:957-960.
    [100]N. Patwari, A. O. Hero. Relative location estimation in wireless sensor net-works[J]. IEEE Transactions on Signal Processing,2003,51(8):2137-2148.
    [101]H. Chen, D. Ping. A novel localization scheme based on RSS data for wireless sensor networks[J]. Advanced Web and Network Technologies, and Applica-tions.2006,38(42):315-320.
    [102]T. Tonteri. A statistical modeling approach to location estimation[M], Mas-ter's Thesis, University of Helsinki,2001.
    [103]T. Roos, P. Myllymaki. A statistical modeling approach to location estima-tion[J]. IEEE Transactions on Mobile Computing,2002,1(1):59-69.
    [104]P. Tarrio, A. M. Bernardos. A new positioning technique for RSS-Based lo-calization based on a weighted least squares estimator[J]. IEEE International Symposium on Wireless Communication Systems, Reykjavik,2008:633-637.
    [105]J. Y. Fang, H. C. Chu. A multiple power-level approach for wireless sensor network positioning[J]. Computer Networks 2008,52(16):3101-3118.
    [106]L. Jeong Heon, R. M. Buehrer, Location estimation using differential RSS with spatially correlated shadowing[C]. Global Telecommunications Confer-ence, Honolulu, HI,2009:1-6.
    [107]E. Elnahraway, X. Li. The limits of localization using RSS[C]. Proceedings of the 2nd international conference on Embedded networked sensor systems, Baltimore, MD, USA,2004:283-284.
    [108]孙佩刚,赵海.智能空间中RSSI定位问题研究[J1.电子学报,2007,35(7):1240-1245.
    [109]刘艳文,王福豹.基于DV-Hop定位算法和RSSI测距技术的定位系统[J].计算机应用,2007,27(3):516-518.
    [110]T. T. Zhang, Q. Y. Zhang, N. T. Zhang. A UWB ranging method based on weighted energy detection[J]. Journal of Electronics Information Technology, 2009,31(8):1946-1951.
    [111]D. Dardari, C. Chong, M. Z. Win. Threshold-based time-of-arrival estimators in UWB dense multipath channels[J]. IEEE Transactions on Communications, 2008,56(8):1366-1378.
    [112]M. Sahin, I Guvenc, H Arlan. Optimization of energy detector receivers for UWB systems[C]. IEEE Vehicular Technology Conference, Stockholm, Swe-den,2005:1386-1390.
    [113]D. A. Shnidman. Radar detection probabilities and their calculation[J]. IEEE Transactions on Aerospace and Electronic Systems,1995,31(3):928-950.
    [114]J. V. DiFranco, W. L. Rubin, Radar Detection[M]. Norwood:Artech House, 1980.
    [115]B. Mahafza, A. Elsherbeni. Matlab Simulations for Radar Systems De-sign[M]. New York:Chapman Hall/CRC,2004.
    [116]B. Alavi, K. Pahlavan. Modeling of the distance measure error using UWB indoor radio measurement[J]. IEEE Communication Letter,2006,10(4):275-277.
    [117]I. Guvenc, C. C. Chong, F. Watanabe. NLOS identification and weighted least squares localization for UWB systems using multi-path channel stati stics [J]. EURASIP Advances in Signal Processing,2008,36:1-14.
    [118]S, Venkatesh, R. Buehrer. NLOS mitigation using linear programming in ul-tra wide-band location-aware networks[J]. IEEE Transactions on Vehicular Technology,2007,56(5):3182-3198.
    [119]K. Yu, Y. J. Guo. NLOS error mitigation for mobile location estimation in wireless networks[C]. IEEE 65th Vehicular Technology Conference, April 22-25,2007, Dublin.2007:1071-1075.
    [120]C. Li, Z. Weihua. Non-line of sight error mitigation in TDOA mobile loca-tion[J]. IEEE Transactions on Wireless Communications,2005,4(2):560-573.
    [121]Y. T. Chan, W. Tsui, H. C. So. Time-of-arrival based localization under NLOS conditions[J]. IEEE Transactions on Vehicular Technology,2006,55(1):17-24.
    [122]U. Hammes, E. Wolsztynski, A. Zoubir. Robust tracking and geolocation for wireless networks in NLOS environments [J]. IEEE Journal of Selected Topics in Signal Processing,2009,3(5):889-901.
    [123]D. B. Jourdan, J. J. Deyst, M. Z. Win. Monte Carlo localization in dense multi-path environments using UWB ranging[C]. IEEE International Conference on Ultra Wide-band, Zurich, Switzerland.2005:314-319.
    [124]M. Najar, J. Vidal. Kalman tracking for mobile location in NLOS situa-tions[C].14th IEEE personal, indoor and mobile radio communications con-ference 2003:2202-2207.
    [125]B. L. Le, K. Ahmed, H. Tsuji. Mobile location estimator with NLOS mitiga-tion using Kalman filtering[C]. In Proceedings of IEEE wireless communica-tions and networking conference 2003:1969-1973.
    [126]C. Rohrig, M. Muller. Indoor location tracking in non-line-of-sight environ-ments using a IEEE 802.15.4a wireless network[C]. IEEE/RSJ international conference on intelligent robots and systems,2009:552-557.
    [127]S. S. Ghassemzadeh, R. Jana, C. W. Rice. Measurement and modeling of an ultra-wide bandwidth indoor channel[C]. IEEE Transaction on Communica-tion,2004,52(10):1786-1796.
    [128]S. L.Sun. Multi-sensor optimal information fusion Kalman filters with appli-cations[J]. Aerospace Science and Technology,2004,8(1):57-62.
    [129]Y. X. Liu, J. Liu, L. N. Zheng. Downlink performance analysis of distributed antenna systems in multi-cell environment[J]. Journal of Electronics Informa-tion Technology,2011,33(10):2287-2292.
    [130]X. Y. Sun, J. D. Li, Y. H. Chen. The study on weighted target tracking algo-rithm for binary sensor networks[J]. Journal of Electronics Information Tech-nology,2010,32(9):2053-2057.
    [131]T. K. Sarkar,J. Zhong, J. K. Kyung. A survey of various propagation models for mobile communication[J]. IEEE Transactions on Antennas Propagation, 2003,45(3):51-82.
    [132]L. Benoit, B, Bart, M. Ingrid. A survey on wireless body area networks[J]. Wireless Networks,2011,17(1):1-18.
    [133]K. Hirose, S. Kawano. Bayesian information criterion and selection of the number of factors in factor analysis models[J]. Journal of Data Science,2011, 9(1):243-259.
    [134]N. Alam, A. T. Balaie, A. G. Dempster. Dynamic path loss exponent and dis-tance estimation in a vehicular network using doppler effect and received sig-nal strength[C]. IEEE 72nd Vehicular Technology Conference, Ottawa,2010: 1-5.
    [135]H. P. Ding, Z, Y, Xu, M. S. Brian. A path loss model for non-line-of-sight ul-traviolet multiple scattering channels[J]. EURASIP Journal on Wireless Com-munications and Networking,2010,4:1-11.
    [136]A. Fort, C. Desset. Indoor body area channel model for narrowband commu-nications[J]. IET Microwave Antennas Propagation,2007,1(6):1197-1203.
    [137]D. M. Bates, D. G. Watts. Nonlinear Regression Analysis and Its Applica-tions[J]. New York:John Wiley Sons,1988:40-42.
    [138]K. P. Burnham, D. R. Anderson. Model Selection and Multi-model Inference: A Practical Information Theoretic Approach[M]. New York:Springer Verlag, 2002:321-323.
    [139]S. Arlot, A. Celisse. A survey of cross-validation procedures for model selec-tion[J]. Statistics Surveys,2010,4:40-79.
    [140]文正伟,宋晓良.一种智能叶酸检测仪[P].山东优生医疗科技有限公司,200710016174.7.
    [141]石琴琴,霍宏.使用最速下降算法提高极大似然估计算法的节点定位精度[J],计算机应用研究,2008,25(7):2038-2040.
    [142]倪巍,王宗欣.基于接收信号强度测量的室内定位算法[J],复旦学报,2004,43(1):72-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700