用户名: 密码: 验证码:
AlTi细化剂对Al-Mg_2Si复合材料显微组织与力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al-Mg_2Si复合材料具有低密度,低成本,高比模量,制备工艺比较简单等优点,适用于汽车的发动机缸套等比较轻量化的部件。但是,初生Mg_2Si相在铝基体中一般比较粗大,且带有棱角,严重影响了复合材料的性能。因此,改善初生Mg_2Si相的形貌与尺寸,提高复合材料的力学性能是解决的首要问题。本课题实验是研究AlTi细化剂对Al-Mg_2Si复合材料的显微组织与力学性能的影响。通过添加三种不同AlTi细化剂,观察Al-Mg_2Si复合材料中Mg_2Si相的细化效果,以及Al-Mg_2Si复合材料的力学性能的改善情况,并分析其细化机理。
     实验中选用的三种细化剂包括AlTiC、AlTiP和AlTiZr晶粒细化剂,加入量不超过1%。选用的Al-Mg_2Si复合材料为Al-30%Mg_2Si和Al-40%Mg_2Si复合材料。AlTi细化剂加入后,Al-Mg_2Si复合材料显微组织发生变化,Mg_2Si相晶粒尺寸减小,棱角也相对减小,形貌相对圆滑。通过力学性能测试实验,Al-Mg_2Si复合材料的硬度,拉伸强度,均得到不同程度提升。
     通过改变三种细化剂不同加入量,进一步研究细化剂Al-Mg_2Si复合材料的显微组织与力学性能的影响,细化剂加入量分别为总量的0.2%、0.4%、0.6%、0.8%和1%。观察发现,Al-Mg_2Si复合材料中的Mg_2Si相的细化效果以及Al-Mg_2Si复合材料的力学性能不是随着AlTi细化剂加入量的增加而提高。当细化剂加入量超过一定量后,Al-Mg_2Si复合材料中Mg_2Si相的细化效果开始降低,其形貌尺寸变的粗大,力学性能也随之降低。因此,在设定的加入范围内,发现当细化剂的加入量为一定时,其细化效果最优,提升Al-Mg_2Si复合材料力学性能最大。通过相关检测与对比实验,从宏观到微观,进一步分析AlTiC、AlTiP和AlTiZr三种晶粒细化剂分别作用Al-Mg_2Si复合材料的细化机理,解释细化剂对Al-Mg_2Si复合材料的细化现象。
Because Al-Mg_2Si composite has many advantages, such as low density, low cost, high modulus ratio, simple preparation process, it is suitable for lightweight component, such as the cylinder sleeve of automobile's engine. But primary Al-Mg_2Si phase is coarse and gerippt in Al matrix, these characteristics seriously impact the property of composite. To improve primary Al-Mg_2Si phase's feature and size and composite's mechanical property becomes the main problems.The research of the topic is on the influence of microstructure and mechanical properties when AlTi agent is added in Al-Mg_2Si composite. Through adding three kinds of AlTi agents,to observe the refining effectiveness of Mg_2Si phase in Al-Mg_2Si composite,and to compare the improvement of Al-Mg_2Si composite's mechanical properties, finaly to analyse refining mechanics.
     The three kinds of agents include AlTiC, AlTiP and AlTiZr grain refiner. The dosis of grain refiner added into Al-Mg_2Si composite is lower than 1% of Al-Mg_2Si composite′s weight. The Al-Mg_2Si composite used in experiment is Al-30% Mg_2Si or Al-40% Mg_2Si composite.
     Through adding AlTi agent, Mg_2Si phase is smaller in size and rounder in edge. Through mechanical properties test, the hardness and tensile strengh are found to improve.
     To further, the influence of Al-Mg_2Si composite′s microstructure and mechanical properties is studied through changing the dosis of agents. The dosis of agents is 0.2%、0.4%、0.6%、0.8% or 1%. The study shows that refining effectiveness of Mg_2Si phase in Al-Mg_2Si composite and mechanical properties of Al-Mg_2Si composite are not improved
     with the inceasing dosis of AlTi agent. When the dosis of AlTi agent is more than certain level, the refining effectiveness of Mg_2Si phase falls down, the pattern and size become coarse and the mechanical properties of Al-Mg_2Si composite fall down. Therefore, in certain range, the refining effectiveness and mechanical properties are better. Through related detection and comparing experiment, the refining mechanics of AlTiC, AlTiP and AlTiZr grain refiner are further analysed in macroscopic and microscopic view.
引文
[1]罗宋靖.复合材料液态挤压.北京:冶金工艺出版社,2002.
    [2] Erhard E, Schmid, Kerster Von Oldenburg, et al. Micorstructure and properties of as cast intermetallic Mg_2Si-Al alloys. Z. Metallkid, 1990, 81(21): 809~815.
    [3] Jose Mannuel Munoz-Palos, Madel Carmen Cristina. Mater Trans, 1996, 37(10): 1602~1604.
    [4]高英俊,李云雯.Al-Mg-Si合金的价电子结构分析.湖南文理学院学报(自然科学版),2003, 15(4):9~11.
    [5] rmmeyer G F, Beer S, Oldenburg K. Microst ructureand Mechanical Properties of Mechanically AlloyedIntermetallic Mg_2Si-Al Alloys. Z Metallkd, 1994, 17(85): 372~376.
    [6] Benjamin J S. Dispersion Strengthened Superalloys by Mechanical Alloying. Metallurgical Transaction, 1970, 93(1): 2943~2951.
    [7]李新林.TiC颗粒增强镁基复合材料的制备.长春:吉林大学,2005.
    [8] Ma Z Y, Ning X G, Lu X Y, et al. Daninger. In-situ Al4C3 dispersoid and SiC particlemixture reinforced aluminium composite. Script. Metal.l Ma-ter, 1994, 31(9): 131~135.
    [9] Kazulosh Y, Moloyama i T M. EPMA state and analysis of formation of TiC duringmechanical alloying of Mg, Ti and graphite powder mixture. J. Jap. Inst. Metals, 1996, 60(14): 100~105.
    [10] Moore J J, Feng H J. Combustion synthesis of advanced materials: Part I. reaction parameters. Progress in Materials Science. 1995, 39(17): 243~273.
    [11]修坤.TiC/AZ91镁基复合材料组织及耐磨性的研究.长春:吉林大学,2006.
    [12] Merzhanov A G. Self-propagating high-temperature synthesis: Twenty years of search and findings. Combustion and Plasma Synthesis of High-temperature materials. New York, 1990.
    [13] Gao Lian(高濂),宫本大树.放电等离子烧结技术.Journal of Inorganic Materials(无机材料学报)1997,12(2):129~133.
    [14]臧树俊,周琦,马勤等.金属间化合物Mg_2Si研究进展.铸造技术,2006,27(18):866~870.
    [15] Erhard E Schmid, Kerster Von Oldenburg, Georg Frommeyer. Micorstructure and properties of ascast intermetallic Mg_2Si-Al alloys. Z. Metallkid, 1990, 81(24): 809~815.
    [16] Gil H Li, Gil H S, Varin R A. Magnesium silicide intermetal alloys. Metallurgical and Materials Transactions A, 1993, 24(39): 2383~2391.
    [17]张健.Al-Mg_2Si原位内生复合材料:组织,性能及功能梯度材料的制备.沈阳:中国科学院金属研究所,1999.
    [18] Morris R G, Redin R D, Danielson G C. Semiconducting properties of Mg_2Si single crystals. Phys. Rev, 1958, 109(28): 1909~1915.
    [19] Yoshinaga M, Iida T, Noda M, et al. iBulk crystal growth of Mg_2Si by the vertical Bridgman method. Thin solid films, 2004, 461(8): 86~89.
    [20] Tamura D, Naga R, Sugimoto K, et al. growth and characterization of Mg_2Si bulk crystals. Thin Solid Films, 2007, 515(47): 8272~8276.
    [21] Akasaka M, Iida T, Nemoto T, et al. Non-wetting crystal growth of Mg_2Si by vertical Bridgman method and thermoelectric characteristics. Journal of crystal grwoth, 2007, 304(12): 196~201.
    [22]熊伟,秦晓英,王莉.金属间化合物Mg_2Si研究进展.材料导报,2005,19(6):4~7.
    [23] Takenobu Kajikawa, Keisuke Shida, Kentaro Shiraish, et al. Thermoelectric figure of merit of impurity doped and hot-pressedmagnesium silicide elements. 17th international conference on thermoelectrics. 1998: 269~275.
    [24] Takenobu Kajikawa, Keisuke Shida, Sunao Sugihara, et al. Thermoelectric Properties of Magnesium Sili-cide Processed by Powdered Elements Plasma Activated Sintering Method. 16th international conference on thermo electrics. 1997, 362~369.
    [25]姜洪义,冷永刚,张联盟.Mg_2Si固相反应的热力学评估及工艺优化.武汉理工大学学报,2001,23(4):7~9.
    [26]启全.铝合金熔炼与铸造.广东:科技出版社.2002.
    [27]任峻,陶钦贵,马颖.Al-Ti-B合金晶粒细化剂及细化机理的发展与现状.铸造技术2000,28(1):69~73.
    [28] Youdelis W V, Fang W. Calculated Al2Ti2Be Phase Diagram and Interpretation of Grain Refinement Results. Materials Science and Technology, 1991, 7(3): 202~204.
    [29]张承甫,龚建森,建杏蓉等.液态金属的净化与变质.上海:上海科学技术出版社,1989
    [30]尹卓湘.过共晶Al-Si合金的变质处理.轻金属,1998,6(9):52~54.
    [31]姚书芳,毛卫民,赵爱民等.过共晶铝硅合金细化变质剂的研究.特种铸造及有色合金,2000,12(5):13~18.
    [32] Cibula A.The mechanism of grain refinement of sand casting in aluminumalloys. Journal of Institute of Metals, 1949~1950, 76(1): 321~360.
    [33] Carver R F, Boone G W, koch F P. Characterics of New Generation Grain Refiners. Light Metals, 1990, 23(6): 845~850.
    [34] Whitehead A J, Danilak S A, Granger D A. The Development of Commercial Al-3%Ti-0.15%C Grain Refining Master Alloy. The 126t' TMS Annual meeting Exhibition, 1997. 45~53.
    [35] Whitehead A J, Cooper P S, McCarthy R W. An Evaluation of Cleanliness and Grain Refinement of 5182 Aluminum Alloy DC Cast Ingot Using Al-3%Ti-0.15%C and Al-3%Ti-1%B Grain Refiners. The 128th TMS Annual meeting Exhibition, 1999: 763~772.
    [36] Detomi A M, Messias A J, Majer S, et al.The Impact of TiCAl"and TiB AI'Gra-in Refiners on Cast house Processing.The 30th TMS Annual meeting Exhibition, 2001.
    [37] Hadia M A, Ghatneya A A, Niazi A. Study on the grain refinement of aluminum with A1-Ti-C. Light Metals, 1996, 46(3): 729~736.
    [38] Brinkman H J, Zupazi F, Duszezyk J, et al. Production of Al-Ti-C Grain Refiner Alloys by Reactive Systhesis of Elemental Powders. Mater Res, 2000, 15(12): 2620~2635.
    [39]高泽生.A1-Ti-C晶粒细化用中间合金的最新进展.轻合金加工技术,1998,26(10):5~11.
    [40]余贵春,张柏清,马洪涛.铝热反应制备Al-Ti-C中间合金的研究.金属热处理,2000,45(5): 1~3.
    [41]张作贵,刘相法,边秀房等.A1-Ti-B中间合金的遗传性研究与推广应用.铸造,2000,49(10):758~781.
    [42]姜文辉,韩行霖.Al-Ti-C中间合金晶粒细化剂的合成及其细化晶粒作用.中国有色金属学报, 1998,8(2):268~271.
    [43]王振洋.A1-Ti-C中间合金的燃烧合成.兰州:兰州理工大学硕士学位论文,2003.
    [44]李英龙,温景林,陈彦博等.SHS技术制备的Al-3Ti-0.15C晶粒细化剂.中国有色金属学报, 2004,14(2):179~183.
    [45] Banerji A, Reif W. Development of Al-Ti-C Grain Refiners. Metal. Trans. 1986, 17A(12): 2127~2137.
    [46] Murray J L, McAlister A J, Bull. Alloy Phase Diagrams. Chcago: American Library Association, 1995.
    [47]张健,王玉庆,吴欣强.离心铸造原位Al/Mg_2Si复合材料组织与性能的研究.铸造.1998,9(2): 1~3.
    [48]王改田.AlTiC合金晶粒细化剂的研究进展.铝加工高新技术文集,2001,29(5):142~147.
    [49]陈晓,傅高升,钱匡武.Ca对原位自生Mg_2Si/ZM5复合材料组织与性能的影响.中国有色金属学报,2005,15(3):410~414.
    [50]李元元,田文峰,胡侨丹等.Si及变质处理对Mg_2Si/Mg复合材料的影响.特种铸造及有色合金,2007,27(4):294~296.
    [51] Kim J J, Kim D H. Modification of Mg_2Si Morphology in Squeeze Cast Mg-Al-Zn-Si Alloys by Ca or P Addition. Scripta. Materialia, 1999, 41(3): 333~340.
    [52]杨明波,潘复生,李忠盛等.Mg-Al系耐热镁合金中的合金元素及其作用.材料导报,2005,19(4):46~49.
    [53]孙丰泉,王小东,严有为.Sb对原位Mg_2Si/Mg复合材料组织的影响.特种铸造及有色合金, 2005,25(1):18~20.
    [54] Yuan G Y, Liu Z L, Wang Q D, et al. Microstructure Refinement of Mg-Al-Zn-Si Alloys. Materials Letters, 2002, 56: 53~58.
    [55] Luo A, Pekguleryuz M Z. Review Cast Magnesium Alloys for Elevated Temperature Applications. Journal of Materials Science, 1994, 29(41): 5259~5271.
    [56]秦庆东.Mg_2Si/Al复合材料组织控制的研究及其力学与磨损特性.吉林:吉林大学材料学院,2008.
    [57]谢优化,杨守杰,戴圣龙等.锆元素在铝合金中的应用.航空材料学报.2002,22(4):56~61.
    [58] Johnsson, Mats. Influence of zireonium on the grain refinement of aluminum. Zeitschrift fuer Metallkunde, 1994, 85(11): 786~789.
    [59] Abdel-Hamid, Ahmed A. Effeet of other elements on the grain refinement of aluminum by titanium or titanium and boron. Part11. Effect of the refraetory metals vanadium, molybdenum, zireonium, andtantalum. Zeitschrift fuer Metallkunde, 1989, 80(9): 643~647.
    [60]王淑俊.含Zr铝合金的细化“中毒”现象及其细化新工艺研究.山东大学,2009.
    [61]李建国,张柏清,马洪涛等.Al3Ti4B细化剂和Al10Sr对ZL107合金显微组织的影响.中国有色金属学报,2000,10(3):365~369.
    [62]孙瑜,刘永刚,柳秉毅等.锆盐对锶变质Al-10%Si合金组织的影响.铸造,2003,52(10): 753~757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700