用户名: 密码: 验证码:
改性纳米二氧化钛薄膜制备及其在模拟海水中光生阴极保护性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着功能材料高新领域的迅猛发展,纳米二氧化钛薄膜独特的光电转换效应在金属腐蚀防护方面表现出诱人的应用前景,正日益受到人们的重视。当二氧化钛薄膜材料与金属基体相接时,受到能量大于其能隙光子的照射下,二氧化钛价带电子激发至导带,形成电子—空穴对,负电电子由导带进入金属基体,使金属的电极电位降低至不发生腐蚀的阴极保护区,可作为非牺牲性的光阴极保护材料,实现对海洋金属材料腐蚀防护。二氧化钛的光阴极保护性能取决于其光电效率,其中选择合适的掺杂改性以得到高的光电转换效率和具有可见光响应的薄膜电极材料是人们最为关注的问题。
     本论文以钛酸四丁酯为前驱体,二乙醇胺为抑制剂,采用溶胶凝胶法在中性条件下在不锈钢基体上制备纳米二氧化钛薄膜,通过在制备过程中添加聚乙二醇(PEG)制备改性型二氧化钛薄膜;以硝酸铁和尿素分别作为引入铁源和氮源来制备Fe掺杂和N掺杂二氧化钛薄膜,以期望提高纳米二氧化钛薄膜材料的光电转换效率和拓宽光电响应范围。论文中采用激光粒度分析和Zeta电位来测试改性对二氧化钛溶胶性能的影响;采用X射线衍射(XRD)、热分析(DTA-TG)、红外吸收(IR)、扫描电镜(SEM)等测试方法对所制备二氧化钛晶体的物相结构、性能和表面形貌进行了表征;采用紫外可见透射光谱、荧光光谱对所制二氧化钛薄膜进行光物理性能测试;以改性二氧化钛薄膜为工作电极,利用二氧化钛半导体特性和Mott-Schottky理论对在模拟海水界面参数如二氧化钛的平带电位、空间电荷层的载流子浓度以及空间电荷层宽度进行测试;最后在模拟海水体系采用光电联用体系进行循环伏安法(U-I曲线)、开路电位测试、交流阻抗谱和极化曲线测试,综合评价其对不锈钢基体光生阴极保护性能。
     (1)通过在二氧化钛溶胶中添加PEG制备改性型二氧化钛。实验表明添加PEG减小二氧化钛溶胶颗粒尺寸,促进溶胶中有序网络形成。PEG的添加使二氧化钛晶型转变温度向低温方向移动,有利于相变过程进行,改性后二氧化钛薄膜质量良好具有多孔结构。该多孔结构增加了光线在薄膜表面的反射次数,提高了薄膜对光的吸收和利用率。多孔结构增大了薄膜与电解液的接触面积,同时有利于电极/电解质溶液界面的光生载流子传输,从而大大提高了光生电荷的分离效率。在模拟海水体系光电性能测试中,改性后二氧化钛薄膜光电性能显著提高。实验中对热处理温度、多孔结构等因素综合分析,确定500℃热处理温度以下,PEG最佳添加量为1g/100mL。
     (2)铁掺杂二氧化钛有利于形成粒径较小,性能稳定的二氧化钛溶胶粒子。铁掺杂后有利于二氧化钛相变过程进行,铁掺杂使纳米二氧化钛膜结晶度良好,膜表面更均一和致密,晶粒尺寸减小。通过光学性能分析,铁掺杂使二氧化钛吸收边蓝移,对可见光区响应变化不明显;掺杂铁可作为浅俘获位,有效地抑制光生电子和空穴的复合,能有效提高光电转换效率。掺铁二氧化钛薄膜在模拟海水中Mott-Schottky曲线测试分析,铁掺杂二氧化钛薄膜双电层是p-型微区和n-型微区共存,该p-n结电场有利于光电流的产生。在模拟海水中光电实验证实这一结论,掺铁二氧化钛薄膜电极有效地增大光电流,掺铁二氧化钛对光生电子驱动力的增加,增强了二氧化钛薄膜电极对不锈钢基体的光生阴极保护作用。综合对不同掺铁量的性能比较,在相同的测试条件下,掺铁量最佳值为Fe/Ti摩尔比0.5%。
     (3)氮掺杂二氧化钛有利于形成粒径较小,性能稳定的二氧化钛溶胶粒子。氮掺杂对二氧化钛晶型转化未产生明显变化。氮掺杂纳米二氧化钛膜结晶度良好,晶粒尺寸减小,薄膜质量有明显改善。通过光学性能分析,氮掺杂使吸收边红移;在可见光范围内有明显吸收。在可见光光源下,光电化学测试表明,掺氮后改变了电子跃迁能级,使氮掺杂二氧化钛仍有电子跃迁,光生载流子产生阳极光电流,能对不锈钢基体进行有效的光生阴极保护。但氮掺杂量存在最佳量,实验证明最佳氮掺杂量为N/Ti的摩尔比为20%。
As the functional material develop rapidly. Nano-structured semiconductors are of vital importance on the development of functional material.The photoelective performance are essential properties for this king of materials. The investigation of titanium dioxide for photogenerated cathode protection of metals has received great attention. In addition, if illuminated titanium dioxide is in contact with metal, electrons are injected from the semiconductor to the metal via the conduction band. As a result, the potential of the metal will be shifted in the negative direction to the flatland potential of titanium dioxide. If the potential is more negative than the potential at which the metal beings to oxidize, the metal can be protected from corrosion. So titanium dioxide can realize corrosion protection of the marine material as non-sacrificial protective material. The photocathodic protection performance of titanium dioxide is dependent on the photoelectrochemical efficiency, which select the appropriate doped in order to obtain high photoelectric conversion efficiency and visible-light response of the electrode material is of the greatest concern.
     In this dissertation, Ti (OC4H9)4 was used as precursor, C4H11NO2 was used as inhibitors to prepared nano-titanium dioxide film on the stainless steel substrate by neutral sol-gel method. In the preparation process, Modified titanium dioxide thin films were prepared by adding PEG; respectively, iron-doped titanium dioxide thin films were prepared with ferric nitrate as iron source, nitrogen-doped titanium dioxide thin films were prepared with urea as nitrogen source. Modified and doped titanium dioxide thin films were prepared to look forward to enhance photoelectric conversion efficiency and to broaden the scope of photoelectric response. This paper used laser particle size analysis and Zeta potential to test the modification on the properties of titanium dioxide sol; the crystal structure, properties and surface morphology of modified titanium dioxide were characterized using X-ray diffraction (XRD), thermal analysis (DTA-TG), infrared absorption (IR), and scanning electron microscopy (SEM). The photophysical properties of samples were tested using UV-visible transmission (UV-vis) and fluorescence spectra; Using modified TiO2 thin film as the working electrode, titanium dioxide films interface parameters were calculated in simulated seawater such as flat-band potential, space charge layers carrier concentration as well as space-charge layer width by titanium dioxide semiconductor properties and Mott-Schotty theory. Finally photoelectric propertie of modified titanium dioxide is studied in a simulated seawater using cyclic voltammetry (U-I curve), open circuit potential test, Electrochemical Impedance Spectroscopy(EIS) and polarization curves with photoelectrochemical cell, comprehensive evaluation of its stainless steel substrate photogenerated protection performance.
     (1) Modified titanium dioxide, which is prepared titanium dioxide sol by adding PEG experiments showed that modification reduced the particle size and increase networking structure of titanium dioxide sol, made titanium dioxide crystal transition temperature to lower temperature direction and of good quality films were successfully prepared with porous structure of titanium dioxide thin films. The porous structure increased light reflection times in the film surface to improve light absorption and utilization. The porous structure of the film increased the contact area, at the same time was conducived to photogenerated-carrier transmission, which greatly improved the efficiency of photoinduced charge separation. Photoelectrochemical properties showed that the photoelectrochemical performance of modified titanium dioxide thin-film was improved significantly in simulated seawater. Comprehensive analysis conclusion of heat treatment temperature, porous structure, Best modified experimental conditions are below 500℃,1g PEG addition.
     (2)Fe-doped titanium dioxide was conducived to form small, stable particles sol. Fe-doped titanium dioxide was conducived to crystal transfer process, Fe-doped nano-titanium dioxide film decrease the grain size and crystallization excellent, film surface was more uniform and dense, Through optical performance analysis, absorption spectra of Fe-doped titanium dioxide turned red-shift; Fe-doped titanium dioxide can inhibit the photo-generated electron and hole recombination. By the Mott-Schottky curves analysis, Fe-doped titanium dioxide thin-film double-layer exist p-type and n-type micro-district co-exist; the electric field of the p-n junction is conducive to photocurrent generation in simulated sea water. Photoelectrochemical experiments confirm this conclusion, Fe-doped titanium dioxide thin film increase effectively the photocurrent and photogenerated electrons driving force, enhanced photogenerated cathode protection to stainless steel in simulated seawater. At the same test conditions, the amount of the best value is Fe/Ti ratio of 0.5% by synthesis of different quantity of the above-mentioned and comparation of properties of different Fe-doped.
     (3) N-doped titanium dioxide is conducive to form small, stable particles sol.. N doping transformation of crystalline titanium dioxide, N-doped nano-crystalline titanium dioxide film decreases the grain size and improvement significant film quality. Through optical performance analysis, Absorption spectra appear red-shift; in the context of significant absorption of visible light. Photoelectrochemical tests showed that in the visible light source, the, N-doped titanium dioxide samples had still electronic transition because N-doped changed after the electronic transition energy level, optical-carrier produced anodic photocurrent, can be effective on stainless steel substrate light cathodic protection. There exists an optimum amount of nitrogen doping. Experimental prove that the optimum N/ Ti ratio of the visible light photoelectric is 20%.
引文
[1]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994
    [2]李敏风.重防腐蚀涂料及其涂装施工(一)[J].腐蚀与防护,2004,25(9):409-412.
    [3]黄宁,朱逊,谷栋超等.热喷涂Zn-Al合金涂层复合钢板防腐蚀性能研究[J].武汉钢铁学院学报,1995,18(1):37-46.
    [4]沈星,万建国,刘德俊.不锈钢离子镀Ti(C,N)膜后抗氧化性能研究[J].材料保护,2002,35(4):26-27.
    [5]李青,陈艳.金属陶瓷涂层耐蚀性能及影响因素的研究[J].中国腐蚀与防护学报,2000,20(3):167-176.
    [6]田敬信,汪泓宏主编,材料工程手册[M].北京:化学工业出版社,1998
    [7]王世敏,许祖勋,傅晶.纳米材料制备技术[M],化学工业出版社,2002
    [8]张立德,牟季美.纳米科学和纳米结构[M].北京:科学出版社,2001
    [9]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社.2006
    [10]张鉴清,冷文华,程小芳.金属的光电化学方法防腐蚀原理及研究进展[J].中国腐蚀与防护学报2006,26(3):187-191
    [11]X. Bokhimi, A. Morales, M. Aguilar, J. A. Toledo-Antonio, F. Pedraza. Local Order in Titania Polymorphs[J].International Journal of Hydrgen Energy,2001,26:1279-1287.
    [12]Ren Da-Sen, Bei Zong-Min, Huang Li, Shen Jie, Cui Xiao-Li, Yang Xi-Liang, Zhang Zhuang-Jian. The Effect of Dopant Sb on the Superhydrophilicity and the Microstructure of the Nanoscale TiO2 Thin Film[J]. Acta Physico-Chemica Sin.2004,17(4):414-416.
    [13]Yi Hu, H.-L. Tsai, C.-L. Huang. Effect of brookite phase on the anatase-rutile transition in titania nanoparticles [J]. Journal of the European Ceramic Society,2003,23(5):134-140
    [14]Vainshtein B.K., Fridkin W.M., Indenbom V.L. Structure of Crystals [M]. Berlin:Macmillan India Ltd,1994.286~288
    [15]E.Szalkowska, J.Gluszek,J.Masalaki,et al, Structure and rotectctive properties of coatings obstained using the sol-gel technique[J]. Mater.Sci.Lett.2001,20(6):495-497
    [16]Buchanan R.C., Park T. Materials Crytal Chemistry[M], New York:Marcel Dekker, Inc., 1997.1623-1633
    [17]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002,21-28
    [18]M.Grdtzel,Heterogeneous Photochemical ElectronTransfer[M],CRC Press,Baton Rouge,FL,1988:25(2):45-49
    [19]Marta I. Litter. Heterogeneous photocatalysis Transition metal ions in photocatalytic systems [J]. Applied Catalysis B:Environmental,1999,23:89-114.
    [20]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2003.3-6
    [21]Hoffman M R,Martin S T, Choi W,et al. Environmental application of semiconductor photocatalysis [J].Chem.Rev.,1995,95:69-96
    [22]Peter L M. Dynamic's aspects of semiconductor photoelectrochemistry [J]. Chem.Rev.1990, 90:753-769
    [23]Fujishima, K. Honda. Electrochemical photolysis of water at semiconductor electrode [J]. Nature,1972,238(5358):37~838.
    [24]Fujisawa R, Tsujikawa S.Photo-protection of 304 stainless steel with TiO2 coating[J]. Mater. Sci. Forum.,1995,185-188:1075-1081
    [25]Yuan J,Tsujikawa S.Photo-effect of sol-gel derived TiO2 coating on carbon steel in alkaline solution[J].Zairyo-to- Kankyo,1995,44:534-542
    [26]Yoshihisa Ohko, Shuichi Saitoh, et al. Photoelectrochemical anticorrosion and self-cleaning effect of a TiO2 coating for type 304 stainless steel [J]. Journal of the Electrochemical Society, 2001,148(1):24~28.
    [27]Jiangnan Yuan, Shigeo Tsujikawa. Characterization of sol-gel-derived TiO2 coating and their photoeffects on copper substrates [J]. J Electrochem Soc,1995,142(10):3444~3450.
    [28]Huang J,Shinohara T,Tsujikawa S.Protection of carbon steel fromatmospheric corrosion by TiO2 coating[J].Zairyo-to- Kankyo,1999,48:575-582
    [29]Ohko Y,Saitoh S,Tatsuma T,et al.Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel[J].J.Electrochem.Soc.,2001,148(1):B24-B28
    [30]Ohko Y,Saitoh S,Tatsuma T.et al. Photoelectrochemical anticorrosion effect of SrTiO3 for carbon steel[J].Electrochem.Solid State Lett.,2002,5(2):B9-B12
    [31]Huang J,Shinohara T,Tsujikawa S.Effects of interracial iron oxides on corrosion protection of carbon steel by TiO2 coating under illumination[J].Zairyo-to-Kankyo,1997.46:651-661
    [32]Hyunwoong P,Kyoo-Young K,Wonyong C.Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode[J].J.Phys.Chem.B.2002,106:4775-4781
    [33]Yuan J,Tsujikawa S.Characterization of sol-gel derived TiO2 coating and their photoeffects on copper substrates[J]. J. Electrochem.Soc.1995,142(10):3444-3450
    [34]宋来洲,高志明,宋诗哲.人工神经网络优化碳钢表面工艺TiO2修饰膜制备工艺[J].中国腐蚀与防护学报,2001,21(2):101-105.
    [35]Li M C,Lou S Z,Wu P F,Shen J N.Photocathodic protection effect of TiO2 films for carbon steel in 3% NaCl solutions[J].Electrochim.Acta,2005,50:3401-3406
    [36]宋江江,沈嘉年,李凌峰.电化学氧化生长纳米品TiO2光催化膜薄结构与性能表征[J].中国腐蚀与防护学报,2002,22(2):98-101
    [37]李静,云虹,林昌健.TiO2纳米管阵列的制备及其对316不锈钢光生阴极保护作用的研究[J].电化学,2007,13(4):367-371.
    [38]崔晓莉,江志裕.紫外光照下纳米TiO2电极的电化学行为[J].物理化学学报,2002,18(11):1014-1017.
    [39]杨迈之,张雯等.包覆硬脂酸α-Fe2O3超微粒的光谱及光电化学研究[J].高等学校化学学报,1996.17.2:274-276
    [40]柳闽生,杨迈之,郝彦忠,蔡生民等.纳米尺度TiO2/聚毗咯多孔膜电极光电化学研究[J].高等学校化学学报,1997.18,6:938-941
    [41]柳闽生,郝彦忠,杨迈之,蔡生民等.纳米尺度TiO2微粒多孔膜电极光电化学研究[J].物理化学学报,1997.13.11:992-996
    [42]柳闽生,杨迈之,蔡生民等.半导体纳米粒子的基本性质及光电化学特性[J].化学通报,1997.1:20-23
    [43]Y.Hayashi, M.Masuda.J.Lee, et al. study on corrosion properties of sputter coating of Oxids on the stainless steel [J].Mater.Sei.Eng.A,1995,198:71-76
    [44]Choi W., Andreas T., Michael R., Hoffmann. The role of metal ion dopants in quantum-sized TiO2 Correlation between photoreactivity and charge carrier recombination dynamics[J]. Phys. Chem.,1994,98:13669-13679
    [45]Leng W H,Zhang Z, Zhang J Q,Cao C N. Investigation of the kinetics of TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy[J].Phys.Chem.B,2005,109:15008-15023
    [46]Shen P,Cao J L,Leng W H,Wang J M. Preparation,microstructure and photoelectrochemical properties of Co doped titanium oxide electrodes [J]. Chem. Phy.,2003,16(4):307-311
    [47]O'Regan B., Graetzel M., Fitzmaurice D. Optical electrochemistry steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode[J]. Nature,1998,353: 583-555
    [48]施利毅,戴清,郭妍等.纳米SnO2/TiO2复合颗粒形态结构表征[J].功能材料,2001,32(5):531-534
    [49]蔡振钱,申乾宏,高基伟等.TiO2/SnO2复合薄膜的光催化活性研究[J].陶瓷学报,2006,27(3):281-284
    [50]李芳柏,古国榜,黎永津.WO3/TiO2复合半导体的光催化性能研究[J].环境科学,1999,20(7):75-79
    [51]姚恩亲,桂和荣.WO3和PEG改性TiO2的制备及光催化性能研究[J].能源环境保护,2006,20(6):12-16
    [52]Shi J Y, Leng W H, Cheng X F, et al. Photocatalytic oxidation of methyl red by TiO2 in a photoelectrochemical cell[J].ActaPhys.Chin.Sin.,2005,21(9):971-976
    [53]陈亦琳,李旦振,付贤智等.乙烯在Pt/Pt4+-TiO2的可见光降解[J].高等学校化学学报,2004,25(2):342-344
    [54]吴遵义,姚兰英.氮铂共掺杂纳米二氧化钛的制备及表征[J].化学研究,2006,17(1):24-27
    [55]黄岳元,米钰,郭人民等.TiO2/Ag纳米抗菌材料[J].西北大学学报自然科学版,2000,33(5):566-571
    [56]张金龙,安保正一.贵金属负载光催化剂在丙炔光催化水解反应中的研究[J].高等学校化学学报,2004,25(4):733-736
    [57]夏先波,黄维刚,沈小小等.纳米Pd/TiO2加氢催化剂的制备及其催化性能研究[J].天然气化工(C1化学与化工):2006(31):24-29
    [58]赵秀峰,孟宪锋,张志红等.Pb掺杂TiO2薄膜的制备及光催化活性研究[J].无机材料学报,2004,19(1):140-146
    [59]迟广俊,姚素薇,范君等.Ni/TiO2复合镀层光催化抗菌性能的研究[J].材料科学与工艺,2004,12(1):52-56
    [60]吴定才,胡志刚,段满益等.Co与Cu掺杂ZnO薄膜的制备与光致发光研究[J].物理学报,2009,58(10):7261-7265
    [61]Asahi R,Morikawa T.Ohwaki T.et al.Visible-ligh tphotocatalysis in nitrogen-doped titanium oxides[J].Science,2001.293:269-271,
    [62]Yu J C,Yu J G,HoW K, Jiang Z T,Zhang L Z. Effects of F- doping on the photocatalytic activity and microstructures onanocrystalline TiO2 powders[J].Chem.Mater.2002,14(9): 3808-3816
    [63]T.Yamaki, S.Tanaka, K.Asai, Vsible light-induced degradation of methylene blue on S-doped TiO2[J].Chem.Lett.2003,32:330.
    [64]T.Yamaki, T.Umebayashi,TSumita. Fluorine-doping in titanium dioxide by ion implantation techoique[J].Nucl.Instrum Methods Phys.2003,206:254-260.
    [65]韩高荣等.纳米复合薄膜的制备与应用研究[J].料科学与工程,1999,17:1-6.
    [66]马志斌.金刚石薄膜的研究概况[J].武汉化工院院报,2000,122(1):37-39.
    [67]丁子上,翁文剑.溶胶-凝胶技术制备材料的进展[J].硅酸盐学报,1993,21:443-449
    [68]N.Tohge, S.Takahashi,T.Minami. Preparation of PbZrO3-PbTiO3 ferroelectric thin films by the sol-gel process[J]. Am.Ceram.Soc.,1991,74:67-71
    [69]杨南如,余桂郁.溶胶-凝胶法简介[J].硅酸盐通报,1992,11:56-63
    [70]温敏,齐公台,孙菊梅.TiO2溶胶的制备及其胶凝过程影响因素分析[J].表面技术,2004,33(1):29-33
    [71]胡晓力,陈东丹,胡晓洪等.表面活性剂对TiO2粉体粒度和形貌的影响[J].中国陶瓷工业,2003,10(4):25-28.
    [72]曾玉燕,沈培康,童叶翔.纳米二氧化钛粉体的分散研究[J].中山大学学报(自然科学版),2004,43(3):18-21.
    [73]余家国,赵修建.多孔TiO2薄膜的表面微结构对甲基橙光催化脱色的影响[J].催化学报,21(3):212-216
    [74]Karakitsou KE,Verykios X E.Effects of altervalent cation doping of TiO2 on its performance as photocatalysis for water cleavage[J]. Phys Chem 1993.97(6):1184-1189.
    [75]张伟伟,纳米氧化钛制备、改性及其光生阴极保护研究[D].中国海洋大学.2008
    [76]师昌绪.材料大辞典[M].北京:化学工业出版社,1994.1.58
    [77]师昌绪.新型材料与材料科学[M].北京:科学出版社,1988.14
    [78]马如璋,蒋民华,许祖雄.功能材料学概论[M].北京:冶金工业出版社,1999.5,27-29
    [79]田莳.功能材料[M].北京:北京航空航天大学出版社,1995.1-100
    [1]刘守新,刘鸿等.光催化及光电催化基础及应用[M].北京:化学工业出版社,2006:30-35
    [2]祁景玉.X射线结构分析(第一版)[M].上海:同济大学出版社,2003:87-92
    [3]Spurr, Robert A, Myers, Howard. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer [J]. Anal. Chem,1957,29:760~767
    [4]Livage J.Synthesis, Strcture and application of TiO2[J]. Mater. Res. Soc. Symp. Pro.1986,73: 717-724
    [5]孙晓君,井立强,蔡伟民等.掺Pb的纳米功能材料的制备及其光催化性能[J].压电与声光,2002,3(24):232-236
    [6]杨一军,毕会娟,张立德.退火CdS/SiO2介孔组装体系光吸收的行为[J].无机材料学报,2003,18(2):393-399
    [7]孔海霞,孙彦平,武海莲等.TiO2薄膜光电极能带结构和催化活性的初探[J].感光科学与光化学.2004,5(22):327-332
    [8]古列维奇,波利斯科夫(苏),彭瑞伍译.半导体光电化学[M].北京:科学出版社,1989.69-70
    [9]罗芳,柳闽生,吕群等.光电化学的特性及研究进展[J].江西教育学院学报,2000,21(3):32-35
    [10]左树生,陈书哲,梁伟.现代材料分析方法[M].北京:北京工业大学出版社,2000
    [1]]刘永辉.电化学测试技术[M].北京:北京航空学院出版社,1987
    [12]吴辉煌.电化学[M].北京:化学工业出版社,2006
    [13]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002,21
    [14]柳闽生,杨迈之,蔡生民.半导体纳米粒子的基本性质及光电化学特性[J].化学通报,1997,1:20-24
    [15]查全性等.电极过程动力学导论[M].北京,科学出版社,2004
    [1]McConnell R D, Assessment of the dye sensitized solar cell[J].Renewable and Sustainable Energy Reviews,2002,(6):273-295
    [2]O. Regan B, Gratzel M, Park N G. Chronoamperometric evidence for fractality in porous TiO2 films [J]. J Van de Nature,1991,353:737-739.
    [3]Stephen D,Donald F. Preparation and charaeterization of transparent nanocrystalline TiO2 films possessing well-defined morphologies[J]. Phys Chem,1996,100(31):10732-10738
    [4]Kotoval N A, Meldrum F C, Fendler J H. MonoParticulate layers of titanium dioxide nanoerystallites with controllable interarticle distances [J]. Phys Chem,1994,98(36):8827-8830
    [5]程黎放,王瑜,戴松元等.纳米晶体TiO2多孔膜的制备、性能及其在太阳能电池中的应用[J].材料研究学报,1996,10(4):404-408
    [6]Wijndhoven J E G J, Vos W L. Preparation of photonic crystals made of air spheres in Titania [J]. Science.1998,281(5378):802-804
    [7]Brian T H, Christopher F B, Andleas S. Synthesis of macro-porous minerals with highly ordered three-dimensional arrays of spheroid voids [J]. Science,1998,281(5378):538-540
    [8]Kat K,Tsuki A,Torii Y.et Morpholgy of thin antase coatings prepared from alkoxide solutions containing organic polymer, affecting the photocatalytic decomposition of aqueous acetic acid[J]. Mater Sci,1995,30(3):837-841
    [9]陈文梅,赵修建.溶胶凝胶法制备TiO2多孔纳米薄膜[J].武汉工业大学学报.2000,22(2):6-9
    [10]B. SAMUNEVA, V.KOZHUKHAROV, Ch. TRAPALIS. Sol-gel processing of titanium containing thin coatings.Part I Preparation and structure [J]. materials science.1993,28: 2353-2360
    [11]李忠宏,仇农学,杨祖培.不锈钢基体上TiO2陶瓷膜的制备[J].农业工程学报.2005,21(9):1-4
    [12]沈广霞,陈艺聪,李静,林昌健.纳米TiO2-SnO2复合薄膜的光生阴极保护作用及机理研究[J].中国腐蚀与防护学报,2006,2:185-192
    [13]张伟伟.纳米氧化钛薄膜制备、改性及其光生阴极保护研究[D],中国海洋大学.2008
    [14]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社.2002,12
    [15]胡晓力,陈东丹,胡晓洪等.表面活性剂对TiO2粉体粒度和形貌的影响[J].中国陶瓷工 业,2003,10(4):25-28.
    [16]曾玉燕,沈培康,童叶翔.纳米二氧化钛粉体的分散研究[J].中山大学学报(自然科学版),2004,43(3):18-21.
    [17]刘艳梅,步绍静,靳正国等.纳米晶TiO2多孔薄膜的研究进展[J].硅酸盐学报.2004,4:62-65
    [18]汤加苗,朱从善,夏海平等.PEG对SiO2溶胶-凝胶中颗粒度分布和孔结构的影响[J].材料研究学报.1998,12(1):80-83
    [19]孙继红,章斌,范文浩等.SiO2-PEG体系的溶胶-凝胶过程及物化特性[J].材料研究学报.1999,13(3):301-304
    [20]Nakamura M,KatoS,AokiT,et al. Role of terminal OH groups all the electrical and hydrophilic properties of hydro-oxygenate amorphous TiO2 thin films[J].J APPl Phys.2001,90(7):3391-3395.
    [21]HU C,TANG Y C,J LANG Z, et al. Characterization and photocatalytic activity of noble metal-supported surface TiO2/SiO2 [J].Applied Catalysis A,2003,253:389-396.
    [22]Nishimura S, Abrame N, lewis B A, et al. Standing wave enhancement of red absorbane and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals [J]. J. Am. Chem. Soc.,2003,125:6306-6310.
    [23]Liu Zhaolin, Zhang Zhikun. Crystal phase transfer and optical properties of nano-sized TiO2 [J].J. Qingdao Univ.of Sci. Tech.,2004,25(1):26-28
    [24]施长年,陈志春,薛兴涛等.纳米二氧化钛表面组成及其微结构分析技术进展[J],材料导报,2002,16(5):39-42
    [25]Livage J.Synthesis, Styture and application of TiO2[J]. Mater. Res. Soc.1986,73:717-724.
    [26]Ivanova T, Harizanova A, Surtehev M.etal.Investigation of sol-gel derived thin films of titanium dioxide doped with vanadiumoxide [J].Solar Energy Materials And Solar Cells,2003. 76(4):591-598
    [27]黄岳山.溶胶凝胶法制各二氧化钛[J].生物医学工程研究.2005,24(4):255-257
    [1]Yoshihisa Ohko, Shuichi Saitoh, et al. Photoelectrochemical anticorrosion and self-cleaning effect of a TiO2 coating for type 304 stainless steel [J]. Journal of the Electrochemical Society, 2001,148(1):24~28.
    [2]Jiangnan Yuan, Shigeo Tsujikawa. Characterization of sol-gel derived TiO2 coating and their photoeffects on copper substrates [J]. J Electrochem Soc,1995,142(10):3444~3450.
    [4]Wang W, Gu B, Liang L, et al. Synthesis of rutile (α-TiO2) nanocrystals with controlled size and shape by low- temperature hydrolysis:effects of solvent composition[J].J.phys.Chem.B.2004, 108(39):14789~14792.
    [5]Lee M S, Cheon I C, KimY I. Photoelectrochemical studies of nanocrystalline TiO2 film electrodes [J].Bull Korean Chem Soc,2003,24(8):1155-1160.
    [6]Zhang Zhibo, Wang ChenChi, Rama Zakaria, et al Role of particle size in nanocrystalline TiO2-based Photocatalysts[J].J Phys Chem B,1998,102(52):10871-10878.
    [7]Kavan L, Greatzel M, Rathousky, et al. Optimization of parameters of an electrochemical photovoltaic regenerative solar cell [J]. Solar Energy Materials and Solar Cells,1996,43 (3): 249-262
    [8]张胜涛,张建蓉,孙大贵.纳米TiO2膜的光活性研究与应用现状[J].世界科技研究与发展,2002,24(1):35-39
    [9]吴辉煌.电化学[M].北京:化学工业出版社.2006:165-166
    [10]AnaF, NogueiraM, Paolid.A dye sensitized TiO2 Photovolatlic cell constructed with an electrometic cell [J]. Solar Energy Material and Solar Cell,2000,61:135-141
    [11]Zhang W F, Zhang M S.Photoluminescence in anatase TiO2 nanocrystals [J].Appl. Phys.B, 2000,70:261-267
    [12]Gout, C. J. P. Albert. Energy band structure of cadmium fluoride [J].Solid State Communications,1977,22(3):199-201
    [13]沈学础.半导体光学和光谱性质[M].北京:科学出版社,2002.
    [14]余丁山,周灵德,姜德生等.二氧化钛微晶结构相变与光致发光[J].发光学报,2006,27(2):240-242
    [15]Li Danzhen, Zhen Y,i Fu Xianzh.Photoluminescence of nano-TiO2[J]. Journal of materials research,2000,14(6):639-642
    [16]李旦振,郑宜,付贤智.纳米二氧化钛的光致发光[J].材料研究学报2000,14(6):640-644
    [17]王素梅.纳米晶TiO2薄膜的光致发光现象[D].天津大学硕士学位论文.2004
    [18]吕红辉,汤钧,白玉白等.TiO2纳米晶薄膜电极的瞬态光电流特性[J],吉林大学自然科学学报,2001.3:99-104
    [19]吕红辉,文子,刘艳梅等.表面态对TiO2纳米晶薄膜光电流的影响[J],吉林大学自然科学学报,2001,2:95-99.
    [20]盛梅,许淮,朱毅青.半导体光催化剂及其在环境保护中的应用[J].江苏石油化工学院学报,2001,13(3):35-39
    [21]A.J.De Bethune, N.A.Swendeman- Loud, "standard Aqueous Eleetrode Potentials and Temperature cof icients at 25℃".(ClioffrdA.Hampel,111).
    [22]French P J, Gennissen p T J, Sarro P M.New silicon micromachining techniques for Microsystems[J].Sensors and Actuators A,1997,62:652-662
    [23]褚道葆,张金花,冯德香等.纳米TiO2膜电极的电化学阻抗谱[J].应用化学2006,23(3):251-255
    [24]Gomes W Pand, Vanmaekelbergh D. Impedance spectroscopy at semiconductor electrodes: review and recent developments [J].EIectrochim. Acta,1996,41:967-973
    [25]肖正伟,曾振欧,赵国鹏等.304不锈钢上纳米TiO2涂层的制备与防腐蚀性能研究[J].电镀与涂饰,2007,26(7):35-39
    [26]蓝碧波,周剑章,席燕燕,林仲华等纳米TiO2电极的特殊光电化学响应[J].电化学,2006,12(1):16-19
    [1]韩全州,祝军,任伟伟,田华菡.提高TiO2改性技术研究进展[J].安阳工学院学报.2005,12:4-6
    [2]Rodriguez Talaveraa R, Vargas S. Modification of the phase transition temperatures in titania doped with various cations [J]. J Mater Res,1997,12:439-445
    [3]井立强,孙晓君,辛柏福等.掺杂镧和铈的TiO2纳米粒子的结构相变[J].材料科学与工艺,2004,12(2):148-153
    [4]岳林海,水淼,徐铸德.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报(理学版),2000,27(1):69-74
    [5]WILE K, BREUER H D. The influence of transition metal doping on the physical and photocatalytic properties of Titania [J].J of Photochemistry and photobiology A:chemistry.1999, 122:49-53
    [6]李凡修,陆晓华,梅平.金属离子掺杂对纳米TiO2品型转变影响作用机制的研究进展[J].材料导报,2006,20(9):13-16
    [7]Ding Z, Lin L, Ma X M. The influence of alumina dopant on the structural transformation of sol-gel-derived nanocrystalline Titania powders [J]. Mater Sci Lett,1994,13:462-466
    [8]辛柏福,井立强,付宏刚等.掺杂Cu的TiO2纳米粒子的制备、表征及其光催化活性[J].高等 学校化学学报,2004,25(6):1076-1079
    [9]余锡宾,王桂华,罗衍庆等.TiO2微粒的掺杂改性与催化活性[J].上海师范大学学报(自然科学版),2000,29(1):75-79
    [10]Choi W, Termin A, Hoffmann M R.The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J].J Phys Chem, 1994,98:13669-13679.
    [11]李卫华,乔学斌,高恩勤等.3d过渡金属掺杂TiO2纳米晶膜电极的光电化学研究[J].高等学校化学学报,2000,21(10):1534-1538
    [12]刘畅,暴宁钟,杨祝红,陆小华.过渡金属离子掺杂改性TiO2的光催化性能研究进展[J].催化学报.2001,22(2):25-217
    [13]水淼,岳林海,徐铸德.几种制备方法的掺铁二氧化钛光催化特性[J].物理化学学报,2001,17(3):382-385
    [14]许可,吕德义.郇昌永等.掺杂对纳米二氧化钛晶型转变的影响[J].材料科学与工程学报2005,23(4):630-632
    [15]闫鹏飞,王建强,江欣等.掺铁TiO2纳米晶的制备及光催化性能的研究[J].材料科学与工艺,2003,10(1):28-32.
    [16]L.G.J.de Haart,A.J. de Vries.On the photoluminescence of semiconducting titanates applied in photoelectrochemical cells[J].J.Solid State Chem.1985,59,291-297
    [17]李德松,黄乔松.Fe3+掺杂影响TiO2光催化性能研究进展[J].中国水运,2008,6(1):76-77
    [18]陈长风,姜瑞景,张国安,郑树起等.双极性半导体钝化膜空间电荷电容分析[J].物理化学学报.2009,25(3):463-469
    [19]Song G B, Liang K J, Liu F S, et al. Preparation and phase transformation of anatase rutile crystals in metal-doped TiO2/muscovite nanocomposites[J].Thin Solid Films,2005,491:110-116.
    [20]苏碧桃,张彰,郑坚等.Fe3+掺杂的TiO2纳米复合粒子的合成及表征[J].化学学报,2002,60(10):1936-1940.
    [21]熊裕华,李凤仪.Fe3+掺TiO2光催化降解聚乙烯薄膜的研究[J].物理化学学报,2005,21(6):607-611.
    [22]任富建,刘红娟,沈毅.金属离子掺杂TiO2薄膜的光催化性能研究[J],钛工业进展.2006,23(4):31-34
    [23]姜洪泉.王鹏,线恒泽.低量Yb3+掺杂的TiO2复合纳米粉体的制备及光催化活性[J].化学学 报,2006,64(2):145-150.
    [24]Zhu J F,Chen F,Zhang J L,et al.Fe3--TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization[J].J Photochem Photobiol A:Chem,2006,180(1-2):196-204.
    [25]Navio J A,Testa J J,Djedan P,et al.Iron-doped titania powders prepared by a sol-gel method. Part Ⅱ: Photocatalytic properties [J].Appl Catal A Gen,1999,178(2):191-203.
    [1]Asahi R,Morikawa T,Ohwaki T et al,Visible-light photocatalysis in Nitrogen-doped Titanium Oxide[J].Science,2001,293:269-271
    [2]Sato S.Photocatalytic activity of NOx-doped TiO2 in the visible light region[J].Chemical Physics Letters,1986,123:126-128
    [3]Sakthivel S, Janczarek M, Kisch H.Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2[J].JPhys Chem B,2004,108:19384-19387.
    [4]Ihara T, Ando M, Sugihara S.. Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment [J].Journal of Materials Science.2001,36(17):4201-4207.
    [5]Irie H., Watanabe Y, Hashimoto K..Nitrogen-concentration dependence on photocatalysic activity of TiO2-xNx powders [J]. Phys. Chem. B,2003,107(23):5483-5486
    [6]Ryuhei Nakamura, Shinri Sato.Visible-light sensitization of TiO2 photocatalysts by wet-method N doping[J].Applied Catalysis A:General,2005,284(1-2):131-137
    [7]Lindgren.T, Mwabora J.M, Avendano E et al. Photoelectrochenmical and optical properties of Nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering[J].Phys.Chem.B,2003,107(24):5709-5716
    [8]Kazemeini M H, Berezin A A, Fukuhara N.Formation of thin TiNxOy films by using a hollow cathode reactive DC sputtering system[J]. Thin Solid Films,2000,372(1-2):70-77
    [9]Mohamed S H, Kappertzl O, Ngaruiyal J M et al. Effect of heat treatment on structural, optical and mechanical properties of sputtered TiOxNy films[J].Thin Solid Films,2004,468(1):48-56
    [10]Chen Shifu, Chen Lei, Gao she et al.The preparation of niortgen-doped photocatalyst TiO2-xNx by ball mlling[J].Chemcial physics Letter,2005,413:404-409
    [11]Suda Y, Kawasaki H, Ueda T et al, Preparation of silicon carbide nano-particles using a pulsed laser deposition method [J].Materials Research Society Symposium Proceedings.2004, 818:241-246.
    [12]Chen X, BURDA C.Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles [J].J.phys.chem.B 2004,108,15446-15449
    [13]M Mrowetz, W Baleerski, A J.Coluss, Miehael R Hoffimann. Oxidative power of Nitrogen-doped TiO2 photocatalysts under visible illumination [J].Phys.Chem B,2004, 108(45):17269-17278.
    [14]Diwald O,Thompson T L.Goralski E G et al, Photochemical activity of Nitrogen-doped rutile TiO2(110) in visible light[J].Phys,Chem.B,2004,108:6004-6008
    [15]余红华.等离子体改性及其性能研究[D].广州:华南师大学,2003
    [16]孔令红,熊予莹,符斯列等.纳米TiO2生态陶瓷研究的进展[J].功能材料与器件学报,2004,16(2):9-14
    [17]IharaT, MiyoshiM, Iriyama Y et al.Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping [J].Applied Catalysis B:Environmental,2003,42(4):403-409
    [18]Gole J L,Stout J D,Burda C et al. Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale[J]. J.Phys,Chem·B,2004,108(4):1230-1240
    [19]Cong Y,Xiao L,Zhang J,et al.Carbon and nitrogen-doped TiO2 with high visible light photocatalytic activity[J].J.Res.Chem.Intermed.,2006,32(8):717-724.
    [20]Sano T,Negishi N,Koike K et al. Photocatalytic mineralization of vinyl chloride on TiO2[J].Journal of Molicuar Catalysis,2001,168:233-240
    [21]Burda C, LouY, Chen X, et al. Enhanced nitrogen doping in TiO2 nano-particles[J].Nano Lett,2003,3(8):1049-1051.
    [22]Kobayakawa K, Murakami Y, Sato Y. Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea[J].J Photochem Photobiol A:Chem,2005,170:177-179.
    [23]RaneKS, MhalsikerR, YinS, et al.Visible light-sensitive yellow TiO2-xN、and Fe-N co-doped Ti-yFeyO2-xN、anatase Photocatalysts[J].J Solid State Chem,2006,179:3033-3044.
    [24]费贤翔,熊予莹等.氮掺杂二氧化钛的制备及可见光催化研究进展[J].山东陶瓷,2004,27(5):6-9
    [25]石旺舟,俞波.氧、氮掺杂硅基薄膜的荧光光谱[J].光谱学与光谱分析.2003,23(1):149-153
    [26]胡军文,张渊明,杨骏等.尿素作为添加剂低温制备高活性TiO2光催化[J].化学研究与应用.2006,18(6):36-42
    [27]崔海萍,闫军,张力.N掺杂TiO2薄膜光催化性能的研究[J].稀有金属材料与工程2006,36(1):876-878

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700