用户名: 密码: 验证码:
基于多种分析技术的代谢组学方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
代谢组学是关于定性和定量描述生物体内源性小分子代谢物的整体及其对内因和外因变化应答规律的科学。作为“后基因组学”时代的一门新兴学科和技术,代谢组学已广泛应用于生命科学相关领域。本论文建立了基于1H核磁共振(1HNMR)、高分离度快速分离液相色谱(RRLC)以及高效液相色谱-质谱(HPLC-MS)的代谢组学研究方法,并将这些方法应用于Arthus反应疾病病理机制研究、肿瘤诊断相关标志物的筛选和纳米材料的毒性机制研究中。本论文的主要研究内容包括以下几个方面:
     1.建立了2,4-二硝基氟苯(DNFB)柱前衍生化RRLC同时测定大鼠和人血清中23种氨基酸的分析方法。RRLC分离采用Agilent Zorbax Eclipse Plus C18(4.6mm×50mm,1.8μm)反相色谱柱,柱温45℃,流动相采用乙腈-甲醇-10mmol·L-1乙酸铵溶液梯度洗脱,流速1.5mL·min-1.进样量5μL,紫外检测波长360nm。23种氨基酸在10min内可达到良好分离,浓度分别在1~500μmol·L-1范围内线性关系良好(r>0.9962),定量下限为1μmol·L-1,日内、日间RSD值分别在0.32%~3.09%和0.67%~5.82%之间。将建立的方法用于大鼠和人血清中23种氨基酸的同时测定,回收率分别在90.8%~106.0%和88.2%~106.4%之间,RSD值分别在1.8%~4.7%和1.4%~8.5%之间。2.利用基于1HNMR的代谢指纹谱和RRLC的氨基酸靶标分析结合多变量数据处理方法对Arthus反应大鼠的体内代谢特点进行了研究,得到了一些互补信息。将采集的血清和尿液样本进行1HNMR分析,分别发现17个和16个与疾病密切相关的代谢物;血清样本RRLC氨基酸靶标分析发现8个与疾病密切相关的氨基酸。去除共同的代谢物,采用两种代谢组学分析模式,在Arthus反应大鼠血清和尿液中共鉴别到35个与疾病密切相关的特征性代谢物。结果显示,Arthus反应已经引起明显的肝、肾功能损伤,且伴随多条代谢途径的紊乱,如三羧酸循环(TAC)、肠道菌群代谢、脂质和细胞膜代谢、葡萄糖代谢、脂肪酸β-氧化、氨基酸代谢以及酮体的生成和分解等。3.分别建立基于1HNMR和RRLC互补的代谢指纹谱分析方法和氨基酸靶标分析方法,考察25例食管癌患者和25例正常健康人血清的代谢组学差异,进而寻找与食管癌发生、发展密切相关的生物标志物群。结合OPLS-DA对检测数据进行模式识别,结果显示采用两种分析模式均能清晰地区分食管癌患者和正常对照血清,说明相对于正常人而言,食管癌患者的血清代谢谱发生明显改变,并有统计学意义。基于RRLC的氨基酸靶标分析对于食管癌患者和正常健康人之间的区分能力要稍好于基于1HNMR的代谢指纹谱分析,说明代谢物靶标分析定量准确、特异性强,可以作为代谢指纹谱分析的有利补充,在代谢组学研究中具有很广阔的应用前景。本研究共发现19个内源性小分子代谢物在食管癌患者与正常健康人血清中的含量存在显著性差异,提示这些代谢物的异常可能与食管癌患者体内的代谢紊乱存在密切关系,即为潜在的肿瘤生物标志物。通过代谢途径研究发现,与正常人相比,食管癌患者体内多条代谢途径如糖酵解、脂质代谢、能量代谢、酮体的生成和分解、三羧酸循环以及氨基酸代谢等均发生了不同程度的紊乱。
     4.采用1HNMR代谢指纹谱分析和RRLC氨基酸靶标分析方法并结合多变量数据处理方法,开展了25例肺癌患者和25例正常健康人血清样品的代谢组学研究。结果显示,两种分析模式均能很好地区分肺癌患者和正常健康人,肺癌患者和正常健康人的血清代谢谱存在明显差异,说明肺癌患者体内的生物代谢通路发生了一定的改变。本研究共发现15个内源性小分子代谢物在肺癌患者与正常健康人血清中的含量存在显著性差异。对差异代谢物的生物代谢路径进行分析发现,肺癌患者的糖酵解代谢显著增加,另外,脂质代谢、氨基酸代谢、酮体的合成和分解等代谢通路均发生不同程度的紊乱。
     5.建立了基于HPLC-MS技术的代谢组学研究方法对表面包裹聚乙二醇(PEG)的ZnO量子点染毒大鼠的血清和尿液进行分析,从生物体整体代谢水平探讨了ZnO量子点的生物学效应(毒性)。雄性SD大鼠经尾静脉注射一次染毒1和10mg/kg ZnO QDs-PEG生理盐水溶液后24和72h,采用XCMS online分析其血清和尿液的HPLC-MS代谢谱变化。结果表明,1和10mg/kg ZnO QDs-PEG染毒组大鼠染毒后24、72h的血清和尿液代谢谱与正常对照组相比存在明显差异,没有与组织结构及功能严重受损相关的代谢物发现,说明表面包裹PEG的ZnO量子点毒性较小,不会导致明显的机体组织功能损伤,但引起了轻微的代谢紊乱。
Metabolomics, a relatively novel methodology arising from the post-genomics era, has been increasingly recognized as a valuable complementary approach to other well-established 'omic' sciences to aid in the assessment of disease and toxicity. Metabolic profiling is the comprehensive studying of large numbers of all endogenous low molecular weight metabolites and their roles in various disease states in a global view. In the present study, The proton nuclear magnetic resonance (1H NMR), rapid resolution liquid chromatography (RRLC) and high performance liquid chromatography-mass spectrometry (HPLC-MS) based metabolomic methodology were established and utilized for the research of pathophysiological mechanisms of Arthus reaction, tumor biomarkers discovery and nanotoxicity. The main contents and results are as follows:
     1. A RRLC method was developed for the simultaneous determination of23amino acids in rat and human serum after pre-column derivatization with2,4-dinitrofluorobenzene (DNFB). The amino acid derivatives were separated on an Agilent Zorbax Eclipse Plus Cis (4.6mm x50mm,1.8um) column at45℃. Ultraviolet (UV) detection was set at360nm. Good separation of23amino acids was achieved within10min with a ternary gradient elution of mobile phase at a flow rate of1.5mL·min-1. Calibration curves were linear over the range from1to500μmol·L-1with coefficients0.9962or better for each amino acid. The lower limits of quantification (LLOQ) of all23amino acids were1.0μmol·L-1with signal-to-noise (S/N) ratio≥14. Intra-and Inter-day precisions, expressed as relative standard deviation (RSD) percentages, were ranged from0.32%to3.09%and0.67%to5.82%, respectively. Finally, it was successfully applied to the determination of amino acids in rat and human serum with recoveries ranged from90.8%to106.0%and88.2%to106.4%, and RSD percentages ranged from1.78%to4.68%and1.4%to8.5%, respectively.
     2. Arthus reaction (AR), a type of unconventional immune complex-mediated inflammation, is likely accompanied by alterations in circulating metabolites. Here, a1H NMR spectroscopy method coupled with a RRLC method was developed to evaluate the systemic metabolic consequences of AR and characterize metabolic aberrations. Serum and urine samples from AR rats and normal controls were compared to determine whether there were significant alterations associated with AR. The partial least squares discriminant analysis (PLS-DA) models of metabolomic results demonstrated good intergroup separations between AR rats and normal controls. Multivariate statistical analysis revealed significant alterations in the levels of35metabolites, which were termed as the disease-associated biomarkers. Differential metabolites identified from the metabolomic analysis suggested that AR caused dysfunctions of kidney and liver accompanied with changes in widespread metabolic pathways including the tricarboxylic acid (TCA) cycle, gut microbiota metabolism, lipids and cell membranes metabolism, glucose metabolism, fatty acid β3-oxidation, amino acids metabolism and ketogenesis.
     3. Here, a1H NMR-based metabolomic approach coupled with a relative simple RRLC-based focused metabolomic approach was developed and compared to characterize the systemic metabolic disturbances underlying esophageal cancer (EC) and identify possible early biomarkers for clinical prognosis. Serum metabolic profiling of patients with EC (n=25) and healthy controls (n=25) was performed by using both1H NMR and RRLC, and metabolite identification was achieved by multivariate statistical analysis. Using orthogonal partial least-squares-discriminant analysis (OPLS-DA), we could distinguish EC patients from healthy controls. The predictive power of the model derived from the RRLC-based focused metabolomics performed better in both sensitivity and specificity than the results from the NMR-based metabolomics, suggesting that the focused metabolomic technique may be of advantage in the future for the determination of biomarkers. Moreover, focused metabolic profiling is highly simple, accurate and specific, and should prove equally valuable in metabolomic research applications. A total of nineteen significantly altered metabolites were identified as the potential disease associated biomarkers. Significant changes in lipid metabolism, amino acid metabolism, glycolysis, ketogenesis, tricarboxylic acid (TCA) cycle and energy metabolism were observed in EC patients compared with the healthy controls.
     4. In this study, we used a'H NMR-based metabolomic approach and a RRLC-based focused metabolomic approach and profiled small-molecule metabolites in serum of25lung cancer patients and25healthy controls, to determine whether there are significant alterations associated with carcinogenesis. The metabolomic results demonstrate clear intergroup separations between healthy control subjects and lung cancer patients in the OPLS-DA models.15differential metabolites identified from both the two metabolomic analysis suggest a significantly up-regulated glycolysis and the disrupted lipid metabolism, amino acid metabolism and ketogenesis in lung cancer patients.
     5. In the present study, the toxicity of ZnO quantum dots (QDs) was investigated using HPLC-MS based metabolic profiling. The serum and urine of rats treated with ZnO QDs-PEG at different doses (1and10mg/kg) were analyzed by integrated metabolomic analysis and in combination with multivariate statistical analysis. All the results indicated that both the doses of1 and10mg/kg ZnO QDs-PEG can induce changes in endogenous metabolic profiles, but no overt sign of toxicity was found in either the two group. In addition, all the data generated from the current study completely supports the fact that the ZnO QDs-PEG are little toxic and metabolic profiling is promising for the development of a rapid in vivo screening tool for nanotoxicity.
引文
[1]D'Alessandro, A., Giardina, B., Gevi, F., Timperio, A.M., Zolla, L. Shaking hands with the future through Omics application in Transfusion Medicine and Clinical Biochemistry[J]. Blood Transfusion,2012,10(Suppl 2), s1-3.
    [2]Derewacz, D.K,, Goodwin, C.R., McNees, C.R., McLean, J.A., Bachmann, B.O. Antimicrobial drug resistance affects broad changes in metabolomic phenotype in addition to secondary metabolism[J]. Proceeding of the National Academy of Science of the United States of American,2013,110(6):2336-2341.
    [3]Zhao, L., Nicholson, J.K., Lu, A., Wang, Z., Tang, H., Holmes, E., Shen, J., Zhang, X., Li, J.V., Lindon, J.C. Targeting the human genome-microbiome axis for drug discovery: inspirations from global systems biology and traditional Chinese medicine[J]. Journal of Proteome Research,2012,11:3509-3519.
    [4]Jones, D.P., Park, Y., Ziegler, T.R. Nutritional metabolomics:progress in addressing complexity in diet and health[J]. Annual Review of Nutrition,2012.32:183-202
    [5]Antignac, J.-P., Courant, F., Pinel, G., Bichon, E., Monteau, F., Elliott, C., Le Bizec, B. Mass spectrometry-based metabolomics applied to the chemical safety of food[J]. TrAC Trends in Analytical Chemistry,2011,30(2):292-301.
    [6]Viant, M.R. Recent developments in environmental metabolomics[J]. Molecular BioSystems, 2008,4:980-986.
    [7]Geene, S., Taylor, P.N., Snoep, J.L., Wilson, I.D., Kenna, J.G., Westerhoff, H.V. Systems biology tools for toxicology[J]. Archives of Toxicology,2012,86:1251-1271.
    [8]Robertson, D.G., Watkins, P.B., Reily, M.D. Metabolomics in toxicology:preclinical and clinical applications[J]. Toxicological Sciences,2011,120(S1):S146-S170.
    [9]Saito, K., Matsuda, F. Metabolomics for functional genomics, systems biology, and biotechnology[J]. Annual Review of Plant Biology,2010,61:463-489.
    [10]Nicholson, J.K., Lindon, J.C., Holmes, E.'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica,1999,29(11):1181-1189.
    [11]Nicholson, J.K, Connelly, J., Lindon, J.C. Holmes, E. Metabonomics:a platform for studying drug toxicity and gene function[J]. Nature Reviews,2002,1(2):153-161.
    [12]Trethewey, R.N. Gene discovery via metabolite profiling[J]. Current Opinion in Biotechnology,2001,12:135-138.
    [13]Fiehn, O. Combining genomics, metabolome analysis, and biochemical modeling to understand metabolic networks[J]. Comparative and Functional Genomics,2001,2(3): 155-168.
    [14]Fiehn, O. Metabolomics--the link between genotypes and phenotypes[J]. Plant Molecular Biology,2002,48(1-2):155-171.
    [15]Sumner, L.W., Mendes, P., Dixon, R.A. Plant metabolomics:large scale phytochemistry in the functional genomics era[J]. Phytochemistry,2003,62:817-836.
    [16]Taylor, J., King, R.D., Altmann, T.,Fiehn, O. Application of metabolomics to plant genotype discrimination using statistics and machine learning[J]. Bioinformatics (Oxford, England), 2002,18 (2):241-248.
    [17]Villas-B6as, S.G., Mas, S., Akesson, M., Smedsgaard, J., Nielsen, J. Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews,2005,24:613-646.
    [18]Taylor, J., King, R.D., Altmann, T.,Fiehn, O. Application of metabolomics to plant Roux, A., Lison, D., Junot, C., et al. Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology:A review[J]. Clinical Biochemistry,2011,44(1):119-135.
    [19]邱德有,黄璐琦.代谢组学研究——功能基因组学研究的重要组成部分[J].分子植物育种,2004,2(2):165-177.
    [20]曹蓓,阿基业,王广基,郑天,刘林生,李梦婕,石建,王新文,赵春艳.代谢组学在临床研究中的应用及进展[J].2010,22(8):761-771.
    [21]Labbe, A., Dudoit, S. Special issue on computational statistical methods for genomics and systems biology [J]. Statistical Applications in Genetics and Molecular Biology,2012,11(2).
    [22]Vankol, S.W. Hendriksen, P.J., Vanloveren, H., et al. Transcriptomics analysis of primary mouse thymocytes exposed to bis(tri-n-butyltin) dioxide (TBTO)[J]. Toxicology,2012, 296(1-3):37-47.
    [23]Wasinger, V.C., Cordwell, S.J., Cerpa-Poljak, A., et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium[J]. Electrophoresis,1995,16(7):1090-1094.
    [24]Weckwerth, W., Morgenthal, K. Metabolomics:from pattern recognition to biological interpretation [J]. Drug Discovery Today,2005,10:1551-1558.
    [25]Nielsen, J., Oliver, S. The next wave in metabolome analysis. Trends in Biotechnology,2005, 23(11):544-546.
    [26]German, J.B., Bauman, D.E., Burrin, D.G., et al. Metabolomics in the opening decade of the 21st century:building the roads to individualized health[J]. The Journal of Nutrition,2004, 134 (10):2729-2732.
    [27]Dettmer, K., Aronov, P.A., Hammock, B.D. Mass spectrometry-based metabolomics[J]. Mass Spectrometry Reviews,2007,26,51-78.
    [28]Stumvoll, M., Goldstein, B.J., van Haeften, T.W. Type 2 diabetes of pathogenesis and therapy[J]. Lancet,2005,365:1333-1346.
    [29]Huang, W.E., Goodcare, R. The use of chemical profiling for monitoring metabolic changes in artificial soil slurries caused by horizontal gene transfer[J]. Metabolomics,2005,1(4): 305-315.
    [30]Lindon, J.C., Nicholson, J.K., Holmes, E., et al. Metabonomics:Metabolic processes studied by NMR spectroscopy of biofluids[J]. Concepts in Magnetic Resonance Part A.2000; 12: 289-320.
    [31]Beckonert, O., Keun, H.C., Ebbels, T.M., Bundy, J., Holmes, E., Lindon, J.C., Nicholson, J.K.:Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts[J]. Nat Protoc 2007,2(11):2692-2703.
    [32]Constantinou, M.A., Papakonstantinou, E., Spraul, M., Sevastiadou, S., Costalos, C., Koupparis, M.A., Shulpis, K., Tsantili-Kakoulidou, A., Mikros, E.1H NMR-based metabonomics for the diagnosis of inborn errors of metabolism in urine[J]. Analytica Chimica Acta,2005,542:169-177.
    [33]Gika, H., Theodoridis, G. Sample preparation prior to the LC-MS-based metabolomics/metabonomics of blood-derived samples[J]. Bioanalysis,2011, 3(14):1647-1661.
    [34]Vuckovic, D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry[J].
    [35]Kind, T. Tolstikov, V. Fiehn, O., Weiss, R.H. A comprehensive urinary metabolomic approach for identifying kidney cancer[J]. Analytical Biochemistry,2007,363:185-195.
    [36]Kaal, E. Janssen, H.G. Extending the molecular application range of gas chromatography[J]. Journal of Chromatography A,2008,1184:43-60.
    [37]Smolinska, A., Blanchet, L., Buydens, L.M.C., Wijmenga, S.S. NMR and pattern recognition methods in metabolomics:From data acquisition to biomarker discovery:A review.
    [38]Kuehnbaum, N.L., Britz-McKibbin,P. New Advances in Separation Science for Metabolomics:Resolving Chemical Diversity in a Post-Genomic Era[J].Chemical Reviews, dx.doi.org/10.1021/cr300484s.
    [39]Rooney, O.M., Troke, J., Nicholson, J.K.,Griffin, J.L. High-resolution diffusion and relaxation-edited magic angle spinning 1H NMR spectroscopy of intact liver tissue. Magnetic Resonance in Medicine,2003,50:925-930.
    [40]Lamers, R.J.A.N., DeGroot, J., Spies-Faber, E.J., Jellema, R.H., Kraus, V.B., Verzijl, N., TeKoppele, J.M., Spijksma, G.K., Vogels, J.T.W.E., van der Greef, J., van Nesselrooij, J.H.J. Identification of disease- and nutrient-related metabolic fingerprints in osteoarthritic guinea pigs[J]. The Journal of Nutrition,2003,133(6):1776-1780.
    [41]Kokushi, E., Uno, S., Harada, T. Koyama, J.1H NMR-based metabolomics approach to assess toxicity of bunker a heavy oil to freshwater carp, cyprinus carpio[J]. Environmental Toxicology,2010,27(7):404-414.
    [42]Tang, H., Xiao, C., Wang, Y. Important roles of the hyphenated HPLC-DAD-MS-SPE-NMR technique in metabonomics.
    [43]Schlotterbeck, G., Ceccarelli, S.M. LC-SPE-NMR-MS:a total analysis system for bioanalysis[J]. Bioanalysis,2009,1(3):549-559.
    [44]Metz, T.O., Zhang, Q., Page, J.S., Shen, Y., Callister, S.J. Jacobs, J.M. Smith, R.D. The future of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discovery. Biomarkers in Medicine,2007,1(1):159-185.
    [45]Wilson, I.D., Plumb, R., Granger, J., Major, H., Williams, R., Lenz, E.M. HPLC-MS-based methods for the study of metabonomics[J]. Journal of Chromatography B Analyt Technol Biomed Life Sci,2005,817(1):67-76.
    [46]Alpert, A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds[J]. Journal of Chromatography A,1990,499:177-196.
    [47]Okazaki, Y., Kamide, Y., Hirai, M.Y., Saito, K. Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-flight mass spectrometry.
    [48]Cubbon, S., Antonio, C., Wilson, J. Thomas-Oates, J. Metabolomic applications of HILIC-LC-MS[J]. Mass Spectrometry Reviews,2010,29(5):671-84.
    [49]Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with orbitrap mass spectrometry for metabolomic studies of human urine[J]. Analytical Chemistry,2012,84 (4):1994-2001.
    [50]Yin, P., Wan, D., Zhao, C., Chen, J., Zhao, X., Wang, W., Lu, X., Yang, S., Gu, J., Xu, G. A metabonomic study of hepatitis B-induced liver cirrhosis and hepatocellular carcinoma b y using RP-LC and HILIC coupled with mass spectrometry[J]. Molecular BioSystems,2009,5, 868-876.
    [51]Ikegami, T., Dicks, E., Kobayashi, H., morisaka, H., Tokuda, D., Cabrera, K., Hosoya, K., Tanaka, N. How to utilize the true performance of monolithic silica columns[J]. Journal of Separation Science,2004,27:1292-1302.
    [52]Guiochon, G. Monolithic columns in high-performance liquid chromatography[J]. Journal of Chromatography A,2007,1168:101-168.
    [53]Tolstikov, V.V., Lommen, A., Nakanishi, K., Tanaka, N., Fiehn, O. Monolithic silica-based capillary reversed-phase liquid chromatography electrospray mass spectrometry for plant metabolomics[J]. Analytical Chemistry,2003,75 (23):6737-6740.
    [54]Wilson, I.D., Plumb, R., Granger, J., Major, H., Williams, R., Lenz, E.M. HPLC-MS-based methods for the study of metabonomics[J]. Journal of Chromatography B,2005,817(1):67-76.
    [55]Wang, Y., Ai, F., Ng, S., Tan, T.T.Y. Sub-2 um porous silica materials for enhanced separation performance in liquid chromatography [J]. Journal of Chromatography A,2012,1228: 99-109.
    [56]Evans, A.M., DeHaven, C.D., Barrett, T., Mitchell, M., Milgram, E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems.Analytical Chemistry,2009,81 (16):6656-6667.
    [57]Churehwell, M.I., Twaddle, N.C., Meeker, L.R., Doerge, D.R. Improving LC-MS sensitivity through increases in chromatographic performance:comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS. Journal of Chromatography B:Biomedical Sciences and Applications, 2005,825(2),134-143.
    [58]Wang, X., Sun, H., Zhang, A., Wang, P., Han, Y. Ultra-performance liquid chromatography coupled to mass spectrometry as a sensitive and powerful technology for metabolomic studies[J]. Journal of Separation Science,2011,34,3451-3459.
    [59]G6mez-Romero, M., Segura-Carretero, A., Fernandez-Gutierrez, A. Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit[J]. Phytochemistry, 2010,71(16):1848-1864.
    [60]Glauser, G., Veyrat, N., Rochat, B., Wolfender, J.L., Turlings, T.C. Ultra-high pressure liquid chromatography-mass spectrometry for plant metabolomics:A systematic comparison of high-resolution quadrupole-time-of-flight and single stage Orbitrap mass spectrometers[J]. Journal of Chromatography A, http://dx.doi.org/10.1016/j.chroma.2012.12.009
    [61]Li, Y., Wang, Y., Su, L., Li, L., Zhang, Y. Exploring potential chemical markers by metabolomics method for studying the processing mechanism of traditional Chinese medicine using RPLC-Q-TOF/MS:a case study of Radix Aconiti[J]. Chemistry Central Journal,2013,7:36.
    [62]Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics[J]. Analytical and Bioanalytical Chemistry,2004,380:419-429.
    [63]Trygg, J., Holmes, E., Lundstedt, T. Chemometrics in metabonomics, Journal of Proteome Research,2007,6:469-479.
    [64]Kettaneha, N., Berglundb, A., Word, S., PCA and PLS with very large data sets[J]. Computational Statistics & Data Analysis,2005,48(1):69-85.
    [65]Wold, S., Sjostrom, M., Eriksson, L. "PLS-regression:a basic tool of chemometrics"[J]. Chemometrics and Intelligent Laboratory Systems,2001,58 (2):109-130.
    [66]Trygg, J., Wold, S. Orthogonal projections to latent structures (O-PLS), Journal of chemometrics,2002,16:119-128.
    [67]Bylesjo, M., Eriksson, D., Sjodin, A., Jansson, S., Moritz, T., Trygg, J. Orthogonal projections to latent structures as a strategy for microarray data normalization, BMC Bioinformation,2007,8:207.
    [68]Deodhar, S.D. Autoimmune disease:overview and current concepts of pathogenesis[J]. Clinical Biochemistry,1992,25(3):181-185.
    [69]Hunig, T., Schimpl, A. Systemic autoimmune disease as a consequence of defective lymphocyte death[J]. Current Opinion in Immunology,1997,9(6):826-830.
    [70]Weetman, A.P. Non-thyroid autoantibodies in autoimmune thyroid disease[J]. Best Practice & Research Clinical Endocrinology & Metabolism,2005,19(1):17-32.
    [71]Caride, E.C., Tempone, A.J. Rumjanek, F.D. Nuclear antigens of schistosoma mansoni revealed by sera from systemic autoimmune disease[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1997,118(4):797-803.
    [72]Giera, M., Ioan-Facsinay, A., Toes, R., Gao, F., Dalli, J., Deelder, A.M., Serhan, C.N., Mayboroda, O.A. Lipid and lipid mediator pro fi ling of human synovial fluid in rheumatoid arthritis patients by means of LC-MS/MS [J]. Biochimica et Biophysica Acta,2012, 1821:1415-1424.
    [73]Zhang, S., Gowda, G.A.N., Asiago, V., Shanaiah, N., Barbas, C., Raftery, D., Correlative and quantitative 1H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats[J]. Analytical Biochemistry,2008,383:76-84.
    [74]俞颖,曹毅,陈益民,温成平,许志良.基于液相色谱-质谱联用系统的系统性红斑狼疮患者血浆代谢组学分析[J].色谱,2010,28(7):644-648.
    [75]欧阳昕,文锦丽,彭武建,王林纤,王红蕾,戴勇.应用代谢组学方法构建系统性红斑狼疮诊断模型[J].色谱,2011,21(23):2878-2885.
    [76]Lu, Y., Wang, C., Chen, Z., Zhao, H., Chen, J., Liu, X., Kwan, Y., Lin, H., Ngai, S. Serum metabolomics for the diagnosis and classification of myasthenia gravis[J]. Metabolomics, 2012,8:704-713.
    [77]Noga, M.G., Dane, A., Shi, S., Attali, A., van Aken, H., Suidgeest, E., Tuinstra, T., Muilwijk, B., Coulier, L., Luider, T., Reijmers, T.H., Vreeken, R.J., Hankemeier, T. Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis[J]. Metabolomics,2012,8:253-263.
    [78]Yue, R., Zhao, L., Hu, Y., Jiang, P., Liu, Wang, S., Xiang, L., Liu, W., Zhang, W., Liu, R. Rapid-resolution liquid chromatography TOF-MS for urine metabolomic analysis of collagen-induced arthritis in rats and its applications[J]. Journal of Ethnopharmacology,2013, 145:465-475.
    [79]汪江山,赵欣捷,尹沛源,孔宏伟,许国旺,吕爱平.类风湿性关节炎疾病分型的血浆代谢组学研究[J].世界科学技术中医药现代化,2009,11(1):201-205.
    [80]Romick-Rosendale, L.E., Brunner, H.I., Bennett, L.E., Mina, L.E., Nelson, S., Petri, M., Kiani, A., Devarajan, P., Kennedy, M.A. Identification of urinary metabolites that distinguish membranous lupus nephritis from proliferative lupus nephritis and focal segmental glomerulosclerosis[J]. Arthritis Research & Therapy,2011,13:R199.
    [81]Makinen, V.P., Soininen, P., Forsblom, C., Parkkonen, M., Ingman, P., Kaski, K., Groop, P.H., Ala-Korpela, M. Diagnosing diabetic nephropathy by 1HNMR metabonomics of serum[J]. Magnetic resonance materials in physics biology and medicine,2006,19:281-296.
    [82]Blanchet, L., Smolinska, A., Attali, A., Stoop, M.P., Ampt, K.A.M., van Aken, H., Suidgeest, E., Tuinstra, T., Wijmenga, S.S., Luider, T., Buydens, L.M.C. Fusion of metabolomics and proteomics data for biomarkers discovery:case study on the experimental autoimmune encephalomyelitis[J]. BMC Bioinformatics,2011,12:254.
    [83]Fossel, E.T., Carr, J.M., McDonagh, J. Detection of malignant tumors. Water-suppressed proton nuclear magnetic resonance spectroscopy of plasma[J]. The New England Journal of Medicine,1986,315(22):1369-1376.
    [84]Marc, M., Gozlan, M.D. MR Spectroscopy in cancer research and diagnosis. ECCO 13[C]. European Cancer Conference, Paris,2005.
    [85]Kim, Y.S., Maruvada, P., Milner, J.A. Metabolomics in biomarker discovery:future uses for cancer prevention[J]. Future Oncology,2008,4:93-102.
    [86]Beckonert, O., Monnerjahn, J., Bonk, U., Leibfritz, D. Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps[J]. NMR Biomedicine,2003,16:1-11.
    [87]Boss, E.A., Moolenaar, S.H., Massuger, L.F.A.G., Boonstra, H., Engelke, U.F.H., de Jong, J.G.N., Wevers, R.A. High-resolution proton nuclear magnetic resonance spectroscopy of ovarian cyst fluid[J]. NMR in Biomedicine,2000,13:297-305.
    [88]Zhang, Z., Qiu, Y., Hua, Y. Serum and urinary metabonomic study of human osteosarcoma[J]. Journal of Proteome Research,2010,9(9):4861-4868.
    [89]Ippolito, J.E., Merritt, M.E., Backhed, F., Moulder, K.L., Mennerick, S., Manchester, J.K., Gammon, S.T., Piwnica-Worms, D., Gordon, J.I. Linkage between cellular communications, energy utilization, and proliferation in metastatic neuroendocrine cancers[J]. Proceedings of the National Academy of Sciences USA,2006,103(33):12505-12510.
    [90]Sreekumar, A., Poisson, L.M., Rajendiran, T.M., Khan, A.P., Cao, Q., Yu, J., Laxman, B., Mehra, R., Lonigro, R.J., Li, Y., Nyati, M.K., Ahsan, A., Kalyana-Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G.S., Ghosh, D., Pennathur, S., Alexander, D.C., Berger, A., Shuster, J.R., Wei, J.T., Varambally, S., Beecher, C., Chinnaiyan, A.M. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression[J]. Nature,2009,457(12) 910-914.
    [91]Fan T.W., Higashi R.M., LaneA.N. Integrating metabolomics and transcriptomics for probing SE anticancer mechanisms [J]. Drug Metabolism Reviews,2006,38(4):707-732.
    [92]Service, R. F., Nanomaterials show signs of toxicity[J]. Science,2003,30(11):243.
    [93]Brumfiel, G.A. Nanotechnology:a little knowledge[J]. Nature,2003,424(17):246-248.
    [94]Zhang, W.X. Environmental technologies at the nanoscale[J]. Environmental Science & Technology,2003,37(5):103-108.
    [95]Dowling, A. P. Development of nanotchnologies[J]. Materials Today,2004,7(12):30-35.
    [96]白春礼,赵宇亮.关注“纳米安全”[J].科技潮,2005,7:30-31.
    [97]Oberdorster, E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in brain of juvenile largemouth bass[J]. Environmental Health Perspectives,2004,112:1058-1062.
    [98]Chen, H.H.C., Yu, C., Ueng, T.H., Chen, S., Chen, B.J., Huang, K.J., Chiang, L.Y. Acute and subacute toxicity study of water- soluble polyalkyl sulfonated C60 in rats[J]. Toxicologic Pathology,1998,26 (1):143-151.
    [99]Lam, C.W., James, J.T., McCluskey, R., Hunter, R.L., Pulmonary toxicity of single wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation[J]. Toxicology Science, 2004,77(1):126-134.
    [100]Wang, H., Wang, J., Deng, J., Sun, H., Shi, Z., Gu, Z., Zhao, Y. Biodistribution of carbon single wall carbon nanotubes in mice[J]. Journal of Nanoscience and Nanotechnology,2004, 4(8):1019-1024.
    [101]李岩,彭光银,何胡军.碳纳米管导致小鼠肺部急性氧化损伤作用的研究[J].生态毒理学报,2006,1(4):357-360.
    [102]赵淑华.四氧化三铁纳米颗粒心肌毒性的体内实验研究[D].长春:吉林大学,2009.
    [103]韩瑜,尹龙萍,龙玲.2种纳米材料在小鼠体内分布及毒性作用[J].中国公共卫生,2009,25(7):835-836.
    [104]Fowler, B.A., Conner, E.A., Yamauchi, H. Proteomic and metabolomic biomarkers for Ⅲ-Ⅴ semiconductors:And prospects for application to nano-materials[J]. Toxicology and Applied Pharmacology,2008,233:110-115.
    [105]Lei, R., Wu, C., Yang, B., Ma, H., Shi, C., Wang, Q., Wang, Q., Yuan, Y., Liao, M. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats:A rapid in vivo screening method for nanotoxicity[J]. Toxicology and Applied Pharmacology,2008,232:292-301.
    [106]赵剑宇,丁文军,张芳.基于代谢组学方法研究纳米二氧化钛对大鼠肾功能的影响[J].毒理学杂志,2009,23(3):201-204.
    [107]Lu, X., Tian, Y., Zhao, Q., Jin, T., Xiao, S., Fan, X. Integrated metabonomics analysis of the size-response relationship of silica nanoparticles-induced toxicity in mice[J]. Nanotechnology,2011,22:1-16.
    [108]Tang, M., Zhang, T., Xue, Y., Wang, S., Huang, M., Yang, Y., Lu, M., Lei, H., Kong, L. Yuepu, P. Dose dependent in vivo metabolic characteristics of titanium dioxide nanoparticles[J]. Journal of Nanoscience and Nanotechnology,2010,10(12):8575-8583.
    [109]Aslund, M.L.W., McShane, H., Simpson, M.J., Simpson, A.J., Whalen, J.K., Hendershot, W.H., Sunahara, G.I. Earthworm sublethal responses to titanium dioxide nanomaterial in soil detected by 1H NMR metabolomics[J]. Environmental Science & Technology,2012,46: 1111-1118.
    [1]Huub-Waterval, W.A., Scheijen, J.L.J.M., Ortmans-Ploemen, M.M.J.C., Habets-van Poel, C.D. Bierau, J. Quantitative UPLC-MS/MS analysis of underivatised amino acids in body fluids is a reliable tool for the diagnosis and follow-up of patients with inborn errors of metabolism, Clinica Chimica Acta,2009,407,36-42.
    [2]Oladipo, O.O., Weindel, A.L., Saunders, A.N., Dietzen, D.J. Impact of premature birth and critical illness on neonatal range of plasma amino acid concentrations determined by LC-MS/MS, Molecular Genetics and Metabolism,2011,104:476-479.
    [3]Kovacs, A., Simon-Sarkadi, L., Ganzler, K. Determination of biogenic amines by capillary electrophoresis, Journal of Chromatography A,1999,836,305-313.
    [4]Zhao, S.L., Liu, Y.M. Enantioseparation of underivatized amino acids by capillary electrophoresis using copper(Ⅱ)-(S)-3-aminopyrrolidine-1-histidine ternary complex as the chiral selector, Analytica Chimica Acta,2001,426:65-70.
    [5]Yang, W.P., Zhang, Z.J., Deng, W. A capillary electrophoresis detection scheme for underivatized amino acids based on luminol/BrO- chemiluminescence system, Talanta,2003, 59:951-958.
    [6]Veledo, M.T., Frutos, M., Diez-Masa, J.C. Amino acids determination using capillary electrophoresis with on-capillary derivatization and laser-induced fluorescence detection, Journal of Chromatography A,2005,1079:335-343.
    [7]Vesely, P., Lusk, L., Basarova, G., Seabrooks, J., Ryder, D. Analysis of aldehydes in beer using solid-phase micro extraction with on-fiber derivatization and gas chromatography/mass spectrometry, Journal of Agricultural and Food Chemistry,2003,51:6941-6944.
    [8]Nozal, M.J., Bernal, J.L., Toribio, M.L., Diego, J.C., Ruiz, A. Rapid and sensitive method for determining free amino acids in honey by gas chromatography with flame ionization or mass spectrometric detection, Journal of Chromatography A,2004,1047:137-146.
    [9]Kaspar, H., Dettmer, K., Gronwald,W., Oefner, P.J. Automated GC-MS analysis of free amino acids in biological fluids, Journal of Chromatography B,2008,870:222-232.
    [10]Qiu, Y., Su, M., Liu, Y., Chen, M., Gu, J., Zhang, J., Jia, W. Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling, Analytica Chimica Acta,2007,583:277-283.
    [11]Jambor, A., Molnar-Perl, I. Amino acid analysis by high-performance liquid chromatography after derivatization with 9-fluorenylmethyloxycarbonyl chloride Literature overview and further study, Journal of Chromatography A,2009,1216:3064-3077.
    [12]Molnar-Perl, I., Vasanits, A. Stability and characteristics of the o-phthaldialdehyde/ 3-mercaptopropionic acid ando-phthaldialdehyde/N-acetyl-L-cysteine reagents and their amino acid derivatives measured by high-performance liquid chromatography, Journal of Chromatography A,1999,835:73-91.
    [13]Pereira, V., Pontes, M., Camara, J.S., Marques, J.C. Simultaneous analysis of free amino acids and biogenic amines in honey and wine samples using in loop orthophthalaldeyde derivatization procedure, Journal of Chromatography A,2008,1189:435-443.
    [14]Cometto, P.M., Faye, P.F., Naranjo, R.D.D.P., Rubio, M.A., Aldao, M.A. Comparison of free amino acids profile in honey from three Argentinian regions, Journal of Agricultural and Food Chemistry,2003,51:5079-5087.
    [15]Iglesias, M.T., Lorenzo, C.D., der Carmen Polo, M., Martin-Alvarez, P.J., Pueyo, E. Usefulness of amino acid composition to discriminate between honeydew and floral honeys. Application to honeys from a small geographic area, Journal of Agricultural and Food Chemistry, 2004,52:84-89.
    [16]L6pez-Cervantes, J., Sanchez-Machado, D.I., Rosas-Rodrigues, J.A. Analysis of free amino acids in fermented shrimp waste by high-performance liquid chromatography. Journal of Chromatography A,2006,1105:106-110.
    [17]Hermosin, I., Chicon, R.M., Cabezudo, M.D. Free amino acid composition and botanical origin of honey, Food Chemistry,2003,83:263-268.
    [18]Rebane, R., Herodes, K. A sensitive method for free amino acids analysis by liquid chromatography with ultraviolet and mass spectrometric detection using precolumn derivatization with diethyl ethoxymethylenemalonate:Application to the honey analysis, Analytica Chimica Acta, 2010,672:79-84.
    [19]Harder, U., Koletzko, B., Peissner, W. Quantification of 22 plasma amino acids combining derivatization and ion-pair LC-MS/MS, Journal of Chromatography B,2011,879:495-504.
    [20]Casella, I.G., Contursi, M. Isocratic ion chromatographic determination of underivatized amino acids by electrochemical detection, Analytica Chimica Acta,2003,478:179-189.
    [21]Yan, D., Li, G., Xiao, X.H., Dong, X.P., Li, Z.L. Direct determination of fourteen underivatized amino acids from Whitmania pigra by using liquid chromatography-evaporative light scattering detection, Journal of Chromatography A,2007,1138:301-304.
    [22]Petritis, K., Chaimbault, P., Elfakir, C., Dreux, M. Parameter optimization for the analysis of underivatized protein amino acids by liquid chromatography and ionspray tandem mass spectrometry, Journal of Chromatography A,2000,896:253-263.
    [23]Qu, J., Wang, Y.M., Luo, G.A., Wu, Z.P., Yang, C.D. Validated quantitation of underivatized amino acids in human blood samples by volatile ion-pair reversed-phase liquid chromatography coupled to isotope dilution tandem mass spectrometry, Analytical Chemistry,2002,74:2034-2040.
    [24]Dalluge, J.J., Smith, S., Sanchez-Riera, F., McGuire, C., Hobson, R. Potential of fermentation profiling via rapid measurement of amino acid metabolism by liquid chromatography-tandem mass spectrometry, Journal of Chromatography A,2004,1043:3-7.
    [25]Qu, Y., Slocum, R.H., Fu, J., Rasmussen, W.E., Rector, H.D., Miller, J.B., Coldwell, J.G. Quantitative amino acid analysis using a Beckman system gold HPLC 126AA analyzer, Clinica Chimica Acta,2001,312:153-162.
    [26]Kaspar, H., Dettmer, K., Chan, Q., Daniels, S., Nimkar, S., Daviglus, M.L., Stamler, J., Elliott, P., Oefner, P.J. Urinary amino acid analysis:A comparison of iTRAQ(?)-LC-MS/MS, GC-MS, and amino acid analyzer, Journal of Chromatography B,2009,877:1838-1846.
    [27]Woo, K.L., Hwang, Q.C., Kim,H.S. Determination of amino acids in the foods by reversed-phase high-performance liquid chromatography with a new precolumn derivative, butylthiocarbamyl amino acid, compared to the conventional phenylthiocarbamyl derivatives and ion-exchange Chromatography, Journal of Chromatography A,1996,740:31-40.
    [28]J.K. Khan, Y. Kuo, N. Kebede, F. Lambein, J. Chromatogr. A 687(1994) 113-119.
    [29]Kuo, Y.H., Defoort, B., Getahun, H., Haimanot, R.T., Lambein, F. Comparison of urinary amino acids and trace elements (copper, zinc and manganese) of recent neurolathyrism patients and healthy controls from Ethiopia, Clinical Biochemistry,2007,40:397-402.
    [30]Nonaka, S., Tsunoda, M., Imai, K., Funatsu, T. High-performance liquid chromatographic assay of NG-monomethyl-1-arginine, NG,NG-dimethyl-1-arginine, and NG,NG-dimethyl-1-arginine using 4-fluoro-7-nitro-2,1,3-benzoxadiazole as a fluorescent reagent, Journal of Chromatography A,2005,1066:41-45.
    [31]Song, Y.T., Funatsu, T., Tsunoda, M. Amino acids analysis using a monolithic silica column after derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), Journal of Chromatography B,2011,879:335-340.
    [32]Pappa-Louisi, A., Nikitas, P., Agrafiotou, P., Papageorgiou, A. Optimization of separation and detection of 6-aminoquinolyl derivatives of amino acids by using reversed-phase liquid chromatography with on line UV, fluorescence and electrochemical detection, Analytica Chimica Acta,2007,593:92-97.
    [33]Fiechter, G., Mayer, H.K., Characterization of amino acid profiles of culture media via pre-column 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization and ultra performance liquid chromatography, Journal of Chromatography B,2011,879:1353-1360.
    [34]Sun, Y., Liu, P.F., Wang, D., Li, J.Q., Cao, Y.S. Determination of amitrole in environmental water samples with precolumn derivatization by high-performance liquid chromatography, Journal of Agricultural and Food Chemistry,2009,57:4540-4544.
    [35]Shi, T.Y., Tang, T., Qian, K., Wang, F., Li, J.Q., Cao, Y. High-performance liquid chromatographic method for determination of amino acids by precolumn derivatization with 4-chloro-3,5-dinitrobenzotrifluoride, Analytica Chimica Acta,2009,654:154-161.
    [36]Ru, Q.H., Yao, J., Luo, G.A., Zhang, Y.X., Yan, C. Pressurized gradient capillary electrochromatographic separation of eighteen amino acid derivatives, Journal of Chromatography A,2000,894:337-343.
    [37]Gioia, M.G., Andreatta, P., Boschetti, S., Gatti, R. Development and validation of a liquid chromatographic method for the determination of branched-chain amino acids in new dosage forms, Journal of Pharmaceutical and Biomedical Analysis,2007,45:456-464.
    [38]L. Chen, Q. Chen, Z.Z. Zhang, X.C. Wan, A novel colorimetric determination of free amino acids content in tea infusions with 2,4-dinitrofluorobenzene, Journal of Food Composition and Analysis,2009,22:137-141.
    [39]Zhao, W.C., Liu, L.J., Zhao, X.N., Ding, C.X., Suo, Y.R. Application of 2-(11H-benzo[a]carbazol-ll-yl) ethylcarbonochloridate as a precolumn derivatization reagent of amino acid by high performance liquid chromatography with fluorescence detection, Chinese Journal of Analytical Chemistry,2008,36:1071-1076.
    [1]Ohnishi, M., Koike, H., Kawamura, N., Tojo, S.J., Hayashi, M., Morooka, S. Role of P-selectin in the early stage of the Arthus reaction[J]. International Immunopharmacology,1996, 34:161-170.
    [2]Nezlin, R. A quantitative approach to the determination of antigen in immune complexes [J]. Journal of Immunological Methods,2000,237(1-2):1-17.
    [3]Frank, M.M., Hester, C.G. Allergy Frontiers:Classification and Pathomechanisms,2009,2: 79-94.
    [4]Teixeira, M.M., Fairbairn, S.M., Norman, K.E., Williams, T.J., Rossi, A.G., Hellewell, P.G. Studies on the mechanisms involved in the inflammatory response in a reversed passive Arthus reaction in guinea-pig skin:contribution of neutrophils and endogenous mediators, British Journal of Pharmacology,1994,113:1363-1371.
    [5]Battistini, B., Steil, A.A., Jancar, S., Sirois, P. Roles of endothelins and their receptors in immune complex-induced/polymorphonuclear-mediated lung injury (reversed passive Arthus reaction) in CD-1 mice, Pulmonary Pharmacology & Therapeutics,1998,11:165-172.
    [6]Mayadas, T.N., Tsokos, G.C., Tsuboi, N. Mechanisms of immune complex-mediated neutrophil recruitment and tissue injury[J]. Circulation,2009,120(20):2012-2024.
    [7]Baumann, U., Kohl, J., Tschernig, T., Schwerter-Strumpf, K., Verbeek, J.S., Schmidt, R.E., Gessner, J.E. A codominant role of Fc gamma RⅠ/Ⅲ and C5aR in the reverse Arthus reaction[J]. Journal of Immunology,2000,164(2):1065-1070.
    [8]Zhang, Y., Ramos, B.F., Jakschik, B.A. Augmentation of reverse arthus reaction by mast cells in mice[J]. Journal of Clinical Investigation,1991,88(3):841-846.
    [9]Cream, J.J., Bryceson, A.D., Ryder, G. Disappearance of immunoglobulin and complement from the Arthus reaction and its relevance to studies of vasculitis in man[J]. British Journal of Dermatology,1971,84(2):106-109.
    [10]Wu, T., Xie, C., Han, J., Ye, Y., Weiel, J., Li, Q., Blanco, I., Ahn, C., Olsen, N., Putterman, C., Saxena, R., Mohan, C. Metabolic disturbances associated with systemic lupus erythematosus[J]. PLoS One,2012,7(6):e37210.
    [11]van Wietmarschen, H.A., Dai, W., van der Kooij, A.J., Reijmers, T.H., Schroen, Y., Wang, M., Xu, Z., Wang, X., Kong, H., Xu, G., Hankemeier, T., Meuhnan, J.J., van der Greef, J. Characterization of rheumatoid arthritis subtypes using symptom profiles, clinical chemistry and metabolomics measurements[J]. PLoS One,2012,7(9):e44331.
    [12]Madsen, R.K., Lundstedt, T., Gabrielsson, J., Sennbro, C.J., Alenius, G.M., Moritz, T., Rantapaa-Dahlqvist, S., Trygg, J. Diagnostic properties of metabolic perturbations in rheumatoid arthritis [J]. Arthritis Research and Therapy,2011,13(1):R19.
    [13]Riha, I., Haskova, V., Kaslik, J., Maierova, M., Stransky, J. The use of polyethyleneglycol for immune complex detection in human sera[J]. Molecular Immunology,1979,16(7):489-493.
    [14]Khokhlova, I.S., Spinu, M., Krasnov, B.R., Degen, A.A. Immune responses to fleas in two rodent species differing in natural prevalence of infestation and diversity of flea assemblages[J]. Parasitology Research,2004,94(4):304-311.
    [15]Wei, L., Liao, P.Q., Wu, H.F., Li, X.J., Pei, F.Q., Li, W.S., Wu, Y.J. Metabolic profiling studies on the toxicological effects of realgar in rats by 1H NMR spectroscopy, Toxicology and Applied Pharmacology 2009,234:314-325.
    [16]Ding, L., Hao, F., Shi, Z., Wang, Y., Zhang, H., Tang, H., Dai, J. Systems biological responses to chronic perfluorododecanoic acid exposure by integrated metabolomic and transcriptomic studies, Journal of Proteome Research,2009,8:2882-2891.
    [17]Zhang, L.M., Ye, Y.F., An, Y.P., Tian, Y., Wang, Y.L., Tang, H.R. Systems responses of rats to aflatoxin Bi exposure revealed with metabolomic changes in multiple biological matrices, Journal of Proteome Research,2011,10:614-623.
    [18]Neerathilingam, M., Volk, D.E., Sarkar, S., Alam, T.M., Alam, M.K., Ansari, G.A.S., Luxon, B.A. 1H NMR-based metabolomic investigation of tributyl phosphate exposure in rats, Toxicology Letters,2010,199:10-16.
    [19]Liao, P.Q., Wei, L., Zhang, X.Y., Li, X.J., Wu, H.F., Wu, Y.J., Ni, J.Z., Pei, F.K. Metabolic profiling of serum from gadolinium chloride-treated rats by 1H NMR spectroscopy, Analytical Biochemistry,2007,364:112-121.
    [20]J.K. Kurash, Shen, C.N., Tosh, D. Induction and regulation of acute phase proteins in transdifferentiated hepatocytes, Experimental Cell Research,2004,292:342-358.
    [21]Griffin, J.L., Mann, C.J., Scott, J., Shoulders, C.C., Nicholson, J.K., Choline containing metabolites during cell transfection:an insight into magnetic resonance spectroscopy detectable changes, FEBS Letters,2001,509:263-266.
    [22]Podo, F., Canevari, S., Canese, R., Pisanu, M.E., Ricci, A., Iorio, E. Tumour phospholipid metabolism, Proc. Intl. Soc. Magnetic Resonance in Medicine,2011,19:1-10.
    [23]Smith, J.L., Wishnok, J.S., Deen, W.M. Metabolism and excretion of methylamines in rats, Toxicology and Applied Pharmacology,1994,125:296-308.
    [24]Zhang, J., Blusztajn, J.K., Zeisel, S.H. Measurement of the formation of betaine aldehyde and betaine in rat liver mitochondria by a high pressure liquid chromatography-radioen-zymatic assay, Biochimica et Biophysica Acta,1992,1117:333-339.
    [25]Fukao, T., Lopaschuk, G.D., Mitchell, G.A. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry, Prostaglandins Leukotrienes and Essential Fatty Acids,2004, 70,243-251.
    [26]Passarella, S., Bari, L., Valenti, D., Pizzuto, R., Paventi, G., Atlante, A. Mitochondria and L-lactate metabolism, FEBS Letters,2008,582:569-3576.
    [27]Felig, P. The glucose-alanine cycle, Metabolism,1973,22:179-207.
    [28]Holecek, M. Relation between glutamine, branched-chain amino acids, and protein metabolism, Nutrition,2002,18,130-133.
    [29]Nyhan, W.L. Metabolism of glycine in the normal individual and in patients with non-ketotic hyperglycinaemia, Journal of Inherited Metabolic Disease,1982,5:105-110.
    [30]Floc'h, N.L., Melchior, D., Obled, C. Livestock Production Science, Modifications of protein and amino acid metabolism during inflammation and immune system activation,2004,87:37-45.
    [31]Moroni, F. Tryptophan metabolism and brain function:focus on kynurenine and other indole metabolites, European Journal of Pharmacology,1999:375,87-100.
    [32]Wyss, M., Kaddurah-Daouk, R. Creatine and creatinine metabolism, Physiological Reviews, 2000,80:1107-1213.
    [33]Lloyd, A.J., Weitzman, P.D., Soll, D. Incomplete citric acid cycle obliges aminolevulinic acid synthesis via the C5 pathway in a methylotroph, J. Gen. Microbiol.,1993,139:2931-2938.
    [34]Berthelot, V., Pierzynowski, S.G., Sauvant, D., Kristensen, N.B. Hepatic metabolism of propionate and methylmalonate in growing lambs, Livestock Production Science 2002,74:33-43.
    [35]Warskulat, U., Zhang, F., Haussinger, D. Taurine is an osmolyte in rat liver macrophages, Journal of Hepatology,1997,26:1340-1347.
    [36]Welch, J.S., Escoubet-Lozach, L., Sykes, D.B., Liddiard, K., Greaves, D.R., Glass, C.K. Glass, TH2 cytokines and allergic challenge induce Yml expression in macrophages by a STAT6-dependent mechanism, Journal of Biological Chemistry,2002,277:42821-42829.
    [37]Phipps, A.N., Stewart, J., Wright, B., Wilson, I.D. Effect of diet on the urinary excretion of hippuric acid and other dietary-derived aromatics in rat. A complex interaction between diet, gut microflora and substrate specificity, Xenobiotica,1998,28:527-537.
    [38]Eells, J.T., Salzman, M.M., Lewandowski, M.F., Murray, T.G. Formate-induced alterations in retinal function in methanol-intoxicated rats, Toxicology and Applied Pharmacology,1996, 140:58-69.
    [1]American Cancer Society, Global Cancer Facts & Figures 2nd Edition. Atlanta:American Cancer Society, (2011).
    [2]Jemal, A., Murray, T., Samuels, A., Ghafoor, A., Ward, E., Thun, M.J. Cancer statistics,2003, CA:A Cancer Journal for Clinicians,2003,53:5-26.
    [3]陈万青,2004-2005年中国恶性肿瘤发病与死亡的估计[J].中华肿瘤杂志,2009,31(9):664-668.
    [4]Mariette, C., Finzi, L., Fabre, S., Balon, J.M., van Seuningen, I., Triboulet, J.P.J. Factors predictive of complete resection of operable esophageal cancer:a prospective study, The Annals of Thoracic Surgery,2003,75:1720-1726.
    [5]邵令方,高宗人,卫功铨,许金良,陈明耀,程金华,等.食管癌和贲门癌的外科治疗[J].中华外科杂志,2001,39(1):44-46.
    [6]Roth,M.J., Abnet, C.C., Hu, N. p16, MGMT, RARbeta2, CLDN3, CRBP and MT1G gene methylation in esophageal squamous cell carcinoma and its precursor lesions, Oncology Reports, 2006,15:1591-1597.
    [7]杨观瑞,食管癌筛查和早诊早治研究进展[J].中华肿瘤杂志,2009,31(9):664-668.
    [8]Nguyen, G.H. Schetterl, A.J., Chou, D.B., Bowman1, E.D., Zhao, R., Hawkes, J.E., Mathe, E.A., Kumamoto, K., Zhao, Y., Budhu, A., Hagiwara, N., Wang, X.W., Miyashita, M., Casson, A.G., Harris, C.C. Inflammatory and micro RNA gene expression as prognostic classifiers of Barrett's associated esophageal adenocarcinoma, Clinical Cancer Research,2010,16:5824-5834.
    [9]Kaz, A.M., Grady, W.M. Epigenetic biomarkers in esophageal cancer, Cancer Letters,2012, xxx-xxx.
    [10]Jain, M., Kumar, S., Lal, P., Tiwari, A., Ghoshal, U.C., Mittal, B. Role of BCL2 (ala43thr), CCND1(G870A) and FAS (A-670G) polymorphisms in modulating the risk of developing esophageal cancer, Clinical Cancer Research,2010,16:5824-5834.
    [11]Kwong, K.F. Molecular Biology of Esophageal Cancer in the Genomics Era, Surgical Clinics of North America,2005,85:539-553.
    [12]Li, X.Y., Su, M., Huang, H.H., Li, H., Tian, D.P., Gao, Y.X. mtDNA evidence:Genetic background associated with related populations at high risk for esophageal cancer between Chaoshan and Taihang Mountain areas in China, Genomics,2007,90:474-481.
    [13]Qi, Y.J., Chao, W.X., Chiu, J.F. An overview of esophageal squamous cell carcinoma proteomics, Journal of Proteomics,2012,75:3129-3137.
    [14]Wu, H., Xue, R.Y., Lu, C.L., Deng, C.H., Liu, T.T., Zeng, H.Z., Wang, Q. Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry, Journal of Chromatography B,2009,877:3111-3117.
    [15]Zhang, J., Bowers, J., Liu, L.Y., Wei, S.W., Gowda, G.A.N., Hammoud, Z., Raftery, D. Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods, PLoS. ONE, 2012,7:e30181.
    [16]郑美华,陈小军,陈巧芬,癌症生物标志物的研究进展[J].肿瘤防治研究,2010,37(6):729-731.
    [17]眭维国,黄礼玲,陈洁晶,黄河,戴勇,蛋白质组学技术在癌症相关研究中的应用[J].医学综述,2008,14(23):3596-3599.
    [19]Lindgren, F., Hansen, B., Karcher, W., Sj6strom, M., Eriksson, L. Model validation by permutation tests:Applications to variable selection, Journal of chemometrics,1996,10:521-532.
    [20]Chong, I.G., Jun, C.H. Performance of some variable selection methods when multicollinearity is present, Chemometrics and Intelligent Laboratory Systems,2005,78:103-112.
    [21]Quintas, G., Portillo, N., Garcia-Cafiaveras, J.C., Castell, J.V., Ferrer, A., Lahoz, A. Chemometric approaches to improve PLS-DA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool, Metabolomics,2012,8:86-98.
    [22]Zheng, P., Gao, H.C., Li, Q., Shao, W.H., Zhang, M.L., Cheng, K., Yang, D.Y., Fan, S.H., Chen, L., Fang, L., Xie, P. Plasma metabonomics as a novel diagnostic approach for major depressive disorder, Journal of Proteome Research,2012,11:1741-1748.
    [23]Zhang, X.Y., Wang, Y.L., Hao, F.H., Zhou, X.H., Han, X.Y., Tang, H.R., Ji, L.N. Human serum metabonomic analysis reveals progression axes for glucose intolerance and insulin resistance statuses, Journal of Proteome Research,2009,8:5188-5195.
    [24]Jimenez, B., Montoliu, C., MacIntyre, D.A., Serra, M.A., Wassel, A., Jover, M., Romero-Gomez, M., Rodrigo, J.M., Pineda-Lucena, A., Felipo, V. Serum metabolic signature of minimal hepatic encephalopathy by 1H-nuclear magnetic resonance, Journal of Proteome Research, 2010,9:5180-5187.
    [25]Warburg, O. On the origin of cancer cells, Science,1956,123(3191):309-14.
    [26]Costello, L.C., Franklin, R.B. Why do tumour cells glycolyse? From glycolysis through citrate to lipogenesis, Molecular and Cellular Biochemistry,2005,280:1-8.
    [27]Bathen, T.F., Engan, T., Krane, J., Axelson, D. Analysis and classification of proton NMR spectra of lipoprotein fractions from healthy volunteers and patients with cancer or CHD, Anticancer Research,2000,20:2393-2408.
    [28]McGarry, J.D., Foster, D.W. Regulation of hepatic fatty acid oxidation and ketone body production, Annual Review of Biochemistry,1980,49:395-420.
    [29]Wyss, M., Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiological Reviews, 2000,80:1107-1213.
    [30]Nishiumi, S., Shinohara, M., Atsuki, I., Yoshie, T., Hatano, N., Kakuyama, S., Mizuno, S., Sanuki, T., Kutsumi, H., Fukusaki, E. Serum metabolomics as a novel approach for pancreatic cancer, Metabolomics,2010,6:518-528.
    [31]Pasikanti, K.K., Esuvaranathan, K., Ho, P.C., Mahendran, R., Kamaraj, R., Wu, Q.H., Chiong, E., Chan, E.C.Y. Noninvasive urinary metabonomic diagnosis of human bladder cancer, Journal of Proteome Research,2010,9:2988-2995.
    [32]Rocha, C.M., Carrola, J., Barros, A.S., Gil, A.M., Goodfellow, B.J., Carreira, I.M., Bernardo, J., Gomes, A., Sousa, V., Carvalho, L., Duarte, I.F. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of blood plasma, Journal of Proteome Research,2011,10:4314 4324.
    [33]Mider, G.B. Some aspects of nitrogen and energy metabolism in cancerous subjects:a review. Cancer Research,1951,11:821-829.
    [34]Holecek, M., Sprongl, L., Skopec, F., Andrys, C., Pecka, M. Leucine metabolism in TNF-alpha- and endotoxin-treated rats:contribution of hepatic tissue, American Journal of Physiology,1997,273:E1052-1058.
    [35]Barazzoni, R., Zanetti, M., Vettore, M., Tessari, P. Relationships between phenylalanine hydroxylation and plasma aromatic amino acid concentrations in humans, Metabolism,1998, 47:669-674.
    [36]Schrocksnadel, K., Wirleitner, B., Winkler, C. Monitoring tryptophan metabolism in chronic immune activation, Clinica Chimica Acta,2006,364:82-90.
    [37]Guo, H.Y., Herrera, H., Groce, A. Expression of the biochemical defect of methionine dependence in fresh patient tumors in primary histoculture, Cancer Research,1993, 53:2479-2483.
    [38]王瑞涛,李克,王兆文.不平衡氨基酸疗法及化疗对大鼠Walker-256癌肉瘤增殖的影响[J].肿瘤,2004,24(3):257-260.
    [39]欧静民,张一楚,陈大伟.蛋氨酸对肝癌细胞生长影响的实验研究[J].中国临床营养杂志,2002,10(3):172-174.
    [40]Komatsu, H., Nishibira, T., Chin, M. Effect of caloric intake on anticancer therapy in rats with valine-depleted amino acid inbalance, Nutrition and Cancer,1997,28:107-112.
    [41]Inoue-Choi, M., Nelson, H.H., Robien, K., Arning, E., Bottiglieri, T., Koh, W., Yuan, J.M. One-carbon metabolism nutrient status and plasma S-adenosylmethionine concentrations in middle-aged and older Chinese in Singapore, International Journal of Molecular Epidemiology and Genetics,2012,3:160-173.
    [42]Fell, D., Steele, R.D. Effect of methionine on in vivo histidine metabolism in rats, Journal of Nutrition,1983,113:860-866.
    [43]Wirleitrier, B., Rudzite, V., Neurauter, G. Immune activation and degradation of tryptophan in coronary heart disease, European Journal of Clinical Investigation,2003,33:550-554.
    [44]Murr, C., Gerlach, D., Widner, B. Neopterin production and tryptophan degradation in humans infected by streptococcus pyogenes, Medical Microbiology and Immunology,2001, 189:161-163.
    [45]Fukushima, T., Mitsuhashi, S., Tomiya, M. Determination of kynurenic acid in human serum and its correlation with the concentration of certain amino acids, Clinica Chimica Acta,2007, 377:174-178.
    [46]Batabyal, D., Yeh, S.R., Human tryptophan dioxygenase:a comparison to indoleamine 2,3-dioxygenase, Journal of the American Chemical Society,2007,129:15690-15701.
    [47]Karanikas, V., Zamanakou, M., Kerenidi, T. Indoleamine Z,2,3- dioxygenase (IDO) expression in lung cancer, Cancer Biology & Therapy,2007,6:1258-1262.
    [48]Newsholme, P., Lima, M.M.R., Procopio, J., Pithon-Curi, T.C., Doi, S.Q., Bazotte, R.B., Curi, R. Glutamine and glutmate as vital metabolites, Brazilian Journal Of Medical and Biological Research,2003,36:153-163.
    [49]高红军,氨基酸与肿瘤[J].肿瘤学杂志,2002,8(1):1-3.
    [1]Boyle, P., Levin, B. World Cancer Report 2008,1st ed.; World Health Organization:Geneva, 2009; p 512.
    [2]Chan, H.P., Lewis, C., Thomas, P.S. Exhaled breath analysis:novel approach for early detection of lung cancer, Lung Cancer,2009,63:164-168.
    [3]Aisner, J. CT screening for lung cancer:are we ready for wide-scale application? Clinical Cancer Research,2007,13(17):4951-4953.
    [4]Johnson, F.L., Turic, B., Kemp, R., Palcic, B., Sussman, R., Voelker, K.G., Robinette, E. Improved diagnostic sensitivity for lung cancer using an automated quantitative cytology system and uridine 5'-triphosphate-induced sputum specimens, Chest,2004,125(5 Suppl):157S-8S.
    [5]Varella-Garcia, M., Kittelson, J., Schulte, A.P., Vu, K.O., Wolf, H.J., Zeng, C., Hirsch, F.R., Byers, T., Kennedy, T., Miller, Y.E. Multi-target interphase fluorescence in situ hybridization assay increases sensitivity of sputum cytology as a predictor of lung cancer. Cancer Detection and Prevention,2004,28:244-251.
    [6]Helmig, S., Schneider, J. Oncogene and tumor-suppressor gene products as serum biomarkers in occupational-derived lung cancer, Expert Review of Molecular Diagnostics,2007, 7(5):555-568.
    [7]Yildiz, P.B., Shyr, Y., Rahman, J.S., Wardwell, N.R., Zimmerman, L.J., Shakhtour, B., Gray, W.H., Chen, S., Li, M., Roder, H., Liebler, D.C., Bigbee, W.L., Siegfried, J.M., Weissfeld, J.L., Gonzalez, A.L., Ninan, M., Johnson, D.H., Carbone, D.P., Caprioli, R.M., Massion, P.P. Diagnostic accuracy of MALDI mass spectrometric analysis of unfractionated serum in lung cancer, Journal of Thoracic Oncology,2007,2(10):893-901.
    [8]Blanchon, T., Brechot, J.M., Grenier, P.A., Ferretti, G.R., Lemarie, E., Milleron, B., Chague, D., Laurent, F., Martinet, Y., Beigelman-Aubry, C., Blanchon, F., Revel, M.P., Friard, S., Remy-Jardin, M., Vasile, M., Santelmo, N., Lecalier, A., Lefebure, P., Moro-Sibilot, D., Breton, J.L., Carette, M.F., Brambilla, C., Fournel, F., Kieffer, A., Frija, G., Flahault, A. Baseline results of the Depiscan study:a French randomized pilot trial of lung cancer screening comparing low dose CT scan (LDCT) and chest X-ray (CXR), Lung Cancer,2007,58(1):50-58.
    [9]Bach, P.B., Silvestri, G.A., Hanger, M., Jett, J.R. Screening for Lung Cancer*:ACCP Evidence-Based Clinical Practice Guidelines (2nd Edition), Chest,2007,132(3 Suppl):69S-77S.
    [10]Fossella, F.V., Komaki, R., Putnam, J.B., Lung Cancer, Springer-Verlag, New York, USA, 2003.
    [11]Dammas, S., Patz, E.F., Goodman, P.C. Identification of small lung nodules at autopsy: implications for lung cancer screening and overdiagnosis bias, Lung Cancer,2001,33(1):11-16.
    [12]Kennedy, T.C., Hirsch, F.R. Using molecular markers in sputum for the early detection of lung cancer:a review. Lung Cancer,2004,45(Suppl.2):S21-S27.
    [13]Hilbe W, Dirnhofer S, Greil R, Woll E. Biomarkers in non-small cell lung cancer prevention, European Journal of Cancer Prevention,2004,13(5):425-436.
    [14]Arnold, J.N., Saldova, R., Galligan, M.C., Murphy, T.B., Mimura-Kimura, Y., Telford, J.E., Godwin, A.K., Rudd, P.M. Novel glycan biomarkers for the detection of lung cancer, Journal of Proteome Research,2011,10:1755-1764.
    [15]Sung, H.J., Ahn, J.M., Yoon, Y.H, Rhim, T.Y., Park, C.S., Park, J.Y., Lee, S.Y., Kim, J.W., Cho, J.Y. Identification and validation of SAA as a potential lung cancer biomarker and its involvement in metastatic pathogenesis of lung cancer, Journal of Proteome Research,2011, 10:1385-1395.
    [16]Rousseau, R., Govaerts, B., Verleysen, M., Boulanger, B. Lung cancer and its early detection using biomarker-based biosensors, Chemical Reviews,2011,111:6783-6809.
    [17]Kato, H., Nishimura, T., Hirano, T., Nomura, M., Tojo, H., Fujii, K., Kawamura, T., Mikami, S., Kihara, M., Bando, Y., Tsuboi, M., Ikeda, N., Marko-Varga, G. A clinician view and experience of proteomic studies in the light of lung cancer in Japanese healthcare, Journal of Proteome Research,2011,10:51-57.
    [18]Yu, C.J., Wang, C.L., Wang, C.I., Chen, C.D., Dan, Y.M., Wu, C.C., Wu, Y.C., Lee, I.N., Tsai, Y.H., Chang, Y.S., Yu, J.S. Comprehensive proteome analysis of malignant pleural effusion for lung cancer biomarker discovery by using multidimensional protein identification technology, Journal of Proteome Research,2011,10:4671-4682.
    [19]Carrola, J., Rocha, C.M., Barros, A.S., Gil, A.M., Goodfellow, B.J., Carreira, I.M., Bernardo, J., Gomes, A., Sousa, V., Carvalho, L., Duarte, I.F. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine, Journal of Proteome Research,2011,10:221-230.
    [20]Rocha, C.M., Carrola, J., Barros, A.S., Gil, A.M., Goodfellow, B.J., Carreira, I.M., Bernardo, J., Gomes, A., Sousa, V., Carvalho, L., Duarte, I.F. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of blood plasma, Journal of Proteome Research,2011,10:4314-4324.
    [21]Hori, S., Nishiumi, S., Kobayashi, K., Shinohara, M., Hatakeyama, Y., Kotani, Y., Hatano, N., Maniwa, Y., Nishio, W., Bamba, T., Fukusaki, E., Azuma, T., Takenawa, T., Nishimura, Y., Yoshida, M. A metabolomic approach to lung cancer, Lung Cancer 2011,74(2):284-292.
    [22]Wedge, D.C., Allwood, J.W., Dunn, W., Vaughan, A.A., Simpson, K., Brown, M., Priest, L., Blackhall, F.H., Whetton, A.D., Dive, C., Goodacre, R. Is serum or plasma more appropriate for intersubject comparisons in metabmolomic studies? An assessment in patients with small-cell lung cancer, Analytical Chemistry,2011,83:6689-6697.
    [23]Jordan, K.W., Adkins, C.B., Su, L., Halpern, E.F., Mark, E.J., Christiani, D.C., Cheng, L.L. Comparison of squamous cell carcinoma and adenocarcinoma of the lung by metabolomic analysis of tissue-serum pairs, Lung Cancer,2010,68(1):44-50.
    [24]Zheng, P., Gao, H.C., Li, Q., Shao, W.H., Zhang, M.L., Cheng, K., Yang, D.Y., Fan, S.H., Chen, L., Fang, L., Xie, P. Plasma metabonomics as a novel diagnostic approach for major depressive disorder, Journal of Proteome Research,2012,11:1741-1748.
    [25]Zhang, X.Y., Wang, Y.L., Hao, F.H., Zhou, X.H., Han, X.Y., Tang, H.R., Ji, L.N. Human serum metabonomic analysis reveals progression axes for glucose intolerance and insulin resistance statuses, Journal of Proteome Research,2009,8:5188-5195.
    [26]Jimenez, B., Montoliu, C., MacIntyre, D.A., Serra, M.A., Wassel, A., Jover, M., Romero-Gomez, M., Rodrigo, J.M., Pineda-Lucena, A., Felipo, V. Serum metabolic signature of minimal hepatic encephalopathy by 1H-nuclear magnetic resonance, Journal of Proteome Research,2010,9:5180-5187.
    [27]Warburg, O. On the origin of cancer cells, Science,1956,123(3191):309-14.
    [28]Medina, M.A., Quesada, A.R., Nunez de Castro, I., Sanchez-Jimenez, F. Histamine, polyamines, and Cancer, Biochemical Pharmacology,1999,57(12):1341-1344.
    [29]Ishikawa, E., Toki, A., Moriyama, T., Matsuoka, Y., Aikawa, T., Suda, M. A study on the induction of histidine decarboxylase in tumor-bearing rat. The Journal of Biochemistry,1970, 68(3):347-358.
    [30]Burtin, C., Scheinmann, P., Salomon, J.C., Lespinats, G., Frayssinet, C., Lebel, B., Canu,P. Increased tissue histamine in tumour-bearing mice and rats, British Journal of Cancer,1981, 43(5):684-688.
    [31]Hoshiya, Y., Guo, H., Kubota, T., Inada, T., Asanuma, F., Yamada, Y., Koh, J., Kitajima, M., Hoffman, R,M. Human tumors are methionine dependent in vivo. Anticancer Research,1995, 15(3):717-718.
    [32]欧敬民,张一楚,陈大伟.去甲硫氨酸环境加化疗药物对人胃癌原代细胞生长的阻抑[J].肠外与肠内营养,2001,8(2):80-83.
    [33]Goseki, N., Yamazaki, S., Endo, M., Onodera, T., Kosaki, G., Hibino, Y., Kuwahata, T. Antitumor effect of methionine-depleting total parenteral nutrition with doxorubicin administration on yoshida sarcoma-bearing rats, Cancer,2006,69(7):
    [34]Goseki, N., Maruyama, M., Nagai, K., Kando, F., Endo, M., Shimoju, K., Wada, Y. Clinical evaluation of anticancer effect of methionine-depleting total parenteral nutrition with 5-fluorouracil and/or mitomycin C, Japanese Journal of Cancer and Chemotherapy,1995, 22(8):1028-1035.
    [35]Uyttenhove, C., Pilotte, L., Theate, I., Stroobant, V., Colau, D., Parmentier, N., Boon, T., Van den Eynde, B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase, Nature Medicine,2003,9(10):1269-1274.
    [1]Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science,1996,271: 933-937.
    [2]Murray, C.B., Kagan, C.R., Bawendi, M.G. Synthesis and characterization of monodisperse[J]. Annual Review of Materials Science,2000,30:545-610.
    [3]Chan, W.C.W., Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science,1998,281:2016-2018.
    [4]Medintz, I. L., Uyeda, H. T" Goldman, E. R-, Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing [J]. Nature Materials.2005,4,435-446.
    [5]Smith, A.M., Gao, X.H., Nie, S.M. Quantum dot nanocrystals for in vivo molecular and cellular imaging[J]. Photochemistry and Photobiology,2004,80:337-385.
    [6]Gao, X.H., Cui, Y.Y" Levenson, R., Chung, L.W.K., Nie, S.M. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nature Biotechnology,2004,22:969-976.
    [7]Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G.,Wu, A.M., Gambhir, S.S., Weiss, S. Quantum dots for live cells, in vivo Imaging, and diagnostics[J]. Science,2005,307:538-544.
    [8]Wu, X.Y., Liu, H.J., Liu, J.Q., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N.F., Peale, F., Bruchez, M.P. Immunofluorescent labeling labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nature Biotechnology,2003,21:41-46.
    [9]Li, H., Li, M., Shih, W.Y., Lelkes, P.I., Shih, W.H. Cytotoxicity tests of water soluble ZnS and CdS quantum dots[J]. J Nanosci Nanotechnol,2011,11(4):3543-3551.
    [10]Su, Y., Peng, F., Jiang, Z., Zhong, Y., Lu, Y., Jiang, X. In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots[J]. Biomaterials,2011, 32(25):5855-5862.
    [11]Patra, M.K., Manoth, M., Singh, V.K., Siddaramana Gowd, G, Choudhry, V.S., Vadera, S.R., Kumar, N. Synthesis of stable dispersion of ZnO quantum dots in aqueous medium showing visible emission from bluish green to yellow[J]. Journal of Luminescence,2009,129:320-324.
    [12]Zhang, X.Q., Hou, S (?).,Mao, H.B., Wang,3.Q., Zhu, Z.Q. Influence of annealing temperature on the photoluminescence properties of ZnO quantum dots[J]. Applied Surface Science,2010,256:3862-3865.
    [13]Pan, Z.Y., Liang, J., Zheng, Z.Z., Wang, H.H., Xiong, H.M. The application of ZnO luminescent nanoparticles in labeling mice[J]. Contrast Media & Molecular Imaging,2011,6: 328-330.
    [14]Adams, L.K., Lyon, D.Y., Alvarez, P.J. Toxicity of nanoscale TiO2, SiO2 and ZnO water suspensions[J]. Water Research,2006,40(19):3527-3532.
    [15]Wang, B., Feng, W., Wang, M. Wang, T., Gu, Y., Zhu, M., Ouyang, H., Shi, J., Zhang, F., Zhao, Y., Chai, Z., Wang, H., Wang, J. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice[J]. Journal of Nanoparticle Research,2008,10:263-276.
    [16]Lei, R., Wu, C., Yang, B., Ma, H., Shi, C., Wang, Q., Wang, Q., Yuan, Y., Liao, M. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats:A rapid in vivo screening method for nanotoxicity[J]. Toxicology and Applied Pharmacology,2008,232:292-301.
    [17]Aslund, M.L.W., McShane, H., Simpson, M.J., Simpson, A.J., Whalen, J.K., Hendershot, W.H., Sunahara, G.I. Earthworm sublethal responses to titanium dioxide nanomaterial in soil detected by 1H NMR metabolomics[J]. Environmental Science & Technology,2012,46: 1111-1118.
    [18]Tautenhahn, R., Patti, G.J., Rinehart, D., Siuzdak, G. XCMS Online:A web-based platform to process untargeted metabolomic data[J]. Analytical Chemistry,2012,62:990-996.
    [19]Patti, G.J., Tautenhahn, R., Rinehart, D., Cho, K., Shriver, L., Manchester, M., Nikolskiy, I., Johnson, C., Mahieu, N., Siuzdak, G. A view from above:Cloud plots to visualize global metabolomic data[J]. Analytical Chemistry,2013,85:798-804.
    [20]Smith, C.A., Want, E. J., OMaille, G., Abagyan, R., Siuzdak, G. XCMS:processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification[J]. Analytical Chemistry,2006,78:779-787.
    [21]Benton, H.P., Wong, D.M., Trauger, S.A., Siuzdak, G. XCMS2:Processing tandem mass spectrometry data for metabolite identification and structural characterization[J]. Analytical Chemistry,2008,80:6382-6389.
    [22]Meulenkamp, E.A. Synthesis and Growth of ZnO Nanoparticles[J]. Journal of Physical Chemistry B,1998,102:5566-5572.
    [23]Yang, Y., Lan, J., Xu, Z., Chen, T., Zhao, T., Cheng, T., Shen, j., Lv, S., Zhang, H. Toxicity and biodistribution of aqueous synthesized ZnS and ZnO quantum dots in mice[J]. Nanotoxicology,2013,1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700