用户名: 密码: 验证码:
高温高压条件下铬铁矿+二氧化硅体系的相变关系对铬铁矿中柯石英出溶体成因的启示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
豆荚状铬铁矿一般被认为是通过熔岩反应形成于上地幔浅部,而金刚石、柯石英等超高压矿物的发现使得豆荚状铬铁矿的深部成因开始被大家所关注。由于大部分超高压矿物是通过人工重砂技术获得的,存在后期混染的可能性,因此,铬铁矿中原位发现的单斜辉石、斜方辉石和柯石英出溶体是深部成因最重要的依据。出溶体一般被认为是某一均匀的矿物固溶体,在外界条件改变时分离形成的,所以,辉石和柯石英出溶体的发现,说明在特定的条件下铬铁矿可以含有一定量的CaO和SiO2。本文将采用西藏罗布莎天然铬铁矿和纯净SiO2为起始材料进行高温高压实验,探讨铬铁矿中柯石英出溶体的形成机制并对铬铁矿成因深度进行限定,并通过围岩地幔橄榄岩中橄榄石的组构特征对其提供进一步的约束条件。
     橄榄石在不同的环境下具有不同的组构类型,一般认为在地幔浅部低压环境下最易发育A型,地幔深部高压环境下主要发育C型组构,大洋俯冲带发育B型组构,因此,豆荚状铬铁矿围岩地幔橄榄岩的组构特征可以为铬铁矿是否具有深部成因提供一定的约束条件。本文以蛇纹石化程度较低的二辉橄榄岩和方辉橄榄岩为研究对象,采用氧化坠饰法进行位错研究,借助电子背散射衍射技术(EBSD)测量组构。罗布莎地幔橄榄岩矿物定向较弱,但是橄榄石和斜方辉石均可见扭折带、波状消光、晶体弯曲等变形现象。氧化坠饰法揭示,橄榄石主要发育了低温常见的直线型自由位错,局部可见位错弓弯、位错环和位错壁等高温位错。组构测量结果指山,地幔橄榄岩中橄榄石和斜方辉石均具有一定的结晶学优选方位,组构强度M指数分别为0.13-0.29和0.15-0.20。测量结果显示,橄榄石的[100]轴平行于线理方向,而[010]轴垂直于线理方向,为典型的A型组构,反映罗布莎地幔橄榄岩形成于岩石圈地幔环境。
     通常认为,出溶体是由于氧逸度改变、冷凝或分解反应使得寄住矿物中某些成分溶解度降低而形成的,因此,铬铁矿中辉石和柯石英出溶体的发现,说明在特定的条件下铬铁矿可以含有一定量的CaO和SiO2,但前人研究显示,在5GPa、1500℃时,铬铁矿中SiO2含量仍无明显增加。本文采用多面砧(multi-anvil)高温高压仪进行实验,实验条件为5-15GPa和1000-1600℃。实验结果显示,在5GPa,1000-1200℃,铬铁矿和SiO2反应反应形成铬铁矿、石榴石、氧化铬和斜方辉石,随着压力的增加,斜方辉石消失,反应产物为铬铁矿、石榴石、氧化铬。当温度大于1400℃,压力为5-8GPa时,实验发生熔融,形成富镁和硅的熔体。压力增加至14GPa,铬铁矿发生分解反应,形成一个新的矿物相和氧化铬,实验产物为石榴石、氧化铬和新的矿物相。
     与铬铁矿相比,新形成的矿物相含有更低的Al2O3(4.70-4.89wt.%)和Cr2O3(52-36-52.76wt.%)以及更高的MgO(22.95-32.76wt.%)和FeO(8.08-18.12wt.%),计算化学式接近于(Fe, Mg)2(Al, Cr)2O5, SEM-EDS分析也显示,新矿物相中(Mg+Fe)/(Cr+Al)比例为1:1,与镁铝尖晶石在高温高压下形成的新相Mg2Al2O5一致,其可能为Mg2Al2O5的类质同像,并具有相同的晶体结构——修正的硼镁铁矿结构。综上所述,在高温高压条件下,尖晶石族中的铝端元和铬端元矿物均可发生分解反应形成氧化物(A12O3和Cr2O3)和新矿物相(Mg2Al2O5和(Fe, Mg)2(Al, Cr)2O5),因此,A2B2O5(A:二价阳离子;B:三价阳离子)可能是除CaFe2O4或CaTi204结构相之外的另一种后尖晶石相。
     电子探针分析结果显示,铬铁矿中Si02含量随温度和压力的升高略微增加,在14GPa,1600℃,铬铁矿与新的矿物相共存,Si02含量达到最大,而新矿物相中Si02含量降低,为0.29-0.49%。铬铁矿中Si与Cr+Al具有明显的负相关性,而与Mg+Fe无相关性,反映Si和Ca可能4X3+→3Si4++△(Χ:Al, Cr;△:空位)替代机制进入铬铁矿。大部分淬火样品中,铬铁矿的SiO2含量小于0.7%,但在14GPa、1600℃的样品中升高至2.44%,该温压条件下,铬铁矿相变为CF相,可能引起了Si02含量显著增加,达到出溶所需含量。此外,单斜辉石出溶体的发现暗示铬铁矿中同时应含有CaO。含有大量Si02和CaO的铬铁矿在降温降压过程中首先出溶形成单斜辉石和斜方辉石,当Ca和Mg完全消耗掉时,形成柯石英出溶体。
     高温高压实验研究指出,罗布莎豆荚状铬铁矿可能经历了12-14GPa的高温高压过程(相当于350-400km的深度),但显微组构分析测试显示,围岩中橄榄石发育低温低压条件下常见的A型组构,二者结果不一致,这可能是因为本研究所观测到的组构特征是地幔橄榄岩在后期侵位过程中所形成的,其改造了早期高压组构。
The finding of micro-diamond, coesite and highly reduced metal phases in chromite from Luobusha podiform chromitite has led to the suggestion that the chromite may originate from deep mantle, which is contrary to the magma mingling and melt-rock reaction origin in subduction zone under low-pressure conditions. Because these ultra-high pressure minerals were obtained from mineral separates, the conclusion is still controversial. So the coesite and clinopyroxene esolution lamellae in chromite are the most important evidence for the deep mantle originIn general, exsolution of a mineral is caused by a decrease in solubility due to a change in oxygen fugacity, cooling or decompression, so the presence of coesite and clinopyroxene esolution lamellae in chromite demonstrates that the Si solubility can be significant under certain conditions. In the paper, we studied the Si solubility in chromite by high pressure and high temperature experiments in natural chtomite and pure SiO2 system, and further investigated the origin of coesite and clinopyroxene exsolution in chromite and the formation depth of Luobusa chromitite. In addition, the fabric characteristic of olivine in hosted mantle peridotite can also constrain the origin.
     Various deformation fabrics of olivine are observed in different conditions. Previous researches showed A-type fabric and C-type fabric generally develop in uppermost mantle and deep mantle, respectively, whereas B-type fabric develop in subduction zone, so we can use the fabric characteristic of olivine to distinguish the formation depth hosted mantle peridotite. The samples were collected from Luobudsa lherzolite and harzburgite, and dislocations and fabrics in olivine were observed by the oxidation decoration technique and the electron backscatter diffraction (EBSD) technique, respectively. The minerals in both lherzolite and harzburgite are not directional aligment, but olivine and orthopyroxene display kink band, wavy extinction and crystal bending. Analysis of the dislocation configurations of olivine by oxidation decoration technique show that dislocation microstructures are dominant linear type free dislocation which usually forms at low temperature, and also include some high temperature dislocation, such as dislocation bows, dislocation loops and dislocation wall. Olivine and orthopyroxene display clear lattice-preferred orientation (LPO) and the fabric strengths of olivine and orthopyroxene are 0.13-0.29 and 0.15-0.20, respectively. A-type fabric of olivine was identified, in which is conve the olivine [100] axis is subparallel to the shear direction and the (010) plane is parallel to the shear plane. The A-type fabric of olivine is conventional in lithosphere mantle.
     In general, exsolution of a mineral is caused by a decrease in solubility due to a change in oxygen fugacity, cooling or decompression with hosted rock exhumation, so the presence of coesite and clinopyroxene esolution lamellae in chromite demonstrates that the Si solubility can be significant under certain conditions. But the previous experiments showed that there is no significant increase at pressure lower than 5GPa and temperature lower than 1500℃.In this paper, experiments were conducted at temperatures between 1000-1600℃and at pressures from 5-15GPa using multi-anvil apparatus. Experimental results suggested that the starting material was first transformed into an assemblage consisting of chromite+garnet+eskolaite+orthopyroxene at pressure of 5GPa in the temperature range of 1000-1200℃and orthopyroxene completely reacted with eskolaite to produce garnet and the assemblage transformed into chromite+garnet+eskolaite with increasing pressure. In the pressure range of 5-8GPa and temperatures above 1400℃, Mg-Si-rich melt was observed. At pressure above 14GPa, chromite decomposed into a new phase and eskolaite coexisting with majorite.
     The new phase has lower A12O3 (4.70-4.89 wt.%) and Cr2O3 (52.36-52.76 wt.%) content and higher MgO (22.95-32.76 wt.%) and FeO (8.08-18.12 wt.%) content in contrast to chromite, and its chemical formula is closed to stoichiometry of (Fe, Mg)2(Al, Cr)2O5. In addition, compositional analysis by SEM-EDS indicate that the new phase has (Mg+Fe)/(Cr+Al) ratio of 1:1 within analytical errors, consisting with the new high-pressure phase of Mg2Al2O5, so the new phase may be isomorphism of Mg2Al2O5 with modified ludwigite structure. The experimental results suggest that Cr end-member spinel also dissociates into a mixture of Cr2O3 eskolaite and Mg2Cr2O5 the same as Mg2Al2O5 phase, which implies A2B2O5(A:divalent cations; B:trivalent cations) phase with modified ludwigite structure may be a kind of candidate for postspinel transitions in the Earth's mantle.
     Electron microprobe analyses showed that Si solubility in chromite increased slightly with pressure and temperature increasing, reached the maximum when chromite coexists with the new phase and decreased obviously in the new phase. There is a negative correlation between Si and Cr+Al and no correlation between Si and Mg+Fe and Si4+ substitution in chromite may be controlled by 4X3+→3Si4++△(Χ:Al, Cr;△:vacancy) substitution mechanism. In most products, SiO2 content in chromite is always lower than 0.7 wt.% and increases slightly with pressure and temperature increasing, but it increases strongly to 2.44 wt.% at 14GPa and 1600℃. In the sample of 14GPa and 1600℃, the phase transition of chromite may cause SiO2 content increase. At about 14GPa, chromite transform into CF phase and abundant Si can be incorporated into chromite. With temperature and pressure decreasing, the SiO2, CaO and MgO would be extracted to form clinopyroxene and MgSiO3 exsolution lamellae from the host chromite with a topotaxial relationship at first. When CaO and MgO are consumed totally, coesite would exsolve in the coesite stability field.
     The fabric of olivine indicates that hosted mantle peridotite formed at low pressure and temperature, whereas the experimental results show the clinopyroxene, MgSiO3 and coesite exsolved at high pressure. The reason may be the one that the later deformation fabric of olivine which formed at low pressure and low temperature replaced early high pressure fabric.
引文
[1]Review of 'Preliminary Report on the Serpentine and Associated Rocks of Southern Quebec. By John A. Dresser. Geological Survey of Canada. Memoir No.22. pp. viii+103, with 2 folding maps.1913.'. Geological Magazine (Decade Ⅵ),1914,1(12):558.
    [2]杨经绥,白文吉,方青松,等.极地乌拉尔豆荚状铬铁矿中发现金刚石和一个异常矿物群.中国地质.2007,34(05):950-952.
    [3]白文吉,周美付,Robinson P. T..等.西藏罗布莎豆荚状铬铁矿、金刚石及伴生矿物成因.北京:地震出版社,2000.
    [4]中国地质科学院地质研究所金刚石组.西藏首次发现含金刚石的阿尔卑斯型岩体.地质论评.1981,27(5):455-457.
    [5]Yang J S, Dobrzhinetskaya L, Bai W J, et al. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology,2007.35(10):875-878.
    [6]杨经绥,白文吉,方青松,等.西藏罗布莎豆荚状铬铁矿中发现超高压矿物柯石英.地球科学:中国地质大学学报.2004,29(6):651-660.
    [7]Ren Y, Fei Y, Yang J, et al. SiO2 solubility in rutile at high temperature and high pressure. Journal of Earth Science,2009,20(2):274-283.
    [8]杨经绥,白文吉,方青松,等.蛇绿岩中的一种超高压矿物——硅金红石.自然科学进展.2002,12(11):1220-1222.
    [9]Yamamoto S, Komiya T, Hirose K, et al. Coesite and clinopyroxene exsolution lamellae in chromites:In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos,2009,109(3-4):314-322.
    [10]杨经绥,张仲明,李天福,等.西藏罗布莎铬铁矿体围岩方辉橄榄岩中的异常矿物.岩石学报.2008,24(7):1445-1452.
    [11]Taylor W R, Milledge H J, Griffin B J, et al. Characteristics of microdiamonds from ultramafic massifs in Tibet:authentic ophiolitic diamonds or contamination? 1995.
    [12]Thayer T P. Preliminary chemical correlation of chromite with the containing rock. Economic Geology,1946,41:202-217.
    [13]Zhou M F, Robinson P T, Malpas J, et al. Podiform chromitites in the Luobusa ophiolite (southern Tibet):Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology,1996,37(1):3-21.
    [14]Arai S. Origin of podiform chromitites. Journal of Asian Earth Sciences,1997,15(2-3): 303-310.
    [15]Rollinson H. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite:inferred parental melt compositions. Contributions to Mineralogy and Petrology, 2008,156(3):273-288.
    [16]Rollinson H. Chromite in the mantle section of the Oman ophiolite:A new genetic model. Island Arc,2005,14(4):542-550.
    [17]Greenbaum D. The chromitiferous rocks of the Troodos ophiolite complex, Cyprus. Economic Geology,1977,72(7):1175-1194.
    [18]鲍佩声.再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说.地质通报.2009,28(12):1741-1761.
    [19]鲍佩声,王希斌,彭根永,等.中国铬铁矿床.北京:科学出版社,1999.
    [20]Dickey Jr. J S. A hypothesis of origin for podiform chromite deposits. Geochimica et Cosmochimica Acta,1975,39(6-7):1061-1062, N17-N18,1063-1074.
    [21]王恒升,白文吉,王炳熙,等.中国铬铁矿及成因.北京:科学出版社,1983.
    [22]Wang X, Bao P. Genesis of Podiform Chromite Deposits——Evidence from the Luobosa Chromite Deposits, Tibet. Acta Geologica Sinica-English,1987,61(2):77-94.
    [23]金振民,D L. Kohlstedt,金淑燕.铬铁矿预富集和上地幔部分熔融关系的实验研究.地质论评.1996,42(05):424-429.
    [24]Edwards S J, Pearce J A, Freeman J. New insights concerning the influence of water during the formation of podiform chromitite. Boulder:Geological Society of America Inc,2000, 139-147.
    [25]Ballhaus C. Origin of podiform chromite deposits by magma mingling. Earth and Planetary Science Letters,1998,156(3-4):185-193.
    [26]Arai S. Possible recycled origin for ultrahigh-pressure chromitites in ophiolites. Journal of Mineralogical and Petrological Sciences,2010,105(5):280-285.
    [27]金振民,金淑燕,高山,等.大别山超高压岩石形成深度局限于100~150km吗?——针状含钛铬磁铁矿的发现及动力学意义的思考.科学通报.1998,43(7):767-771.
    [28]Dobrzhinetskaya L, Green H W, Wang S. Alpe Arami:A Peridotite Massif from Depths of More Than 300 Kilometers. Science,1996,271(5257):1841-1845.
    [29]Zhang L, Song S, Liou J G, et al. Relict coesite exsolution in omphacite from Western Tianshan eclogites, China. American Mineralogist,2005,90(1):181-186.
    [30]Katayama I, Parkinson C D, Okamoto K, et al. Supersilicic clinopyroxene and silica exsolution in UHPM eclogite and pelitic gneiss from the Kokchetav massif, Kazakhstan. American Mineralogist,2000,85(10):1368-1374.
    [31]Spengler D, van Roermund H L M, Drury M R, et al. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway. Nature,2006,440(7086):913-917.
    [32]刘祥文,金振民,曲晶,等.石榴石异剥橄榄岩中橄榄石的钛铁矿和含铬钛磁铁矿出溶体.中国科学(D辑:地球科学).2005,35(10):45-52.
    [33]Dobrzhinetskaya L, Bozhilov K N, Green H W. The solubility of TiO2 in olivine:implications for the mantle wedge environment. Chemical Geology,1999,160(4):357-370.
    [34]Hermann J, O Neill H S C, Berry A J. Titanium solubility in olivine in the system TiO2-MgO-SiO2:no evidence for an ultra-deep origin of Ti-bearing olivine. Contributions to Mineralogy and Petrology,2005,148(6):746-760.
    [35]Sautter V, Haggerty S E, Field S. Ultradeep (>300 Kilometers) Ultramafic Xenoliths: Petrological Evidence from the Transition Zone. Science,1991,252(5007):827-830.
    [36]Moseley D. Symplectic exsolution in olivine. American Mineralogist,1984,69(1-2): 139-153.
    [37]刘良,杨家喜,章军锋,等.超高压岩石中矿物显微出溶结构研究进展、面临问题与挑战.科学通报.2009,54(10):1387-1400.
    [38]Chen M, Shu J F, Mao H K, et al. Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proceedings of the National Academy of Sciences of the United States of America,2003,100(25):14651-14654.
    [39]Liu L G. Disproportionation of MgAl2O4 spinel at high pressures and temperatures. Geophysical Research Letters,1975,2:9-11.
    [40]Akaogi M, Hamada Y, Suzuki T, et al. High pressure transitions in the system MgAl2O4-CaAl2O4:a new hexagonal aluminous phase with implication for the lower mantle. Physics of the Earth and Planetary Interiors,1999,115(1):67-77.
    [41]Irifune T, Naka H, Sanehira T, et al. In situ X-ray observations of phase transitions in MgAl2O4 spinel to 40 GPa using multianvil apparatus with sintered diamond anvils. Physics and Chemistry of Minerals.2002,29(10):645-654.
    [42]Irifune T, Fujino K, Ohtani E. A new high-pressure form of MgAl2O4. Nature,1991, 349(6308):409-411.
    [43]Funamori N, Jeanloz R, Nguyen J H, et al. High-pressure transformations in MgAl2O4. Journal of Geophysical Research-Solid Earth,1998,103(B9):20813-20818.
    [44]Enomoto A, Kojitani H, Akaogi M, et al. High-pressure transitions in MgAl2O4 and a new high-pressure phase of Mg2Al2O5. Journal of Solid State Chemistry,2009,182(2):389-395.
    [45]Liu L. A new high-pressure phase of spinel. Earth and Planetary Science Letters,1978,41(4): 398-404.
    [46]Ono S, Kikegawa T, Ohishi Y. The stability and compressibility of MgAl2O4 high-pressure polymorphs. Physics and Chemistry of Minerals,2006,33(3):200-206.
    [47]Kim Y H, Ming L C, Manghnan M H. High-pressure phase transformations in a natural crystalline diopside and a synthetic CaMgSi2O6 glass. Physics of the Earth and Planetary Interiors,1994,83:67-79.
    [48]Levy D, Diella V, Dapiaggi M, et al. Equation of state, structural behaviour and phase diagram of synthetic MgFe2O4, as a function of pressure and temperature. Physics and Chemistry of Minerals,2004,31:122-129.
    [49]Lazor P, Shebanova O N, Annersten H. High-pressure study of stability of magnetite by thermodynamic analysis and synchrotron X-ray diffraction. Journal of Geophysical Research, 2004,109:B5201.
    [50]Andrault D, Bolfan-Casanova N. High-pressure phase transformations in the MgFe2O4 and Fe2O3-MgSiO3 systems. Physics and Chemistry of Minerals,2001,28(3):211-217.
    [51]Fei Y, Frost D J, Mao H, et al. In situ structure determination of the high-pressure phase of Fe3O4. American Mineralogist,1999,84:203-206.
    [52]Gerward L, Olsen J S. High-pressure studies of magnetite and magnesioferrite using synchrotron radiation. Applied Radiation and Isotopes,1995,46(6/7):553-554.
    [53]Wang Z W, Lazor P, Saxena S K, et al. High pressure Raman spectroscopy of ferrite MgFe2O4. Materials Research Bulletin,2002,37(9):1589-1602.
    [54]Winell S, Annersten H, Prakapenka V. The high-pressure phase transformation and breakdown of MgFe2O4. American Mineralogist,2006,91:560-567.
    [55]Levy D, Pavese A, Hanfland M. Phase transition of synthetic zinc ferrite spinel (ZnFe2O4) at high pressure, from synchrotron X-ray powder diffraction. Physics and Chemistry of Minerals, 2000,27:638-644.
    [56]Haavik C, Stolen S, Fjellvag H, et al. Equation of state of magnetite and its high-pressure modification:Thermodynamics of the Fe-O system at high pressure. American Mineralogist, 2000,85(3-4):514-523.
    [57]Huang E, Bassett W A. Rapid Determination of Fe3O4 Phase Diagram by Synchrotron Radiation. Journal of Geophysical Research,1986,91(B5):4697-4703.
    [58]Catti M. High-pressure stability, structure and compressibility of Cmcm-MgAl2O4:an ab initio study. Physics and Chemistry of Minerals,2001,28(10):729-736.
    [59]Wang Z W, Lazor P, Saxena S K, et al. High-pressure Raman spectroscopic study of spinel (ZnCr2O4). Journal of Solid State Chemistry,2002,165(1):165-170.
    [60]Wang Z, O'Neill H, Lazor P, et al. High pressure Raman spectroscopic study of spinel MgCr2O4. Journal of Physics and Chemistry of Solids,2002,63(11):2057-2061.
    [61]Chen M, Shu J F, Xie X D, et al. Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochimica et Cosmochimica Acta,2003,67(20):3937-3942.
    [62]Yamanaka T, Uchida A, Nakamoto Y. Structural transition of post-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPa. American Mineralogist,2008, 93(11-12):1874-1881.
    [63]Arai S, Yurimoto H. Podiform chromitites of the Tari-Misaka ultramafic complex,southwestern Japan, as mantle-melt interaction products. Economic Geology,1994, 89(6):1279-1288.
    [64]Pal T, Ghosh B, Bhattacharya A. A high-Si, high-Ca spinel-like phase from mantle peridotite: a report from Cretaceous ophiolite of Rutland Island, Andaman-Java subduction complex. Current science,2009,97(7):1081-1088.
    [65]Klemme S, O'Neill H S C. The effect of Cr on the solubility of Al in orthopyroxene: experiments and thermodynamic modelling. Contributions to Mineralogy and Petrology,2000, 140(1):84-98.
    [66]Girnis A V, Brey G P, Doroshev A M, et al. The system MgO-Al2O3-SiO2-Cr2O3 revisited: reanalysis of Doroshev et al.'s (1997) experiments and new experiments. European Journal of Mineralogy,2003,15(6):953-964.
    [67]Brey G P, Doroshev A M, Girnis A V, et al. Garnet-spinel-orthopyroxene equilibria in the FeO-MgO-Al2O3-SiO2-Cr2O3 system; Ⅰ, Composition and molar volumes of minerals. European Journal of Mineralogy,1999,11(4):599-617.
    [68]Aranovich L, Kawasaki T. Si-in-spinel geobarometry for ultramafics. EGU2007-A-00823.
    [69]Gudfinnsson G H, Wood B J. The effect of trace elements on the olivine-wadsleyite transformation. American Mineralogist.1998,83(9-10):1037-1044.
    [70]Lattard D. Experimental evidence for the exsolution of ilmenite from titaniferous spinel. American Mineralogist,1995,80(9-10):968-981.
    [71]Kojitani H, Hisatomi R, Akaogi M. High-pressure phase relations and crystal chemistry of calcium ferrite-type solid solutions in the system MgAl2O4-Mg2SiO4. American Mineralogist, 2007,92(7):1112-1118.
    [72]金振民,Ji S. C.,金淑燕.橄榄石晶格优选方位和上地幔地震波各向异性.地球物理学报.1994,37(4):469-476.
    [73]Nicolas A, Christensen N I. Formation of anisotropy in upper mantle peridotites—A review. Washington, D.C.:American Geophysical Union,1987.407-433.
    [74]Jung H, Karato S. Water-induced fabric transitions in olivine. Science,2001,293(5496): 1460-1463.
    [75]Bystricky M, Kunze K, Burlini L, et al. High Shear Strain of Olivine Aggregates:Rheological and Seismic Consequences. Science,2000.290(5496):1564-1567.
    [76]Zhang S, Karato S, Fitz Gerald J, et al. Simple shear deformation of olivine aggregates. Tectonophysics,2000,316(1-2):133-152.
    [77]Katayama I, Jung H, Karato S. New type of olivine fabric from deformation experiments at modest water content and low stress. Geology.2004.32(12):1045-1048.
    [78]Jung H, Katayama I, Jiang Z, et al. Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics,2006,421(1-2):1-22.
    [79]Katayama I, Karato S. Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones. Physics of the Earth and Planetary Interiors, 2006,157(1-2):33-45.
    [80]Carter N L, Ave Lallemant H G. High Temperature Flow of Dunite and Peridotite. Geological Society of America Bulletin,1970,81 (8):2181-2202.
    [81]Raterron P, Chen J, Li L, et al. Pressure-induced slip-system transition in forsterite: Single-crystal rheological properties at mantle pressure and temperature. American Mineralogist,2007,92(8-9):1436-1445.
    [82]Mainprice D, Eacute A, Tommasi A, et al. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle. Nature,2005,433:731-733.
    [83]Couvy H, Frost D J, Heidelbach F, et al. Shear deformation experiments of forsterite at 11 GPa-1400℃ in the multianvil apparatus. European Journal of Mineralogy,2004,16(6): 877-889.
    [84]Raterron P, Amiguet E, Chen J H, et al. Experimental deformation of olivine single crystals at mantle pressures and temperatures. Physics of the Earth and Planetary Interiors,2009, 172(1-2):74-83.
    [85]Holtzman B K, Kohlstedt D L, Zimmerman M E, et al. Melt Segregation and Strain Partitioning:Implications for Seismic Anisotropy and Mantle Flow. Science,2003,301(5637): 1227-1230.
    [86]Xu Z, Wang Q, Ji S, et al. Petrofabrics and seismic properties of garnet peridotite from the UHP Sulu terrane (China):Implications for olivine deformation mechanism in a cold and dry subducting continental slab. Tectonophysics,2006,421(1-2):111-127.
    [87]Karato S, Jung H, Katayama I, et al. Geodynamic significance of seismic anisotropy of the upper mantle:New insights from laboratory studies. Annual Review of Earth and Planetary, 2008,36:59-95.
    [88]钟立峰.藏南罗布莎蛇绿岩岩石学、地球化学及其构造环境研究:广州:中国科学院研究生院(广州地球化学研究所),2006.
    [89]周肃,莫宣学,J J. Mahoney,等.西藏罗布莎蛇绿岩中辉长辉绿岩Sm-Nd定年及Pb,Nd同位素特征.科学通报.2001,46(16):1387-1390.
    [90]Malpas J, Zhou M, Robinson P T, et al. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. London: Geological Society Special Publications,2003.191-206.
    [91]钟立峰,夏斌,周国庆,等.藏南罗布莎蛇绿岩成因:壳层熔岩的Sr-Nd-Pb同位素制约.矿物岩石.2006,26(1):57-63.
    [92]杨经绥,白文吉,方青松,等.西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述).地球学报.2008,29(3):263-274.
    [93]白文吉,杨经绥,方青松,等.西藏蛇绿岩地幔中的主要自然金属矿物.地学前缘.2004,11(1):179-187.
    [94]白文吉,杨经绥,施倪承,等.西藏罗布莎蛇绿岩地幔岩中首次发现超高压矿物方铁矿和自然铁.地质论评.2004,50(2):184-188.
    [95]白文吉,施倪承,杨经绥,等.西藏蛇绿岩豆荚状铬铁矿中简单氧化物矿物组合及其超高压成因.地质学报.2007,81(11):1538-1549.
    [96]白文吉,杨经绥,方青松,等.西藏罗布莎蛇绿岩的Os-Ir-Ru合金及其中玻安岩质包体的研究.地质学报.2005,79(6):815-822.
    [97]熊明,施倪承,代明泉,等.西藏罗布莎Ir-Fe-Ni合金的X射线晶体学研究.岩石矿物学杂志.2003,22(2):155-161.
    [98]Trumbull R B, Yang J S, Robinson P T, et al. The carbon isotope composition of natural SiC (moissanite) from the Earth's mantle:New discoveries from ophiolites. Lithos,2009,113(3-4): 612-620.
    [99]施倪承,白文吉,李国武,等.地球深部金属碳化物的晶体化学.地学前缘.2005,12(1):29-36.
    [100]白文吉,陶淑凤,杨经绥,等.来自蛇绿岩地幔的硫(砷)化物矿物组合.岩石矿物学杂志.2007,26(5):418-428.
    [101]白文吉,方青松,张仲明,等.西藏罗布莎蛇绿岩豆荚状铬铁矿中镁橄榄石的晶体结构及其意义.岩石矿物学杂志.2001,20(1):1-10.
    [102]Bai W J, Shi N C, Fang Q S, et al. Luobusaite:A new mineral. Acta Geologica Sinica-English Edition,2006,80(5):656-659.
    [103]Fang Q S, Bai W J, Yang J S, et al. Qusongite (WC):A new mineral. American Mineralogist, 2009,94(2-3):387-390.
    [104]Shi N C, Bai W J, Li G W, et al. Yarlongite:A New Metallic Carbide Mineral. Acta Geologica Sinica-English Edition,2009,83(1):52-56.
    [105]李国武,方青松,施倪承,等.天然Ti-Fe-Si合金新矿物—藏布矿.矿物学报.2010(S1):7-8.
    [106]杨经绥,徐向珍,李金阳,等.蛇绿岩铬铁矿石光片中发现原位金刚石——重新审视MORB型蛇绿岩浅部成因理论.全国岩石学与地球动力学研讨会.2009,152.
    [107]李德威.西藏罗布莎豆荚状铬铁矿床构造控矿规律及动力成矿模式.地质找矿论丛.1994,9(2):41-51.
    [108]Robinson P T, Bai W J, Malpas J, et al. Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications. Aspects of the tectonic evolution of China, 2004(226):247-271.
    [109]曹淑云,刘俊来.岩石显微构造分析现代技术——EBSD技术及应用.地球科学进展.2006,21(10):1091-1096.
    [110]徐海军,金淑燕,郑伯让.岩石组构学研究的最新技术——电子背散射衍射(EBSD).现代地质.2007,21(2):213-225.
    [111]Kohlstedt D L, Goetze C, Durham W B, et al. New Technique for Decorating Dislocations in Olivine. Science,1976.191(4231):1045-1046.
    [112]Jin Z, Green Ii H W, Borch R S. Microstructures of olivine and stresses in the upper mantle beneath Eastern China. Tectonophysics,1989,169(1-3):23-50.
    [113]Karato S. Scanning electron microscope observation of dislocations in olivine. Physics and Chemistry of Minerals,1987,14(3):245-248.
    [114]杨风英,肖绪琦,周梅馨.藏南阿尔卑斯型橄榄岩中辉石的出溶特征及有关问题讨论.北京:地震出版社,1990.159-162.
    [115]金振民,Green H. W橄榄石位错构造及其上地慢流变学意义——以河北省大麻坪二辉橄榄岩为例.地球科学.1988,13(4):365-374.
    [116]金振民,金淑燕,Green H. W.,等.台湾海峡上地幔流变学状态及其构造意义.地质学报.1995,69(1):31-41.
    [117]Ross J V, Nielsen K C. Deformation-induced microstructures, paleopiezometers, and differential stresses in deeply eroded fault zones. Journal of Geophysical Research,1980, 85(B11):6269-6285.
    [118]Toriumi M. Relation between dislocation density and subgrain size of naturally deformed olivine in peridotites. Contributions to Mineralogy and Petrology,1979,68(2):181-186.
    [119]Ross J V, Nielsen K C. High-temperature flow of wet polycrystalline enstatite. Tectonophysics,1978,44(1-4):233-261.
    [120]Skemer P, Katayama I, Karato S I. Deformation fabrics of the Cima di Gagnone peridotite massif, Central Alps, Switzerland:evidence of deformation at low temperatures in the presence of water. Contributions to Mineralogy and Petrology,2006,152(1):43-51.
    [121]Christensen N I, Lundquist S M. Pyroxene orientation within the upper mantle. Geological Society of America Bulletin,1982,93(4):279-288.
    [122]Skemer P, Katayama I, Jiang Z, et al. The misorientation index:Development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics,2005, 411(1-4):157-167.
    [123]Bunge H. Texture Analysis in Materials Science. London:Butterworths,1982.
    [124]郑伯让,金振民,金淑燕.河北省大麻坪幔源包体橄榄石位错特征的透射电子显微镜研究.矿物岩石学论丛.1988,4:1-9.
    [125]Phakey P, Dollinger G, Christic J. Transmission electron microscopy of experimentally deformed olivine crystals. Washington DC:American Geophysical Union,1972.139-156.
    [126]Warren J M, Hirth G, Kelemen P B. Evolution of olivine lattice preferred orientation during simple shear in the mantle. Earth and Planetary Science Letters,2008,272(3-4):501-512.
    [127]王慧媛,郑海飞.高温高压实验及原位测量技术.地学前缘.2009,16(1):17-26.
    [128]Xu J A, Mao H K, Bell P M. High-Pressure Ruby and Diamond Fluorescence:Observations at 0.21 to 0.55 Terapascal. Science,1986,232(4756):1404-1406.
    [129]毕延,经福谦.动高压物理在地球与行星科学研究中的应用.地学前缘.2005,12(1):79-92.
    [130]Bertka C M, Fei Y. Mineralogy of the Martian interior up to core-mantle boundary pressures. Journal of Geophysical Research,1997,102(B3):5251-5264.
    [131]Klemme S, O'Neill H S C. The reaction MgCr2O4+SiO2=Cr2O3+MgSiO3 and the free energy of formation of magnesiochromite (MgCr2O4). Contributions to Mineralogy and Petrology,1997,130(1):59-65.
    [132]Turkin A I, Sobolev N V. Pyrope-knorringite garnets:overview of experimental data and natural parageneses. Russian Geology and Geophysics,2009,50(12):1169-1182.
    [133]Gasparik T. An Internally Consistent Thermodynamic Model for the System CaO-MgO-Al2O3-SiO2 Derived Primarily from Phase Equilibrium Data. Journal of Geology, 2000,108(1):103-119.
    [134]Apted M J. Control of loss of iron to platinum capsules and effects on samarium partitioning between garnet and melt. American Mineralogist,1982,67(9-10):1069-1073.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700