用户名: 密码: 验证码:
超细粉体电气石机械力化学效应及表面改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电气石是一种独特的自发电极性矿物,具有发射远红外和诱发负离子功能,广泛应用于环保、功能性纺织品及建材等领域。其超细粉体具有特殊的超细效应,但团聚现象严重影响其应用性能,因此提高其粉体分散性具有重要理论意义。
     本文运用化学全分析、电子探针分析、ICP、X射线衍射分析、红外光谱测试、差热分析等分析方法对新疆阿勒泰云母二矿电气石的矿物学特征进行了测试,并对超细粉体电气石的制备工艺进行了研究,通过对新疆电气石矿物超细前后物化性质的分析,总结了超细前后电气石矿物粉体相关性质的变化规律,对产生变化的原因进行了探讨,为矿物粉体的利用提供了重要的基础数据,归纳总结了超细粉体电气石的机械力化学效应。最后利用沉降时间、沉降体积百分数、中位粒径分布、Zeta电位测定等手段,根据胶体的分散稳定理论选用不同类型分散剂(聚丙烯酸钠、聚丙烯酸钾,多聚磷酸钠、六偏磷酸钠,十二烷基苯磺酸钠)对超细粉体电气石进行表面改性,确定了最佳改性工艺条件,制备出在水溶液中具有良好分散性能的超细粉体,并对改性后样品进行静态负离子测试;最后采用FTIR、DTA-TC和SEM对表面改性后的超细粉体电气石结构和表面特性进行了表征和研究,对其在水中分散性和稳定性机理进行分析,建立了电气石表面的吸附模型,并提出水溶性表面改性剂与电气石的作用机理。
     本文主要结论:该矿电气石样品为镁电气石;选用机械破碎法即采用介质搅拌磨连续磨矿、二阶段循环研磨的工艺,通过合理地使用研磨介质,优化工艺条件制备了粒度细、分布窄、颗粒形状规则的超细粉体,研磨60 min后粒径增加达到极限,最小粒径为0.619μm,所制得粉体比表面积最大值达33.47 m2/g。根据实验获得的中位粒径和比表面积随时间变化的数据,采用MATLAB程序进行超细粉碎曲线拟合研究,建立了相关数学模型。机械力化学效应研究表明:电气石在研磨过程中晶格发生膨胀,属晶格畸变范畴,电气石的一些振动精细结构消失,谱峰出现简并和宽化的特征,[SiO4]引起的谱带逐渐消失和红移;超细粉体除脱吸附水外的吸热效应的最大值温度有所降低,由原样的1004℃降低至907℃,降低幅度达97℃;超细粉碎后粉体矫顽力增大;超细粉碎导致晶格周期性的破坏,提高了晶格极性振动的非简谐效应,有效改善电气石在一定波长范围内的红外辐射率。负离子测试结果表明:随粒度减小,所诱生的负离子在一定程度上增多,但当粒径小到一定程度时则开始减小。
     超细粉体电气石表面改性最佳工艺条件为:在改性实验温度83℃,pH值为11的条件下,改性剂为聚丙烯酸钠与多聚磷酸钠复配改性剂,最佳用量为1.8%(其中聚丙烯酸钠1.2%,多聚磷酸钠0.6%);改性助剂为白炭黑,最佳用量为4.0%。结果表明10wt%固含量电气石水分散体系的稳定性强烈地受分散剂的用量和pH值的影响。改性后粉体Zeta电位绝对值从9.5mv提高到28.6mv;改性后负离子增量提高达9.30%。FTIR和DTA-TG测试结果表明:改性剂聚丙烯酸钠与多聚磷酸钠与电气石表面的羟基产生键合作用,聚丙烯酸钠中的羧基(-COOH)与电气石颗粒表面的羟基(-OH)发生了脱水酯化反应,白炭黑则基本不引起电气石本身性质的变化。
     改性机理为:改性剂赋予粒子表面较高的Zeta电位,增加粒子间的静电排斥作用,并在粒子表面形成空间稳定作用或空缺稳定作用,使粉体在水中的分散稳定性能提高。白炭黑吸附于粒子表面,可降低粒子间的液桥力,粒子间距增大,减少粒子的相互粘结,提高电气石的分散性能。电气石的吸附模型为:改性电气石的表面形成三种吸附层,内层为化学吸附层,改性剂与电气石表面的羟基产生作用;中层为物理吸附层;外层为改性助剂。改性剂分别以化学及物理吸附作用于电气石表面,白炭黑则充填于电气石之间。
     本项研究为国家自然科学基金“极性矿物电气石与半导体氧化物(ZnO等)复合微粒的环境作用机理研究”及教育部高等院校博士学科点专项科研基金“环境材料电气石粉末覆膜强化机理研究”资助项目。
Tourmaline, one kind of unique spontaneous electropolar mineral, has the function of emitting far infrared rays and releasing anoin. Therefore it is widely applied in many fields such as environmental protection, functionality textile and building materials etc. Though ultrafine powder of tourmaline has special effects, its application performance is serious influenced by reuniting mutually. So it is important that enhances ultrafine powder of tourmaline's dispersivity. This article utilizes the chemistry analysis, EMPA, ICP, XRD, FTIR, DTA,TG analysis methods to carry on the test to mineralogy characteristic of tourmaline from Xinjiang Altay mica second mine, and has conducted the research to ultrafine powder of tourmaline's preparation craft. It has summaried ultrafine powder of tourmaline mechanochemical effects. Finally based on colloidal dispersion stabilization theory, by using sedimentation time, sedimentation volume, medium particle distribution, Zeta electric potential determination etc, it had investigated by employing sodium polyacyrlate, potassium polyacrylate (polymer surfactants), sodium polyphosphate, sodium hexametaphophate (inorganic), sodium dodecyl benzene sulfonate (organic) which carries on the superficial modification to ultrafine powder of tourmaline. Finally it has determined the best modified technological conditions. Using FTIR, DTA, TC and SEM, it has established ultrafine tourmaline’s stabilization mechanism andsurface adsorption model, and proposes water-soluble superficial modifier and tourmaline action mechanism. The contents of this dissertation are as follows:
     Xinjiang Altay mica second mine tourmaline sample's is the magnesium tournaline. Through using grinding medium reasonably and optimization technological conditions, has gotten regular morphology ultrafine tourmaline which distributes narrowly. After grinding 60 min the particle size increases achieves the limit, and the minimum particle size is 0.619μm. The maximum specific surface area reaches 33.47 m2/g. Using MATLAB program to conduct ultrafine grinding curve fitting research to the tourmaline, has established its mathematical model.
     After superfine, mechanochemical effects research indicated: the crystal lattice has the inflation in the process of lapping, but it is the lattice distortion category. The ultrafine grinding causes tourmaline some vibration fine structure vanishing and the peak to present the characteristic which degenerate and wide, the band which [SiO4] causes vanishes gradually and red shift. In the superfine process, the mechanical energy transforms to internal energy of tourmaline, which causes heat absorption effect maximum value temperature to have reduces (1004℃reduces by the original 907℃, reduces the scope to reach 97℃). Indicated to the smallest particle size tourmaline magnetism nature's research, tourmaline coercive force increases. The ultrafine grinding causes the crystal lattice periodic destruction, enhances the crystal lattice polarity vibration non-simple harmonics effect, and improves the tourmaline in certain wavelength range infrared emissivity effectively. The anoin test result indicated: Ultrafine powder of tourmaline produces the anoin increases to a certain extent. When the particle size slightly increases to certain extent, the anoin amount reduces.
     The ultrafine powder of tourmaline superficial modification processing best modified formula and the technological conditions are: At temperature 83℃, pH is 11 conditions, compound modifier (sodium polyacyrlate gathered with sodium polyphosphate), the best amount used is 1.8% (sodium polyacyrlate 1.2%, gather sodium polyphosphate 0.6%).The modified assistant is silica, the best amount used is 4.0%. Dispersing agent member dissociation balanced related with pH value, also the dispersing agent member's dissociation balanced immediate influenced dispersing agent member's charged situation and the solution extension condition. Finally, affects the powder body's electrostaticstatic steric function. Results show that water dispersion system stability which has 10wt% tourmaline intensely is influenced by dispersing agent amount and pH value.
     The test result indicated: compound modifier has bonding with tourmaline surface hydroxyl. Carboxyl in sodium polyacyrlate (-COOH) has had dehydrated esterification response with ultrafine tourmaline pellet surface hydroxyl (-OH). But silica basically does not change the tourmaline itself nature. Zeta electric potential's absolute value also enhances from 9.5mv to 28.6mv, therefore greatly enhanced electrostatic repulsion function between tourmaline.
     According to analysising the modification mechanism, it has gotten the adsorption model of tourmaline. Modifier acts on tourmaline surface respectively by chemical adsorption and physisorption. Silica fills between tourmaline. When the sample disperses in the water, the modifier endows with ultrafine tourmaline surface high Zeta electric potential and increases the electrostatic repulsion function between the ultrafine tourmaline. In addition, it will also form steric stabilization or vacancy stabilization in the ultrafine tourmaline surface. Thus improve the stability of the powder dispersion in the water. Silica adsorption on the the ultrafine tourmaline surface, may reduce the fluid bridge strength between the granule.Thus the granule spacing increases, reducing mutual caking and enhancing dispersion. The modification mechanism is: The modified tourmaline's surface forms three kind of adsorbed layers. The inner layer is chemistry adsorbed layer, which modifier has reaction with tourmaline surface hydroxyl. The outer layer is the modifier assistant.
     This research is subsidized project by NNSF“The compound particle's the polar mineral tourmaline with the semiconductor oxide (ZnO and so on) environment action mechanism research”and Ministry of Education institutions of universities for doctor subject the special scientific research foundation“The environment material tourmaline powder membrae tectoria strengthens the mechanism research”.
引文
[1] 韩跃新,印万忠,王泽红. 加强基础研究、促进矿物材料工业的发展[J]. 中国非金属矿工业导刊,2003(增刊):1-4.
    [2] 吴瑞华,汤云晖等. 电气石的电场效应及其在环境领域的应用前景[J]. 岩石矿物学杂志,2001,20(4):474-476.
    [3] Lang S B. The history of pyroelectricity: from ancient Greece to space missions[J]. Ferrpelectrics,1999,230:99-108.
    [4] Nakamura T, Kubo T. The tourmaline group crystals reaction with water[J]. J. Ferroelectrics,1992,137: 13-31.
    [5] 王濮,潘兆橹,等. 系统矿物学[M]. 地质出版社,1984.
    [6] 汤云晖. 电气石的表面吸附与电极反应研究[博士学位论文]. 2002.
    [7] 赵枫,王进军. 电气石的化学特征与相关矿床的关系[J]. 地质找矿论丛,2002,17(3):161-174.
    [8] 黄作良,莫联,祖恩东.辽东硼矿床中电气石的矿物学特征及成因意义[J]. 岩石矿物学杂志,1996,15(4):365 -378.
    [9] 李上森. 前寒武纪富电气石岩石的成因和意义[J]. 国外前寒武纪地质,1994,2: 60-73.
    [10] 夏学惠,郭玉亭. 辽东裂谷带硫化物矿床内电气石系列矿物学与找矿关系[J]. 矿物岩石,1995,15(4):62-71.
    [11] 任留东,刘小汉. 南极中山站区电气石及其与变质作用的关系[J]. 岩石矿物学杂志,1994 ,13 (2):169-174.
    [12] 许虹. 变质地体中富电气石岩石的成因及其意义[J]. 地学前缘,1994,1(3-4):53.
    [13] 王敏,张尚坤,张增奇. 鲁西柳家电气石矿矿物学特征及成矿机理探讨[J]. 山东地质,2001 ,17(1):35-39.
    [14] 王登红,陈毓川. 广西大厂电气石的成分与成因初探[J]. 岩石矿物学杂志,1996,5(3):280-287.
    [15] 沈敢富,姚鹏. 藏东西藏岩的电气石[J].高校地质学报,2000,6 (2):256 -363.
    [16] Sidney B. LANG., The History of Pyroelectricity: from Ancient Greece to Space Missions[J]. Ferroelectrics, 1999, 230: 99-108.
    [17] Donnay.G. Structural mechenism of pyroelectricity in tourmaline[J]. Acta Crystallographica, 977, A33: 927-932.
    [18] 杨如增,廖宗廷,陈晓栋,等.天然黑色电气石热热释电特性研究[J]. 宝石和宝石学杂志,2000,2(1):34-37.
    [19] 冀志江,梁金生,金宗哲. 极性晶体电气石颗粒的电极性观察[J]. 人工晶体学报,2002, 31(5):503 -508.
    [20] 严东生. 纳米材料的合成与制备[J]. 无机材料学报,1995,10 (1):1-6.
    [21] 郭永,巩雄,杨宏秀. 纳米微粒的制备方法及其进展[J]. 化学通报,1996,3:1-4.
    [22] 薛群基,徐康. 纳米化学[J]. 化学进展,2000,12 (4):432-444.
    [23] 张立德,牟季美. 纳米材料和纳米结构[M]. 北京:科学出版社,2001.
    [24] 衫原俊雄,铃木三男,古宫正树[P]. CN99103640,含有电气石颗粒的人造纤维及其制造方法1999-03-09.
    [25] 姚鼎山. 环保与健康新材料—托玛琳[M]. 中国纺织大学出版社,2001.
    [26] 王子龙,李献. 电气石及其制造方法[P]. CN0011060l,2000-07-01.
    [27] 许云生,曾德祥,高增达.一种合成纤维及其制造方法[P]. CN01105203,2001-1-11.
    [28] 吴瑞华,汤云晖,张晓晖,代明泉. 一种电磁屏蔽复合材料[P]. CN01100150,2001-01-09.
    [29] 戴彦彤,舒军,戴承渠. 负氧离子远红外保健织物及其制备[P].CN00132606,2000-11-16.
    [30] 郑水林,李杨,杜高翔,黄云龙. 超细电气石粉体制备研究[J]. 非金属矿,2004,27(4) :26-28.
    [31] 呼振峰. 电气石超细粉体的制备及粒度检测[J]. 矿冶,2006,4:17-20.
    [32] 吕方. 电气石的加工应用现状及发展前景[J]. 中国非金属矿工业导刊,2005,1:35-36.
    [33] 韩炜,陈敬忠,等. 电气石粒度对其远红外和吸附效应的影响[J]. 矿产综合利用 2005,4:22-25.
    [34] 李书,葛晓陵,蒋士忠,湿法制备纳米级负离子粉体的研究及应用[J] . 化工矿物与加工,2003,1:11-14.
    [35] 郭力. 电气石—多功能环保健康新材料[J]. 中国非金属矿工业导报,2004,5:56-58.
    [36] Kubo T. Method of Controlling the Growth of Microorganism in a Liquid with Tourmaline Crystal[P]. United States Patent: 5569388,October 29,1996.
    [37] Kubo T Apparatus and method for producing sir containing minus alkali ion[P]. United States Patent: 5728288, March 17,1998.
    [38] Kakamu. Tourmaline composite grains and apparatus using them [P]. United States Patent:6034013, March 7, 2000.
    [39] Vorreiter; et al. Passive eletriostatic vacuum particle collector [P]. United States Patent:4929139, May 29, 1990.
    [40] Sugihara, et al. Rayon fiber containing tourmaline particles and method for the preparation thereof[P]. United States Patent: 4929139, January 26, 1999.
    [41] Fukai. Method and apparatus for making water having purified and activated functions[P].United States Patent: 5776346, July 7, 1998.
    [42] Kanase. Electromagnetic shield[P]. United States Patent: 4929139, May 6001282.
    [43] Torn. K. Far-infrared radiation material[P]. United States Patent: 4929139, May 6004588.
    [44] 王贤觉,邹天人,徐建国等. 阿尔泰伟晶岩矿物研究[M]. 北京: 科学出版社,1981.122-127.
    [45] R. V. Dietrich. The Tourmaline Group[M]. New York: Van Nostrand Reinhold Company, 1985.73.
    [46] 徐登科.矿物化学式计算方法[M]. 北京:地质出版社,1979.
    [47] 中国地质大学(北京)化学分析室. 硅酸盐岩石和矿物分析[M]. 北京:地质出版社,1990.
    [48] 韩炜. 超细纳米化电气石的性质研究及其意义[D] . 武汉:中国地质大学,2004.
    [49] F.Yavuz, A.H.Gultekin, M.C.Karakaya. CLASTOUR: a computer program for classificasion of minerals of the tourmaline group[J]. Computer Geosciences, 2002,28: 1017-1036.
    [50] Christine M. Clark. Tourmaline:Structural formula calculations[J]. The Canadi Mineralogist, 2007, 45: 229-237.
    [51] W A Deer, et al. Rock-Forming Minerals[M]. VLLong Mans, 1962.
    [52] Franklin F Foit JR. Crystal chemistry of alkali-deficient schorl and tourmaline structure relationship. Am Min. 1989, 74: 412-431.
    [53] 马喆生,施倪承. X 射线晶体学—晶体结构分析基本理论及实验技术[M]. 武汉:地质大学出版社,1995.
    [54] 彭志忠. X 射线分析简明教程[M]. 北京:地质出版社,1982.
    [55] Horn, EE.,and Schulz, H., Bestimmung des Turmalin-Chemismus aufr?nt enographis-chem Wege[J]. Neues Jahrbuch für Mineralogie, Abhandlungen, 1968, 108:20-35.
    [56] R. V. Dietrich. The Tourmaline Group[M]. New York: Van Nostrand Reinhold Company, 1985.64-65.
    [57] Epprecht, W., Die Gitterkonstanten der Turmaline[J]. Schweizerische Mineralogische und Petrographische Mitteilungen, 1953, 33: 481-505.
    [58] Donnay, G. , Tourmaline[J]. Carnegie Institute of Washington Year Book, 1963, 62:166-169.
    [59] 彭文世,刘高魁. 矿物红外光谱集[M]. 北京:科学出版社,1982.
    [60] V C 法默. 矿物的红外光谱[M]. 北京:科学出版社,1982.
    [61] 闻辂. 矿物红外光谱学[M]. 重庆:重庆大学出版社,1988.
    [62] 王兆民、王奎雄、吴宗凡. 红外光谱学理论与实践[M]. 北京: 兵器工业出版社,1993.
    [63] 王宗明、何欣翔、孙殿卿. 实用红外光谱学[M]. 北京:石油工业出版社,1990.
    [64] 张幼文. 红外光学工程[M]. 上海科技出版社,1981.
    [65] R. V. Dietrich. The Tourmaline Group[M]. New York: Van Nostrand Reinhold Company, 1985.56.
    [66] P.S.R. Prasad. Study of structural disorder in natural tourmalines by infrared spectroscopy [J]. Gondwana Research, 2005, 8(2): 265-270.
    [67] Pieczka A, Kraczka J. Oxidized tourmalies-a combined chemical, XRD and Mossbauer study[J]. Eur J Mineral, 6: 309-321.
    [68] Pieczka, Adam, Kraczka.Janusz.2004,Oxidized tourmalines – a combined chemical, XRD and M?ssbauer study [J]. European Journal of Mineralogy, 16 (2):309-321(13).
    [69] Ertl A, Hughes JM, Prowatke S, Rossman GR, et al. Mn-rich tourmaline from Austria: structure, chemistry, optical spectra, and relations to synthetic solid solutions[J]. Am Mineral, 88: 1369-1376.
    [70] 黄伯龄编著. 矿物差热分析鉴定手册[M]. 北京:科学出版社,1987 .
    [71] 魏健,刘渝燕,张开永. 电气石应用专属性研究[J]. 非金属矿,2003,26(1). 34-36
    [72] 冀志江,金宗哲,梁金生,等.热处理电气石的物相转变[J]. 矿物学报,2002,2(3):280-283.
    [73] 杨如增,杨满珍,廖宗廷,等.天然黑色电气石红外辐射特性研究[J]. 同济大学学报, 2002,30(2):183-188.
    [74] L.P.Orgradova, et al. Thermo dynamics of naturatourmaline-elbaite[J].Themochimica Acta, 2004, 419:211-214.
    [75] Taran MN, Rossman GR. High-temperature, high-pressure optical spectroscopic study of ferric-iron-bearing tourmaline[J]. Am Mineral, 87: 1148-1153.
    [76] Cristiane Castaneda·Sigrid G. Eeckhout , Geraldo Magela da Costa·Nilson F.Botelho, etal.Effect of heat treatment on tourmaline from Brazil[J].Phys Chem Minerals , 2006, 33: 207-216.
    [77] 卢寿慈. 粉体加土技术[M]. 北京:中国轻工业出版社,2002.
    [78] 戴少生,王旦容,李梁. 超细粉碎和纳米技术[J]. 中国建材,2002 (3 ):44-45.
    [79] 杨华明,陈德良,邱冠周. 超细粉碎机械化学的研究进展[J]. 中国粉体技术,2002,8 (2):32-37.
    [80] Klimpel R. R. The selection of wet grinding chemical additives based on slurry rheology [J]. Powder Technology, 1999. 105: 430435.
    [81] Kunnio U. The effect of surfactant on ultrafine grinding done simultaneously with surface treatment of magnetite particles [J]. Japan Society Powder Technology, 1990, 27(3): 165-169.
    [82] 钟宁. 纳米材料的特性及制备方法[J]. 湖南有色金属,2000,16(2):28-30.
    [83] 李芳宇,刘维平. 纳米粉体制备方法及其应用前景[J]. 中国粉体技术,2000,6(5) :29-32.
    [84] 刘曙光.非金属矿纳米结构特征及应用 [J]. 矿产综合利用,2002,4:24-29.
    [85] 潘志东,李竟先.超细粉体的制备与表征[J].中国粉体技术 2000,l6:124-127.
    [86] 郑水林,袁继祖. 非金属矿加工技术[M]. 冶金工业出版社,2005,97-98.
    [87] 郑水林. 超细粉碎原理、工艺设备及应用[M].北京:中国建材工业出版社,1993.
    [88] Kanda Y, Abe Y and Yamaguchi M, et al. A fundamental study of dry and wet grinding from the view point of breaking strength [J]. Powder Technology, 1988, 56: 57-62.
    [89] Mankosa M J, Adel G T and Yoon R H. Effect of operating parameters in stirred ball mill grinding of coal [J]. Powder Technology, 1989, 59: 255 一 260.
    [90] 朱履冰.表面与界面物理[M]. 天津:天津大学出版社,1992.
    [91] Senna M, Fujiwara Y, Isobea T and Tanaka J. Molecular dynamic-molecular orbital combined study on thesolid state interfacial reaction under mechanical stressing [J]. Solid State Ionics, 2001, 141: 31-38.
    [92] Penner D and Lagaly G. Influence of organic and inorganic salts montmorillonite dispersions [J]. Clays and Clay Minerals, 2000, 48the coagulation of246255.
    [93] 彭同江.矿物粉体超细加工过程中的机械力一化学行为[J]. 非金属矿,1999,22 卷(增刊):15-19.
    [94] 马云东,孟凡娜,张海军. MATLAB 沸石超细粉碎中的应用[J]. 中国非金属矿工业导刊 2005,1:33-34.
    [95] 张智星. MATLAB 程序设计与应用[M]. 北京清华大学出版社,2001.
    [96] 李冷,曾宪滨. 粉碎机械力化学的进展及其在材料开发中的应用[J]. 武汉工业大学学报,1993,15(1):23-26.
    [97] Peters K, Ballczo H. Microchemical detection of mechanochemical reaction[J]. Microchem. Acta, 1960, (German):291-293.
    [98] 黄云峰,王文潜,钱鑫.机械化学及其在矿物加土中的应用[J].金属矿山,1999,(275):17-20.
    [99] 卢寿慈. 粉体加工技术[M]. 北京:中国轻工业出版社,2002.
    [100] Kosanovic. C Subotic B, Smit I.Results of Hydrothermal treatment of the amorphases obtained by ball milling zeolites AA, X and synthetic mordenite[J]. Croatica Chemica Actam2001, 74(1):195-206.
    [101] 杨南如. 机械力化学过程及效应(Ⅰ)[J]. 建筑材料学报,2000,3:19-25.
    [102] Aglietti E F. 高岭土磨矿中的机械化学效应—结构和物理化学方面[J]. 国外非金属 矿,1988,12(6):14-18.
    [103] 宋晓岚,邱冠周,杨华明. 超细功能粉体的机械化学合成研究进展[J]. 金属矿山,2004, 7:25-30.
    [104] 殷海荣,武丽华,陈福. 机械力化学合成纳米晶体的研究[J]. 化工新型材料,2005, 09:36-38.
    [105] 吴其胜,张少明,方莹,等. 无机材料机械力化学研究进展[J]. 材料科学与工程,2001, 03:137-142.
    [106] 徐红梅,陈清,蔡建国,等. 机械力化学的原理及应用[J]. 长沙航空职业技术学院学报,2003,06:47-50.
    [107] 杨华明,邱冠周. 滑石粉超细粉碎过程物理化学性质的变化[J]. 硅酸盐学报,2002,30(1):91-93.
    [108] 郑水林,袁继祖. 非金属矿加工技术[M]. 冶金工业出版社,2005,101-108.
    [109] C. Suruanarayana. Mechanincal alloying and milling[J]. Progress in Materials Science, 2001, 46: 1-184.
    [110] 盖国胜,樊世民. 陶瓷颗粒制各过程中的机械力化学作用[J]. 中国粉体技术,2000, 10:106-109.
    [111] 罗驹华. 非金属矿物粉体机械力化学研究进展[J]. 化工矿物与加工,2004, 11:5-7.
    [112] 仙名保.〤カノクヾストリーの理论と应用[J]. 化学工学の进步,1985(19):160-161.
    [113] 秦景燕,王传辉. 超细粉碎中的机械力化学效应[J]. 矿山机械,2005,10:6-8.
    [114] Gutman, E. M, Mechanochemistry of Material[M]. Cambridge International Science: Cambridge, UK, 1998.
    [115] Sugiyama K, Games P F, Saito F, et al. XRD study of grinding talc Mg3Si4O10(OH)2[J]. J Mater Sci, 1991,26:5297-5300.
    [116] Zolton Juhasz A. Mechanical, Activation of Minerals and Ludmilla Opoczky by Grinding[J]. Akademiai Kiado Budapest, 1990(2): 268-274.
    [117] Suryanarayana. Mechanical alloying and milling[J]. Progress in MaterialsScience, 2001,46: 1-84.
    [118] 彭长琪,孙振亚. 近代矿物学研究的一个新领域—机械力矿物学[J]. 地质科技情报第 1995,3:45-50.
    [119] 杨南如. 机械力化学过程及效应(Ⅱ)[J]. 建筑材料学报,2000,03:93-97.
    [120] 郑水林,孙成林. 超细粉碎(一) [M]. 粉体技术,1994,1(1):37-41.
    [121] Saito F. Changes in physicochemical properties and synthesis of inorganic materials with an aid of mechano-chemical effects[J]. 粉体和工业,1993,25(4):27-37.
    [122] 荣华伟,方莹. 机械力化学研究进展[J]. 广东化工,2006 ,10(33):33-36.
    [123] 李竟先,黄康明,吴基球. 无机非余属材料制各种机械力化学效应的基础研究及表征技术[J]. 硅酸盐学报,2002,10:142-144.
    [124] 席生岐,屈晓燕,刘心宽,高能球磨固态扩散反应研究[J]. 材料科学与工艺,2000,8(3):88-91.
    [125] 丁浩,刑锋,等. 天然沸石搅拌磨湿法细磨中机械力化学效应的研究[J]. 矿产综合利用 2000,6:26-31.
    [126] 李冷,彭长琪. 硅灰石球磨过程中晶体结构的变化—硅灰石细磨的机械力化学研究之一[J]. 国外金属矿选矿,1992(4):19-29.
    [127] 陈小华,成奋强,王健雄,等. 机械球磨下石墨结构的畸变[J]. 无机材料学报,2002,17(3):579-584.
    [128] 邱晓晖,张庆今. 高岭土干粉磨过程的机械力化学变化[J]. 硅酸盐学报,1991,19(5):448-455.
    [129] Liao ,Jiefan, Senna M . Enhanced dehydration and amorphization of Mg(OH)2 in the presence of ultrafine SiO2 under mechno-chemical conditions [J]. Thermochimica Acta, 1992, 210: 89-102.
    [130] Okada K, Kikuchi S, Ban T, et al. Difference of mechanochemical factors for Al2O3 powders upon dry and wet grinding[J].J Mater Sci Lett, 1992,(11):862-864.
    [131] Sugiyama K, Kasai E, et al. Effect of dry mixed grinding of talc, koalinite and gibhsite on preparation of cordierite ceramics[J]. Journal of Chem Eng ,Tpn,1993, 26(5):565-569.
    [132] Sasaki K, Masuda T, Ishida H, et al. Synthesis of calcium silicate hydrate with Ca/Si=2 by mechanochemical treatment[J]. J Am Ceram SoC ,1997, 80(2):472- 476.
    [133] Filio ,J M, Perucho R V, Saito F, et al. Mechanosynthesis of tricalcium aluminate hydrate by mixed grinding[J]. Mater Sci Forum, 1996, 225- 227: 503-508.
    [134] Isobe T, Komatsuhara S, Senna M. The effect of the homogeneity of non-crystalline Pb-Ti-O gels on the complex thermal processes leading to PbTiO3, formation[J]. J non-crystalline Solids, 1992, 150: 144-147.
    [135]Komatsuhara S, Isohe T, Senna M. Effect of preliminary mechanical treatment on the microhomogenization during heating of hydrous gels as precursors for lead titanate[J]. J Am Ceram Soc, 1994, 77(1):278-282.
    [136] Takeuchi K, Isobe T, Senna M. Holnogenization and particle size reduction of PbTiO3 by ball-milling of precursor gels,[J]. J Solid State Chem, 1994,109:401-409.
    [137] 王文亮,李东升,王振军,等.CuO 超细粉体的形貌与红外特性研究[J]. 无机化学学报,2002,8:821-826.
    [138] 张立德,牟季美. 纳米材料与纳米结构[M]. 北京:科学出版社,2001.
    [139] 冀志江. 电气石的自发极化及应用基础[博士学位论文]. 北京:中国建筑材料科学研究院,2003.
    [140] Han K R, Koo H J,Lim C S. Thermal conduction of different materials. J Am Ceram Soc, 1999, 82(4):478-481
    [141] Urakaev F K, Bold V V. Mechanism and kinetics of mechanochemical processes in comminuting devices: 1.theory .Powder Technology, 2000,107(5):93-107.
    [142] Castaneda C,Oliveira E F, Gomes N, and Pedrosa Soares A C. Infrared study of OH sites in touunaline from the elbaite-schorl series[J]. American Mineralogist, 2000, 85 (10): 1503-1507.
    [143] 陈衡. 红外物理学[M]. 北京:国防工业出版社,1985.
    [144] 闻辂. 矿物红外光谱学[M]]. 北京:科学出版社,1988.
    [145] 傅晓明. 电气石的偏振拉曼光谱研究[J]. 矿产与地质,1998 ,6(12): 418-482
    [146] 韩炜,陈敬中,吴驰飞. 电气石粒度对其远红外辐射和吸附效应的影响[J]. 矿产综合利用 2005,4:22-26.
    [147] 冀志江,金宗哲,等. 铁镁电气石红外发射率的研究[J] . 功能材料,2004,增刊(35):2579-2582
    [148] 郑水林,杜高翔,李杨,黄云龙. 超细电气石粉体的制备和负离子释放性能研究[J].矿冶,13(4):50-53
    [149] 韩跃新,任飞,印万忠,王子祥,袁启东. 内蒙东部黑电气石释放负离子特性研究[J] .矿冶,2004,13(1) :194-196.
    [150] 李风生. 超细粉体技术[M]. 北京:国防工业出版社,2000.
    [151] 郑水林. 粉体表面改性[M]. 北京:中国建材工业出版社,2003.
    [152] 刘国杰. 现代涂料工艺新技术[M]. 北京:化工工业出版社,2004
    [153] 罗电宏,马荣骏. 对超细粉末团聚问题的探讨[J].湿法冶金,2002, 21(2):57-61.
    [154] 郑忠,李宁. 分子力与胶体的稳定和聚沉[M].北京:高等教育出版社.1995.
    [155] 宋晓岚,吴雪兰,等. 分散稳定性能影响因素及作用机理研究[J]. 硅酸盐通报,2005,1:3-7.
    [156] 任俊,沈健,卢寿慈. 颗粒分散科学与技术[M]. 化学工业出版社,2005.
    [157] 谢洪勇. 粉体力学与工程[M]. 北京:化学工业出版社,2003.
    [158] Swarup S,Schoff Clifford K. A survey of surfactants in coatings technology[J]. Progress in Organic Coatings, 1993, 23: 1-22.
    [159] Winkler J,Kilnke E et al.[J]. Journal of Coating Technology.1987,59(754):35-55.
    [160] 陈礼永,袁继祖.陶瓷浆料稳定机理的研究[J]. 中国陶瓷. 1995(3): 1-3.
    [161] 郑忠,胡纪华.表面活性剂的物理化学原理[M]. 广州:华南理大学出版社,1995.
    [162] Marcelja S, Radic N. Repulsion of interfaces due to boundary water[J]. Chemical Physics Letters.1976(1):129-30.
    [163] 郑忠. 胶体科学导论[M]. 北京:高等教育出版社,1989.
    [164] 王国庭. 胶体稳定性[M]. 北京:科学出版社,1990.
    [165] Meguro K, Esumi K. Interactions between pigment and surfactant[J]. Journal of Coating Technology. 1990, 62(786): 69-77.
    [166] 邱正松,王在明,胡红福,等. 纳米碳酸钙抗团聚机理及分散规律实验研究[J]. 石油学报,2008,29(1):124-131.
    [167] Franke, J., Mersmann, A.,The Influence of the Operational Conditions on the Precipitation Process[J]. Chem. Eng. Sci. , 1995, 50(11): 1737-753.
    [168] Mydlarz, J., Jones, A.G, Crystallization and Agglomeration Kinetics during theBatch Drawing-out Precipitation of Potash Alum with Aqueous Acetone[J]. Powder Technol, 1991,65:187-194.
    [169] Rajesh, N.P., Raghavan, P.S,Ramasamy, P., et al., Enhancement of Metastable Zone of Some Aqueous Solutions[J]. Chinese Institute of Chemical Engineers, 2002, 33(4): 325-331.
    [170] Nore, P.H., Mersmann, A. Batch Precipitation of Barium Carbonate[J]. Chem.Eng. Sci., 1993, 48(17): 3083-3088.
    [171] Alan,P Collier, Michael J. Hounslow, Growth and Aggregation Rates for Calcite and Calcium Oxalate Monohydrate[J]. AIChE .J, 1999,45(11):2298-2305.
    [172] Nore, P.H., Mersmann, A., Batch Precipitation of Barium Carbonate[J]. Chem. Eng. Sci., 1993,48(17): 3083-3088.
    [173] Kofler, V, Riebel, U., L?ffler, F., On the Agglomeration Kinetics of Potassium Nitrate at Different Supersaturations Determined by Shape Analysis, in Proceedinbs of 11th Symposium on Industrial Crystallization, Edited by Mersmann,A., 1990. 503-508.
    [174] 杨春光,乔爱平,候金庵,等.纳米粉体团聚的原因及解决方法[J]. 山西化工,2003,23(1):56-58.
    [175] 王春晓,刘文忠,李杰,等. 聚合物分散剂的性能评价和分散机理的研究方法[J]. 河北化工,2004,4:12-16.
    [176] 马运柱,范景莲,黄伯云. 超细纳米颗粒在水介质的分散行为[J]. 矿冶工程,2003, 23 ( 5 ):43-46.
    [177] 刘素文,何文,万克树.超细 ZiO2-CaO 水系料浆的分散与稳定研究[J]. 中国陶瓷工业,2001,8(1):5-9.
    [178] 马文有,田秋,曹茂盛,等. 纳米颗粒分散技术研究进展—分散方法与机理(1)[J]. 中国粉体技术,2002,8 ( 3 ) : 28-31.
    [179] Kenjiro Meguro, Kunio Esumi [J]. Journal of coatings technology.1990, 62(786): 69-77.
    [180] Heijman S.G.,Stein H.N.[J]. Chemical Engineering Science.1993, 46(2): 3103-3122.
    [181] Athey R D. Organic polymer dispersants for pigments in water[J]. Modern Paintand Coating,1984(2): 31-41.
    [182] 刘英俊,等. 塑料填充改性[M].北京:中国轻工业出版社,1998.
    [183] 朱晓文,李登好. 聚电解质分散剂对超细氧化铝悬浮液稳定性的影响[J]. 淮阴工学院学报,2006(1):39.
    [184] 郝立根,黎钢,陈树东,禹雪晴,杨超. 阴离子型聚电解质盐溶液性质的研究进展[J].化学世界,2005 (7):49.
    [185] Yilmaza C H, Ulusoyb U. Effects of the shape properties of talc and quartz particles on the wet tability based separation processes [J]. Applied Surface Science, 2004, 233(1 4): 204 212.
    [186] Maltesh, C, Yu Xiang, Lou Arrjing. Flocculation of Hyclrophobic and Hydrophilic Colloidal Paticles in Near-Critical Pyrrolidone water mixtures [J]. Journal of Colloidl and Interface Science, 2002, 256(1):56.
    [187] Charnay C, Lagerge S. Assesment of the surface heter-ogenity of talc materials [J]. Journal of Colloid and Interface Science, 2001(2), 233: 250- 258.
    [188] 张立德. 超微粉体制备与应用技术[M]. 北京:中国石化出版社,2001.
    [189] 郑水林. 粉体表面改性[M]. 北京:中国建材工业出版社,1995.
    [190] 岳同健,王瑛,沈新元. 电气石超细粉体表面修饰的研究[J] . 玻璃与搪瓷,2004,3:19-22
    [191] 任飞. 内蒙古电气石特性、加工及利用研究[D] .东北大学博士论文,2005,5
    [192] 杜亚利,丁浩.电气石粉体的机械力化学法表面有机化改性研究[J]. 国非金属矿工业导刊,2006,5:33-35.
    [193] 盖国胜,等. 超细粉碎分级技术—理论研究、工艺设计、生产应用[M].北京:中国轻工业出版社,2000.
    [194] J L.Deiss, P.Anizan,et al. Steric stability of TiO2 nanoparticles in aqueous dispersion. colloids and surfaces [J]. Physicochemical and engineering Aspects, 1996, 106(1):59-62.
    [195] 何静,吴玉英,刘六军,等. 低分子聚丙烯酸钠的合成及分散性能研究[J]. 北京林业大学学报,2002,24:5-6.
    [196] 高毕亚,郑柏存,傅乐峰. 聚丙烯酸钠超分散剂的合成及其分散性能研究[J]. 日用化学工业,2008,38(1):20-23.
    [197] 刘付,胜聪,肖汉宁,李玉平. 纳米 Zn0 表面吸附聚电解质及其分散体系稳定性的研究[J]. 科学通报,2005(12):47.
    [198] 李景国,高派,郭景坤. 聚丙烯酸胺在纳米氧化钛上的定量吸附研究[J]. 无机材料学报,2002,17(2):241-246.
    [199] 李 燕. 纸张涂布分散剂—低分子量聚丙烯酸钠[J]. 黑龙江造纸,2003,(1):36.
    [200] 张娜,任俊,胡柏星,等. ND 超分散剂制备及其对超微 CaCO3 颗粒的分散性能影响[J].非金属矿,2002, 21(1):20-21.
    [201] SHON L. Zeta Potential Measurements on conductingpolymer-inorganic oxide nanocomposite particles[J]. Journal of Colloid and Interface Science, 1995(174): 510-517.
    [202] 毋伟,陈建峰,卢寿慈. 超细粉体表面修饰[M] . 北京:化学工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700