用户名: 密码: 验证码:
玉米株高主效QTL,qPH3.1的克隆及其功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是重要的粮食、饲料、工业原料和生物质能作物。生物学产量、籽粒产量、和品质都是玉米遗传育种的目标性状。株高与玉米籽粒产量和生物学产量密切相关,是一个重要的产量相关性状。首先,株高与玉米倒伏相关。提高玉米种植密度是当前提高玉米产量的主要方式,但随着种植密度的增加,玉米植株倒伏的风险也随之增加,降低株高是一种避免倒伏的主要育种策略。另外,对株型的修饰可提高玉米的生物量。株高是构成株型的重要因子,与植株生物量高度相关。因此,株高是玉米遗传和育种研究中重要的目标性状,对株高形成的遗传基础研究对玉米育种具有重要的指导意义。在之前的研究中,本实验室利用染色体片段代换系群体在玉米第3染色体鉴定到一个株高主效QTL (Bai et al.,2010),命名为qPH3.1。本研究利用图位克隆策略对qPH3.1进行精细定位,并克隆控制qPH3.1的候选基因,基于基因表达分析、细胞学分析、候选基因关联分析、突变体和生理学分析证实候选基因的功能。主要研究结果如下:
     1.SL15是一个在综3遗传背景中,导入来自衡白522第3染色体ND1-ND75区段的染色体片段代换系。全基因组245个衡白522与综3间有多态性的SSR标记扫描发现,SL15在第3染色体上3.06bin还存在一个与综3具有差异的分子标记dupssr23,说明在SL15中dupssr23附近的染色体片段来自于供体亲本。基于以上SSR分析表明,SL15与综3基因组间的遗传差异约为2%。
     2.SL15通过增加节间细胞长度使其株高显著高于综3。比较SL15和综3两者间株高、节间数目及节间长度的差异,结果表明两者间节间数目相同,但株高存在显著差异。进一步比较SL15与综3的各节间及雄穗的长度发现,SL15所有节间都显著长于综3,雄穗的长度无显著差异。细胞学观察发现,SL15的节间细胞显著长于综3(p<0.01),表明SL15相对于综3节间的延长是由于细胞长度的增加,而非细胞数目的增加。
     3.SL15的导入片段中含有控制株高的增效等位基因。以SL15与综3为亲本杂交,构建了一个含有161个单株的F2分离群体,利用该群体对株高、百粒重、行粒数、穗行数、穗粗、穗长等性状进行QTL鉴定。结果表明,在SL15的导入片段区域内存在一个株高QTL qPH3.1,解释32.3%的表型变异,SL15等位基因的加性和显性效应分别是9.6cm和4.5cm;未检测到百粒重、行粒数、穗行数、穗粗、穗长等性状的QTL,说明qPH3.1仅影响株高,不影响产量相关性状。另外,连锁分析证实位于3.06bin的残留片段(dupssr23)与株高及产量相关性状均不相关。
     4.qPH3.1的精细定位与候选基因克隆。2008年,利用含617个单株的目标染色体区段的F2分离群体,进一步评估了qPH3.1对产量相关性状和花期性状(抽雄期和吐丝期)的影响,结果表明qPH3.1对产量及花期性状均无影响。选择QTL区段内的交换单株自交,发展了QTL区段内的3个染色体片段跨叠系。2009年,利用含2153个单株的目标染色体区段的F2分离群体,进一步发展了QTL区段内的5个染色体片段跨叠系。利用连锁分析和染色体片段置换作图,将qPH3.1定位于ND87—ND88区间,对应于B73参考基因组的物理距离为12.6kb。该区间内仅有一个基因,编码一个与水稻OsGA3ox2高度同源的蛋白质,将其作为候选基因,并命名为ZmGA3ox2。利用RACE技术,获得了ZmGA3ox2的全长cDNA,确定了转录起始位点和转录本的3'末端,其转录本包含238bp的5'-UTR和505bp的3'-UTR。利用PCR技术扩增SL15和综3的编码区及启动子区,测序发现ZmGA3ox2基因含有3个外显子,2个内含子,开放读码框(ORF)全长1149bp,编码382个氨基酸。在ZmGA3ox2的编码区、启动子区及UTR区,SL15和综3间共检测到27个多态性位点。
     5.SL15和综3间,ZmGA3ox2基因的时空表达存在差异。利用ZmGA3ox2的序列进行BLAST分析,发现玉米B73基因组中仅存在两个GA3ox基因,ZmGA3ox1和ZmGA3ox2。RT-PCR分析表明,ZmGA3ox2在根、茎、叶、雄穗及雌穗等组织中均有表达,而ZmGA3ox1仅在雄穗中表达。ZmGA3ox1仅在雄穗中表达说明在营养生长阶段,ZmGA3ox2是唯一起作用的GA3ox基因,ZmGA3ox2的表达量对活性GA的量起着决定性的作用。quantitative RT-PCR分析发现,在拨节后4个时期的茎尖组织中,SL15中ZmGA3ox2的表达水平显著高于该基因在综3对应时期的表达水平。
     6.玉米矮秆突变体dwarf-I(d1)的遗传分析证实ZmGA3ox2的变异可以影响株高。通过对其中一个1的等位突变体d1-6016的分析,发现其ZmGA3ox2基因存在2304bp的片段缺失,包括734bp的起始密码子上游序列和1570bp的编码区序列,丢失掉了核心启动子区域和几乎整个编码区,编码区仅剩下最后一个外显子的64bp的碱基残留。同时,ZmGA3ox1在d1-6016的雄穗中能够正常表达,但d1-6016仍然表现出极端矮化,表明ZmGA3ox1基因的功能不能补偿ZmGA3ox2的缺失,进一步说明ZmGA3ox2在玉米植株茎秆的生长中起着决定性的作用。我们同时构建了含有406个单株的d1-6016的分离群体, ZmGA3ox2基因内的标记ND88和株高表型表现出共分离。d1-6016中ZmGA3ox2基因的大片段缺失及ND88与表型的共分离表明ZmGA3ox2就是负责d1的基因。
     7.体外施用赤酶素(GA3)可消除综3与SL15间的株高差异。qPH3.1的候选基因是ZmGA3ox2,表明SL15与综3间的株高的差异,可能是由于二者体内的活性GA的水平差异所引起的。对SL15与综3进行GA外源喷施处理,结果发现外源喷施GA处理的SL15和综3的株高相对于未喷施GA的SL15和综3均显著增高,而且GA处理的SL15和综3具有相似的株高。这一生理学证据充分证明SL15和综3间的株高差异与GA相关,两者间的株高差异是由于GA生物合成基因变异引起的。通过对拔节后4个时期的茎尖的内源GA测定证实活性GA1在SL15中的含量显著高于在对应时期的综3中的含量。
     8.候选基因关联分析表明ZmGA3ox2启动子区的自然变异影响玉米植株高度。利用含有244个自交系的关联群体对ZmGA3ox2进行候选基因关联分析,结果表明启动子区的两个位点(S-575,S-566)与株高变异显著相关。在这两个显著相关的位点,来自SL15的等位基因可以增加株高。这两个位点间存在连锁不平衡(r2=0.53)且均具有3个等位基因,在关联群体中可以形成4种主要的单倍型。Haplotype4(SL15型)的株高显著高于Haplotype3(综3型)的株高。
Maize is an important crop for food, feed, raw materials of industry and biofuels. Grain yield, biomass and quality are all the target traits for maize breeding. The plant height (PH) is an important yield-associated trait that highly correlated with the grain yield and biomass of maize. Firstly, PH is related to the plant lodging of maize. Previous work suggested that increase the planting density is an effective way to enhance the grain yield, but high-density planting also involves the risk of lodging, which can reduce grain yield. To avoid lodging, one breeding strategy is to moderately decrease plant height. Secondly, the modification of plant architecture has the potential to enhance biomass production, and plant height is an important component of architecture that is highly correlated with biomass yield. Therefore, plant height is a very agronomic importantly trait in maize genetics and breeding and the cloning of the genes for PH can guide the genetic improvement of crops. In a previous study from our lab, a PH QTL, qPH3.1which located in chromosome3was detected using chromosome segment substitution line (CSSL) population. In present study, qPH3.1was finely mapped using map-based cloning strategy and candidate gene for qPH3.1was successfully cloned and the evidences from mutant, expression, association mapping, cytology, and physiological analysis supported the candidate gene. The main research results are as follows:
     1. SL15is one line from the Z3HBILs CSSL population, which was developed by crossing a recipient line (Zong3) with a donor line (HB522) through four cycles of advanced backcrosses. The introgressed segment in SL15is flanked by ND1and ND75on chromosome3. A total of245genome-wide SSR markers showing polymorphism between Zong3and HB522were used to screen the SL15. Except target segment, only one donor segment was detected, near dupssr23on bin3.06. The genetics difference between SL15and Zong3based on the SSR analysis was about2%.
     2. The mean PH of SL15was significantly taller than that of Zong3by increase the cell length of internode. The comparison of PH, internode number and internode length between SL15and Zong3showed that both SL15and Zong3have the same number of elongated internodes, indicating that the observed difference of PH between the two lines was caused by difference in the length of the internodes. Measurement of length of each internode and tassel showed that all of the internodes of SL15were significantly longer than those of the Zong3, while the length of the tassel of SL15had no significant difference from that of Zong3. Cytological observation revealed that internodes cells in SL15were significantly longer than that in Zong3(p<0.01), thus indicating that longer internodes in SL15relative to Zong3were due to longitudinally increased cell lengths but not to an increase number of cell in SL15internodes.
     3. The introgressed segment of SL15harbored the gene which increase the PH. a NIL-F2population containing161individuals was developed by crossing SL15with Zong3. QTL for PH and yield-associated traits, including100-kernel weight, number of rows of kernels, kernels per row, ear length, and ear diameter, were detected. QTL mapping revealed a QTL for PH (qPH3.1) in the target region, accounting for32.3%of the phenotypic variance, and the additive and dominant effects of the SL15allele were9.6cm and4.5cm, respectively. No QTL for yield-associated traits were detected indicated that qPH3.1controlled only the PH phenotype and not any other yield-associated trait. Linkage analysis indicated that the introgression segment near dupssr23on bin3.06was not associated with PH and yield-associated traits.
     4. Fine mapping of qPH3.1and cloning of candidate gene. In2008, a NIL-F2populations containing617individuals was developed, and the effect of qPH3.1on yield-associated traits (number of rows of kernels, kernels per row, ear length, and ear diameter) and flowering traits (days to tassel, and days to silk) were evaluated and results indicated that qPH3.1has no effect on the yield and flowering. Those individuals containing recombination breakpoints in the QTL interval were selected to self-pollinate and three sub-NILs were developed. In2009, another five sub-NILs were developed from a larger NIL-F2population containing2153individuals. Substitution mapping with eight sub-NILs represent the probability of single crossover among markers in the QTL interval narrowed down qPH3.1within a12.6kb interval between marker ND87—ND88. One ortholog of OsGA3ox2, designated as ZmGA3ox2, encoding a GA3β-hydroxylase was successfully cloned. RLM-RACE (RNA Ligase Mediated Rapid Amplification of cDNA Ends) were performed to amplify full-length cDNA of ZmGA3ox2, and the results showed that the length of5'-UTR and3'-UTR of transcript were238bp and505bp, respectively. The coding region and promoter region were amplified and ZmGA3ox2was found to contain three exons and two introns. The length of ORF was1149bp and the deduced protein is expected to contain382amino acids.27polymorphisms were found between SL15and Zong3in the coding region and promoter region.
     5. Expression difference was detected between SL15and Zong3. BLAST analysis using sequence of ZmGA3ox2revealed that the maize genome has only two GA3ox genes, ZmGA3ox1and ZmGA3ox2. RT-PCR analysis with total RNA extracted from root, stem, leaf, tassel, and ear from B73revealed that ZmGA3ox2was expressed in all the tissues and organs tested, whereas ZmGA3ox1expression was observed only in tassel. The results indicated that ZmGA3ox2is the only GA3ox gene that functions for stem elongation during the vegetative stage. Our qRT-PCR results showed that significantly higher levels of ZmGA3ox2were expressed in the stem apices in four stages in SL15than in Zong3.
     6. Genetics analysis of maize dwarf mutant dwarf-1(dl) indicated that the variation of ZmGA3ox2could affect PH. Sequence analysis revealed a2304bp deletion of ZmGA3ox2in d1-6016allele, including734bp upstream sequence of the start codon and1570bp of the coding sequence. It loses promoter core region and almost whole coding region with only64bp of last exon remaining. The ZmGA3oxl was expressed in tassel of d1-6016indicated that ZmGA3ox1can not compensate the deficiency of ZmGA3ox2and the ZmGA3ox2play a decisive role for stem elongation during the vegetative stage. In particular, allelic variation determined by gene-specific marker (ND88) in ZmGA3ox2locus co-segregated with the plant height phenotype in a backcross population containing406individuals. These evidences from cosegregation and sequence variation in the dl-6016allele experimentally support that ZmGA3ox2is the candidate gene for d1-6016.
     7. PH difference between SL15and Zong3could be removed by exogenous GA3treatment. The results described above indicated that ZmGA3ox2is the candidate gene for qPH3.1and the phenotypic difference between Zong3and SL15was ascribed to the difference of accumulation of GA. Exogenous GA treatment for SL15and Zong3showed that the PH of treated SL15and Zong3were significantly taller than that of untreated SL15and Zong3, respectively. Treated SL15becomed very similar to treated Zong3for PH. The evidence from physiological analysis indicated that the difference between SL15and Zong3was related to GA level and the difference was caused by the variation of GA-biosynthesis gene. Significantly greater endogenous GA1levels in SL15relative to Zong3was measured in the stem apices in four stages after jointing.
     8. Candidate gene association mapping showed that natural variation in promoter region affect the PH of maize. Association mapping was carried out to test the association between the polymorphisms in the candidate gene and PH using a population with244inbreds. The results revealed that two sites (S-575and S-566) in the promoter were associated with PH variation across two field experiments at the P<0.01level. The SL15allele of the two association loci results in an increased PH. The loci of S-575and S-566both have three alleles. These two sites were in strong LD (r2=0.53), and formed four main haplotypes in the association panel. The PH of haplotype4(SL15type) was significantly taller than that of haplotype3(Zong3type).
引文
1.丰光,刘志芳,李妍妍,景希强,邢锦丰,黄长玲.中国不同时期玉米单交种产量变化的研究.中国农业科学,2010,43:277-285
    2.兰进好,褚栋.玉米株高和穗位高遗传基础的QTL剖析.遗传,2006,27:925-934
    3.宋朝玉,张继余,张清霞,陈希群,李祥云,王圣健.玉米倒伏的类型、原因及预防、治理措施.作物杂志,2006:36-38
    4.王翠玲,孙朝辉,库丽霞,王铁固,陈彦惠.利用永久F2群体在不同光周期环境下定位玉米株高QTL.作物学报,2011,37:271-279
    5.王立秋,赵永锋,薛亚东,张祖新,郑用琏,陈景堂.玉米衔接式单片段导入系群体的构建和评价.作物学报,2007,33:663-668
    6.吴建伟,刘成,石云素,宋燕春,张桂寅,马峙英,王天宇,黎裕.不同水分条件下玉米株高和穗位高的QTL分析.植物遗传资源学报,2005,6:266--271
    7.严建兵,汤华,黄益勤,石永刚,李建生,郑用琏.不同发育时期玉米株高QTL的动态分析.科学通报,2003,48:1959-1964
    8.杨晓军,路明,张世煌,周芳,曲延英,谢传晓.玉米株高和穗位高的QTL 定位.遗传,焦2008,30:1477-1486
    9.张志明,赵茂俊,荣廷昭,潘光堂.玉米SSR连锁图谱构建与株高及穗位高QTL定位.作物学报,2007,33:341-344
    10. Ajmone-Marsan P, Monfredini G, Franceschini P, Pagnotto G, Motto M, Ludwig WF, Melchinger AE. Identification of genomic regions affecting plant height and their relationship with grain yield in an elite maize cross [Lombardy]. Maydica,1994,39:133-139
    11. Alpert KB, Tanksley SD. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA,1996, 93:15503-15507
    12. Amon T, Amon B, Kryvoruchko V, Machmuller A, Hopfner-Sixt K, Bodiroza V, Hrbek R, Friedel J, Potsch E, Wagentristl H. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource Technology,2007,98:3204-3212
    13. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science,2005,309:741-745
    14. Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the a-subunit of GTP-binding protein. Proc Natl Acad Sci USA,1999,96:10284-10289
    15. Austin DF, Lee M. Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome,1996,39:957-968
    16. Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell,2009,21:1453-1472
    17. Bai W, Zhang H, Zhang Z, Teng F, Wang L, Tao Y, Zheng Y. The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations. Plant Breed,2010, 129:376-384
    18. Beavis WD, Grant D, Albertsen M, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet,1991,83:141-145
    19. Beavis WD, Smith OS, Grant D, Fincher R. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 1994,34:882-896
    20. Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP. Cloning and characterization of the maize An1 gene. Plant Cell, 1995,7:75-84
    21. Berke TG, Rocheford TR. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci,1995,35:1542-1549
    22. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL:software for association mapping of complex traits in diverse samples. Bioinformatics,2007,23:2633-2635
    23. Brekke B, Edwards J, Knapp A. Selection and adaptation to high plant density in the Iowa stiff stalk synthetic maize(Zea mays L.) population. Crop Sci,2011,51:1965-1972
    24. Cassani E, Bertolini E, Cerino Badone F, Landoni M, Gavina D, Sirizzotti A, Pilu R. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Mol Breeding,2009,24:375-385
    25. Clark RM, Wagler TN, Quijada P, Doebley J. A distant upstream enhancer at the maize domestication gene tbl has pleiotropic effects on plant and inflorescent architecture. Nat Genet,2006,38:594-597
    26. Clouse SD, Langford M, McMorris TC. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol,1996,111:671-678
    27. Coulson A, Sulston J, Brenner S, Karn J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA, 1986,83:7821-7825
    28. Dai M, Zhao Y, Ma Q, Hu Y, Hedden P, Zhang Q, Zhou D. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol,2007,144:121-133
    29. Doebley J, Stec A. Inheritance of the morphological differences between maize and teosinte:Comparison of results for two F2 populations. Genetics, 1993,134:559-570
    30. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature,1997,386:485-488
    31. Duvick DN. The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron,2005,86:83-145
    32. Duvick DN, Smith JSC, Cooper M. Long-term selection in a commercial hybrid maize breeding program. Plant Breed Rev,2004,24:109-151
    33. Edgar RC. MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res,2004,32:1792-1797
    34. Emerson RA. The inheritance of certain "abnormalities" in maize. J Hered, 1912,os-8:385-399
    35. Emerson RA, Emerson SH. Genetic interrelations of two andromonoecious types of maize, dwarf and anther ear. Genetics,1922,7:203-236
    36. Evans MMS, Poethig RS. Gibberellins promote vegetative phase change and reproductive maturity in maize. Plant Physiol,1995,108:475-487
    37. Evenson RE, Gollin D. Assessing the impact of the Green Revolution,1960 to 2000. Science,2003,300:758-762
    38. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet,2006,112:1164-1171
    39. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size. Science,2000,289:85-88
    40. Fujioka S, Yamane H, Spray CR, Gaskin P, Macmillan J, Phinney BO, Takahashi N. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 Seedlings of Zea mays L. Plant Physiol,1988,88:1367-1372
    41. Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol,2003,54:137-164
    42. Galbiati M, Landoni M, Consonni G, Gussago C, Pilu R, Gavazzi G. Identification and analysis of maize mutants defining six new genes affecting plant stature. Maydica,2002,47:169-180
    43. Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, Busov VB. Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell,2010,22:623-639
    44. Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser,1999, 41:95-98
    45. Harberd NP, Freeling M. Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics,1989,121:827-838
    46. Hedden P, Kamiya Y. Gibberellin biosynthesis:enzymes, genes and their regulation. Annu Rev Plant Physiol Plant Mol Biol,1997,48:431-460
    47. Hedden P, Phillips AL. Gibberellin metabolism:new insights revealed by the genes. Trends Plant Sci,2000,5:523-530
    48. Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell,2005, 17:2243-2254
    49. Huang N, Courtois B, Khush GS, Lin H, Wang G, Wu P, Zheng K. Association of quantitative trait loci for plant height with major dwarfing genes in rice. Heredity,1996,77:130-137
    50. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell,2001,13:999-1010
    51. Ishimaru K, Ono K, Kashiwagi T. Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta,2004, 218:388-395
    52. Itoh H, Ueguchi-Tanaka M, Sakamoto T, Kayano T, Tanaka H, Ashikari M, Matsuoka M. Modification of rice plant height by suppressing the height-controlling gene, D18, in rice. Breed sci,2002,52:215-218
    53. Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M. Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA,2001,98:8909-8914
    54. Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Ashikari M, Matsuoka M. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J,2003,35:104-115
    55. Khairallah MM, Bohn M, Jiang C, Deutsch JA, Jewell DC, Mihm JA, Melchinger AE, Gonzalez-De-Leon D, Hoisington DA. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed,1998,117:309-318
    56. Khush GS. Green revolution:preparing for the 21st century. Genome,1999, 42:646-655
    57. Kobayashi M, Yamaguchi I, Murofushi N, Ota Y, Takahashi N. Fluctuation and localization of endogenous gibberellins in rice. Agric Biol Chem,1988, 52:1189-1194
    58. Kovi MR, Zhang Y, Yu S, Yang G, Yan W, Xing Y. Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to Green Revolution gene sdl. Theor Appl Genet,2011,123:705-714
    59. Kurosawa E. Experimental studies on the nature of the substance secreted by the" bakanae" fungus. Nat Hist Soc Formosa,1926,16:213-227
    60. Lalitha S. Primer premier 5. Biotech Software & Internet Report,2000, 1:270-272
    61. Li J. Production, breeding and process of maize in China. Handbook of maize: Its biology,2009:563-576
    62. Li J, Jin H. Regulation of brassinosteroid signaling. Trends Plant Sci,2007, 12:37-41
    63. Li J, Nagpal P, Vitart V, McMorris TC, Chory J. A role for brassinosteroids in light dependent development of Arabidopsis. Science,1996,272:398-401
    64. Li YC, Korol AB, Fahima T, Beiles A, Nevo E. Microsatellites:genomic distribution, putative functions and mutational mechanisms:a review. Mol Ecol,2002,11:2453-2465
    65. Lincoln S, Daly M, Lander E. Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute, Cambridge, MA,1992
    66. Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JAD, Chen LJ, Yu SM. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell,2008,20:2603-2618
    67. Mussig C. Brassinosteroid-Promoted Growth. Plant Biol,2005,7:110-117
    68. Melchinger AE, Utz H, Schon CC. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics,1998,149:383-403
    69. Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1:rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res,2002,9:11-17
    70. Olson JW. A comparison of leaf number, internode and mesocotyl lengths in dwarf1 and normal Zea mays L. Proc Minn Acad Sci,1954,22:99-104
    71. Olszewski N, Sun TP, Gubler F. Gibberellin signaling:biosynthesis, catabolism, and response pathways. Plant Cell,2002,14:S61-80
    72. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP.'Green revolution' genes encode mutant gibberellin response modulators. Nature,1999,400:256-261
    73. Phinney BO. Growth response of single-gene dwarf mutants in maize to gibberellic acid. Proc Natl Acad Sci USA,1956,42:185-189
    74. Robertson DS. A possible technique for isolating genic DNA for quantitative traits in plants. J Theor Biol,1985,117:1-10
    75. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphisms in barley:Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984,81:8014-8018
    76. Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol,2001, 125:1508-1516
    77. Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H. Genetic manipulation of gibberellin metabolism in transgenic rice. Nat biotechnol,2003,21:909-913
    78. Salas Fernandez MG, Becraft PW, Yin Y, Lubberstedt T. From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci,2009, 14:454-461
    79. Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL. Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol,2002,48:601-613
    80. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA,2007,104:11376-11381
    81. Salvi S, Corneti S, Bellotti M, Carraro N, Sanguineti M, Castelletti S, Tuberosa R. Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol,2011,11:4
    82. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G. A mutant gibberellin-synthesis gene in rice. Nature,2002,416:701-702
    83. Scanlon MJ, Stinard PS, James MG, Myers AM, Robertson DS. Genetic analysis of 63 mutations affecting maize kernel development isolated from Mutator stocks. Genetics,1994,136:281-294
    84. Schon CC, Lee M, Melchinger AE, Guthrie WD, Woodman WL. Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity,1993,70:648-659
    85. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA. The B73 maize genome:complexity, diversity, and dynamics. Science,2009,326:1112-1115
    86. Sen TZ, Harper LC, Schaeffer ML, Andorf CM, Seigfried TE, Campbell DA, Lawrence CJ. Choosing a genome browser for a Model Organism Database: surveying the Maize community. Database,2010,2010:baq007
    87. Shan JX, Zhu MZ, Shi M, Gao JP, Lin HX. Fine mapping and candidate gene analysis of spd6, responsible for small panicle and dwarfness in wild rice (Oryza rufipogon Griff.). Theor Appl Genet,2009,119:827-836
    88. Sheridan WF. Maize developmental genetics:genes of morphogenesis. Annu Rev Genet,1988,22:353-385
    89. Shiferaw B, Prasanna BM, Hellin J, Banziger M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sec,2011,3:307-327
    90. Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P. Energy crops: current status and future prospects. Global Change Biology,2006, 12:2054-2076
    91. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet,2007,39:623-630
    92. Spielmeyer W, Ellis MH, Chandler PM. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA,2002,99:9043-9048
    93. Spray C, Phinney BO, Gaskin P, Gilmour SJ, MacMillan J. Internode length in Zea mays L. Planta,1984,160:464-468
    94. Spray CR, Kobayashi M, Suzuki Y, Phinney BO, Gaskin P, MacMillan J. The dwarf-1 (dl) mutant of Zea mays blocks three steps in the gibberellin-biosynthetic pathway. Proc Natl Acad Sci USA,1996, 93:10515-10518
    95. Stein OL. Rates of leaf initiation in two mutants of Zea mays, dwarf-1 and brachytic-2. Am JBot,1955,42:885-892
    96. Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tbl. Nat Genet,2011, 43:1160-1163
    97. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011,28:2731-2739
    98. Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarfll, with reduced seed length. Plant Cell,2005, 17:776-790
    99. Tang J, Teng W, Yan J, Ma X, Meng Y, Dai J, Li J. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica,2007,155:117-124
    100. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice(Oryza sativa L.):frequency, length variation, transposon associations, and genetic marker potential. Genome Res,2001,11:1441-1452
    101. Tian F, Zhu Z, Zhang B, Tan L, Fu Y, Wang X, Sun CQ. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Genet,2006,113:619-629
    102. Touzet P, Winkler R, Helentjaris T. Combined genetic and physiological analysis of a locus contributing to quantitative variation. Theor Appl Genet, 1995,91:200-205
    103. Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun T. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol,2004,135:1008-1019
    104. Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF. The origin of the naked grains of maize. Nature,2005,436:714-719
    105. Wang S, Basten C, Zeng Z:Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. In.; 2006.
    106. Weng J, Xie C, Hao Z, Wang J, Liu C, Li M, Zhang D, Bai L, Zhang S, Li X. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PloS one,2011, 6:e29229
    107. Winkler RG, Freeling M. Physiological genetics of the dominant gibberellin-nonresponsive maize dwarfs, Dwarf8 and Dwarf9. Planta,1994, 193:341-348
    108. Winkler RG, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell,1995, 7:1307-1317
    109. Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa×O. rufipogon cross. Theor Appl Genet,2008, 116:613-622
    110. Xie X, Song MH, Jin F, Ahn SN, Suh JP, Hwang HG, McCouch S. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet,2006,113:885-894
    111. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet,2008,40:761-767
    112. Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol,2008,59:225-251
    113. Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell,2000,12:1591-1606
    114. Yang Q, Yin G, Guo Y, Zhang D, Chen S, Xu M. A major QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet,2010,121:673-687
    115. Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed,2011, 28:511-526
    116. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell,2000,12:2473-2483
    117. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet,2006,38:203-208
    118. Zdobnov EM, Apweiler R. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics,2001,17:847-848
    119. Zhang Y, Li Y, Wang Y, Peng B, Liu C, Liu Z, Tan W, Wang D, Shi Y, Sun B, Song Y, Wang T, Li Y. Correlations and QTL detection in maize family per se and testcross progenies for plant height and ear height. Plant Breed,2011, 130:617-624
    120. Zhang Z, Zhao M, Ding H, Rong T, Pan G. Quantitative trait loci analysis of plant height and ear height in maize(Zea mays L.). Russian J Genet,2006, 42:306-310
    121. Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet,2008, 40:367-372
    122. Zhou L, Zhang J, Yan J, Song R. Two transposable element insertions are causative mutations for the major domestication gene teosinte branched 1 in modern maize. Cell Res,2011,21:1267-1270
    123. Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell,2006,18:442-456
    124. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res,2003,31:3406-3415

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700