用户名: 密码: 验证码:
基于超磁致伸缩材料与光纤光栅的电流传感理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统容量的增长,继电保护系统的作用日益凸显,而电流测量是电力系统中继电保护、电能计量、系统监测、系统分析的关键,其测量精度与可靠性直接关系到电力系统的安全、可靠、经济运行。传统的电磁式电流互感器具有抗电磁干扰能力差、有油易燃易爆、绝缘结构复杂、造价高、动态范围小等缺点在一定程度上束缚了其发展和应用。光纤传感器具有尺寸小、重量轻、灵敏度高、抗电磁干扰能力强、集传感和传输于一体,易于制作和埋入材料内部,具有对结构应力、应变、温度和磁场进行高精度测量的优点。论文将具有磁致伸缩量大、响应频带宽、响应速度快的超磁致伸缩材料与光纤光栅相结合进行电流传感系统设计,建立系统模型,分析温度、预应力、偏置磁场对系统传感特性的影响,并对其进行了实验研究。
     1.根据超磁致伸缩材料的实验数据,对GMM的磁-力-热耦合特性进行详细的分析,从弹性Gibbs自由能出发,在Wiss铁磁理论、热力学关系与J-A模型的基础上,建立了能够描述超磁致伸缩材料磁-热-力耦合特性的非线性模型。该模型以显式的形式给出了磁致伸缩材料中磁致伸缩与磁场H、磁化强度M、应力、温度t之间关系,模型中所涉及的参数均可通过实验获得,模型能够准确地预测超磁致伸缩材料在不同预压力、温度影响下磁化强度、磁致伸缩、磁化率、压磁系数随外加磁场变化关系,并能够反映材料的饱和特性与不同应力影响下的“翻转效应”;可用于计算不同应力、温度影响下超磁致伸缩材料的磁致伸缩特性,在工程实际中有良好的应用前景。
     2.运用多参数磁测试系统对不同预应力、温度影响下Terfenol-D棒材的磁化特性与磁致伸缩特性进行了测试,结果表明预应力对材料的磁化过程与饱和磁致伸缩特性影响明显,预应力导致饱和磁致伸缩明显增加,温度对中低场区的磁化过程与磁致伸缩特性影响十分微弱,但对饱和磁化强度与饱和磁致伸缩值影响明显。通过实验结果与磁-力-热耦合非线性模型的计算结果的比较表明模型能够较好的预测应力温度影响下超磁致伸缩材料的磁致伸缩特性。实验结果对超磁致伸缩材料的理论研究、模型建立具有一定的指导意义,为以超磁致伸缩材料为核心的传感器、换能器的设计、优化以及应用提供依据。
     3.设计了基于磁致伸缩效应和光纤腔衰荡技术的高灵敏度电流传感系统。在Jiles-Atherton模型、二次畴转模型和光纤衰荡技术波长解调原理的基础上建立了电流传感器的数学模型,模型反映了电流-应变-光纤腔衰荡时间之间的耦合机制。对不同预应力作用下Terfenol-D棒的磁致伸缩输出应变、衰荡时间、系统灵敏度与磁场之间的变化规律进行了理论分析和仿真研究,结果表明,该传感器具有较高的灵敏度,可通过改变预应力实现不同量程范围内的电流或磁场测量,研究可为发展新型的高灵敏度电流传感器提供理论指导。
     4.设计了基于超磁致伸缩材料和光纤光栅的交流电流传感系统。在光纤光栅应变传感机理、超磁致伸缩材料磁-力-热耦合非线性模型、光纤M-Z干涉仪解调原理的基础上,建立了超磁致伸缩材料和光纤光栅的交流电流传感系统模型,模型能够反映电流-光纤光栅中心波长-光纤M-Z干涉仪输出光强之间的耦合机制。对不同偏置电流、预应力影响下交流电流传感系统的工作特性进行了理论分析和仿真研究,结果表明,偏置电流与预应力都将影响超磁致伸缩材料和光纤光栅交流电流传感器的工作特性,因此,在交流电流传感器具体设计与使用过程中需要综合考虑偏置电流和预应力的影响,合理选择偏置电流与预应力的值。
With the growth of the capacity of the power system, the role of relay protection system hasbecome increasingly prominent, current measurement is the key to relay protection, energymetering, system monitoring, system analysis in the power system, the measurement accuracyand reliability is directly related to the power system safe, reliable and economic operation. Thetraditional electromagnetic current transformers have drawback of immunity to electromagneticinterference, oil flammable and explosive, insulation structure complex, high cost, smalldynamic range, which constrained their development and application to some extent. Fiber opticsensor has a small size, light weight, high sensitivity, immunity to electromagnetic interference,sensing and transmission at the same time, easy making and buried inside the material,high-precision measurement of structural stress, strain, temperature and magnetic field. In thispaper, a current sensing system based on giant magnetostrictive materials and fiber grating isdesigned and the system model is established too. The giant magnetostrictive materials havelarge magnetostrictive, wide frequency bandwidth, fast response speed. The influence oftemperature, prestress, bias field to the system’s sensing characteristics is analyzed, and theexperimental study of the sensing system is also carry out.
     The magneto-mechanical-thermo coupling characteristics of giant magnetostrictivematerials are analyzed according to the experimental data of the giant magnetostrictive material.A nonlinear magnetostrictive model which can describe the magneto-mechanical-thermocoupling characteristics of giant magnetostrictive materials has been proposed according toelastic Gibbs free energy, Wiss ferromagnetic theory, thermo-dynamics relations andJiles-Atherton model. The proposed model gives the mathematical relation among themagnetostriction, magnetic field, magnetization, stress and temperature for magnetostrictivematerial.The parameters referred to the model can be determined through experimental methods.The model can predict magnetization, magnetostriction, magnetic susceptibility, piezomagnetic coefficient curve with the applied magnetic field under different temperature and prestress, andcan also to reflect the saturation characteristics and “flip effect” under the influence of differentprestress. The proposed model can be used to calculate the magnetostrictive characterization ofgiant magnetostrictive materials in different temperature and under different prestresses. There isa good prospect in engineering practice.
     The magnetization and magnetostriction characteristics of Terfenol-D rods under differenttemperature and prestresses were tested by use of multi-parameter magnetic test system. Theresults show that the effect of prestress on magnetization process and the saturationmagnetostriction is significant, prestress causes the saturation magnetostriction increasesignificantly, and the effect of temperature on magnetization process and magnetostriction in thelow magnetic field is very weak, but significant in saturation field. The comparison between thecalculation results of the nonlinear model and the experimental results shows that the proposedmodel can be used to calculate the magnetostrictive characterization of giant magnetostrictivematerials in different temperature and under different prestresses. The experimental results havea certain significance of the theoretical study of the giant magnetostrictive material and providebasis for the sensor and transducer’s design, optimization and application.
     A high-sensitivity current sensor is designed based on magnetostriction effect and fiber-loopcavity ring-down technique. A mathematic model of the magnetic field sensor is presentedaccording to the Jiles-Atherton model, quadratic magnetic domain rotation model and thedemodulation principle of fiber-loop cavity ring-down technique. The model quantifies thecoupling mechanisms among the current,magnetic field, strain and the ring-down time of thefiber loop. The strain variation of a Terfenol-D rod, the ring-down time of the fiber loop and thesensitivity of the sensor with the magnetic field are analyzed and simulated under differentprestresses. Results show that the sensitivity of the sensor is very high and the measurementrange of the magnetic field sensor can be changed by changing the prestress. The study result canprovide a theoretical foundation for the development of new high-sensitivity current sensors.
     An AC current sensing system is designed based on giant magnetostrictive material andfiber Bragg grating.The model of AC current sensing system is presented according to strainsensing mechanism, nonlinear model of giant magnetostrictive materials, demodulation principleof fiber Mach-Zehnder interferometer. The model is able to reflect the coupling mechanisms among the current,the center wavelength of fiber Bragg grating and output intensity of fiberMach-Zehnder interferometer. For different bias current, the operating characteristics of ACcurrent sensing system under the influence of prestress are theoretically analyzed and simulated,results show that the bias current and prestress will affect the operating characteristics of ACcurrent sensing system based on giant magnetostrictive material and fiber Bragg grating,therefore, the influence of the bias current and the prestress needs to be considered in the designand application of AC current sensor and the suitable value of bias current and prestress shouldbe selected.
引文
[1]张冈,李少慧,秦忆等.一种光电混合式电流传感器[J].华中理工大学学报.28(3).2000:90-92
    [2]赵渭忠,张守业,张在宣等.高灵敏度温度稳定BIGd:YIG磁光光纤电流传感器胜能及其晶体生长研究[J].光电子.激光.10(6).1999:487-491
    [3]康崇,孙伟民,王政平等.反射相差对光学玻璃电流传感器测量灵敏度和稳定性的影响[J].光学学报.18(xl).1995:2513-2517
    [4]刘哗等.光纤电流传感器传感头的结构与原理.仪表技术与传感器,2002,5(11):53-58
    [5]黄惠智等.光纤传感器的发展及其在电力系统中的应用.电工电能新技术,1990,(4):27-33
    [6]刘彬,张群正.一种新型光纤电流传感器[J].传感技术学报.2002,1:55-59
    [7] D.Reilly, A.J.Willshire, G.Fusiek et al.A Fiber-Bragg-Grating-Based sensor forsimultaneous AC current andtemperature measurement.IEEE Sensors Journal,2006,6(6):1539-1542
    [8]佘守宪.导波光学物理基础.北京:北方交通大学出版社.2002
    [9] T.sato, G.Takahashi, Y.Inui. Method and apparatus for optically measuring a current. European Patent,0088419A1, Sep,1983.
    [10] T.Yoshino, T.Takahashi, M.Gojyki et al.Polygonal Faraday effect current sensor with polarization-pres-erving dielectric mirrors.SPIE,1994,2292:34-41
    [11] B.C.Chu, Y.N.Ning, D.A.Jackson. Faraday current sensor that uses a triangular-shape bulk-optic sensingelement.Optics Letters,1992,17(16):1167-1169
    [12] Y.N.Ning, D.A.Jackson. Review o f optical current sensors using bulk-glass sensing elements[J].Sensorsand Actuators(A),1993,39:219-224.
    [13] N.C.Pistoni, M.Martinelli. Polarization noise suppression in retracing optical fiber circuits,Opt.Lett.16(10)(1991)711-713
    [14] J.Blake, P.Tantaswadi, R.T.Carvalho.In-line Sagnac interferometer current sensor,IEEE Trans.PowerDelivery1996,11(1):116-121.
    [15] H.S.Kang, J.H.Lee, K.S.Lee. A stablization method of the Sagnac optical fiber current sensor with twistcontrol.IEEE Photon.Technol.Lett.,1998,10(10):1464-1466
    [16] H.Lin,W.W.Lin, M.H.Chen. Modified in-line Sagnac interferometer with passive demodulation techniquefor environmental immunity of a fiber-optic current sensor. Appl. Opt.,1999,38(13):2760-2766
    [17] S.X.Short, J.U.Arruda, A.A.Tselikov, et al. Elimination of birefringence induced scale factor errors in thein-line Sagnac Interferometer current sensor.J. Lightwave Technol.,1998,16(10):1844-1850
    [18] K.Bohnert, P.Gabus, J. Nehring, et al. Temperature and vibration insensitive fiber-optic current sensor. J.lightwave Technol.,2002,20(2):267-276
    [19]施长海,陈建平,李新碗,等.干涉型光纤微弱磁场传感系统换能器的设计.传感器与微系统.2006,25(12):67-69
    [20]王衡,周王民,王虎等.基于M-Z干涉仪的全光纤电流传感器.传感器与微系统.2011,30(1):73-76
    [21]宋章启,张学亮,阳明晔,等.基于Sagnac干涉仪的光纤直流磁场传感研究.半导体光电.2007,28(6):874-877
    [22]王廷云,孙圣和,郑绳楦.一种新型光纤电流互感器.仪器仪表学报,1997,18(6):650-635
    [23] A.M.Smith.Optical fibers for current measurement applications [J].Optics and Laser Technology,1980,(2):25-29.
    [24] A.Papp, H.Harms. Magneto-optical current transformer1:Principles[J]. Applied Optics,1980,19(22):3729-3734.
    [25] W.J.Tabor, R.S.Chen.Electromagnetic propagation through materials possessing both Faraday rotationand birefringence:experiments with ytterbium orthoferrite [J].Applied Physics,1969,40(7):2760-2765
    [26] E.A.Ulmer. High accuracy Faraday measurements[C].International Conference on Optical Fiber Sensor,1988,21:1-4.
    [27] R.Malewski. High-Voltage Current Transformers with Optical Signal Transmission[J]. Optics Engineering,1981.20(l):54-57
    [28] G.H.Moulton. Light Pulse System Shrinks High-Voltage Protection Device [J].Electronics,1965.38(5):71-75.
    [29] S.Saito, et al., The laser current transformer for EHV power transmission lines [J]. IEEE J. of QuantumElectronics,1967.3(11):589-597.
    [30] H. Aulieh et al., Magneto-Optical Current Transformer2:Components[J]. Applied Optics,1980.19(22):3735-3740.
    [31] H. Harms and A.PaPP, Magneto-Optical Current Transformer3:Measurements[J]. Applied Optics,1980.19(22):3741-3745.
    [32]张德赛,罗道军,彭剑.国内外光电式电流互感器研究现状.四川电力技术,1999,2:53~55
    [33] Emerging Technologies Working Group, Fiber Optics Sensors Working Group. Optical CurrentTransducers for Power Systems: a Review [J]. IEEE Transaetions on Power delivery,1994,9(4):1778-1788
    [34] Y.N. Ning, Z.P.Wang, A.W.Palmer. Recent Progress in Optical Current Sensing Technique[J]. Rev SeiInstrument,1995,66(5):3097-3111
    [35]焦斌亮.Sagnac干涉型光纤电流传感器研究[D].河北:燕山大学信息科学与工程学院,2004.
    [36]张艳.光学电流互感器数字信号处理系统的研究[D].华中科技大学硕士论文,2004
    [37]李建基.西门子的光电互感器.[R].华通技术.2002,2:34-35
    [38] Wemeek,Marcelo Martins,Abrantes,et al. Fiber-optic-based Current and Voltage Measuring System forHigh-voltage Distribution Lines[J]. IEEE Transaetions on Power Delivery,2004,19(3):947-951.
    [39] J.Mora, A.Diez, J.L.Cruz, et al. A magnetostrictive sensor interrogated by fiber gratings for DC-currentand temperature discrimination. IEEE Photonics Technology Letters,2000,12:1680-1682.
    [40] J.Mora,L.Martinez-Leon,A.diez,et al.Simultaneous temperature and ac-current measurements for highvoltage lines using fiber Bragg grating.Sensors and Actuators A125,2006:313-316.
    [41] D.Satpathi, J.A.Moore, M.G.Ennis. Design of a terfenol-D based Fiber-Optic current transducer.IEEE.2003,(1):403-408.
    [42] D.Satpathi, J.A.Moore, M.G.Ennis.Terfenol-D based optical current transducer. Proceedings of IEEE onSensors,2003,1:403-408.
    [43] G.Fusiek, P. Niewczas, J.R.McDonald. Concept levelevaluation of the optical voltage and currentsensors and an arrayed waveguide grating for Aero-Electrical systems.Applications Instrumentation andMeasurement Technology Conference-IMTC2007arsaw,Poland,2007,5:1-5.
    [44] R.Deborah, J.W.Andrew, F.Grzegorz,et al. A Fibre Bragg Grating based sensor for simultaneous ACcurrent and temperature measurement.Proceedings of IEEE on Sensors,2004,3:1426-1429.
    [45]张涛,等.罗果夫斯基线圈测量高电爪及电力系统中的暂态电流[J].电工电能新技术,2002.21(3):53-56.
    [46]郭晓华,等.新型组合式电压电流传感器的研究[J].高压电器,2002.38(3):23-26.
    [47]尹朝,赵一唬.国产全光纤电子式电流互感器迈向超高压[J].电气时代,2009,9(1):9-14.
    [48]王廷云,郭强,唐明珏,等.磁致伸缩效应光纤微分干涉电流传感器.光电子.激光.2002,13(9):923-926.
    [49]廖帮全,冯德军,赵启大,等.光纤布拉格光栅电流传感的理论和实验研究.光学学报.2002,22(9):1092-1095.
    [50]赵洪霞,鲍吉龙.一种新颖的光纤光栅电流传感器.量子电子学报.2005,22(6):951-954.
    [51]熊燕玲,赵洪,张剑,等.基于光纤光栅的光学电流互感器研究.光学学报.2010,30(4):950-953.
    [52]李宝树,钟小江,仝卫国,等.基于磁致伸缩效应的FBG电流传感器.电工技术学报.2009,24(1):95-100.
    [53]周王民,魏志武,李文博.温度不敏感光纤光栅大电流传感器.高电压技术.2009,35(9):2133-2137.
    [54]吕全超,赵建林,周王民.一种同时测量电流和温度的光纤光栅传感器.光子学报.2009,38(11):2810-2815.
    [55]王博文.超磁致伸缩材料制备与器件设计.冶金工业出版社:2003
    [56] A.G.Olabi, A.Grunwald. Design and application of magnetostrictive materials. J Mater Design(2007).doi:10.1016
    [57] http://www.etrema.com
    [58] F.Braghin, S.Cinquemani, F.Resta. A model of magnetostrictive actuators for active vibration control.Sensors and Actuators A: Physical,2011,165(2):342-350.
    [59] F.Braghin, S.Cinquemani, F.Resta. A low frequency magnetostrictive inertial actuator for vibrationcontrol.Sensors and Actuators A: Physical,2012,180(6):67-74.
    [60] S.Karunanidhi, M.Singaperumal. Design, analysis and simulation of magnetostrictive actuator andits application to high dynamic servo valve. Sensors and Actuators A: Physical,2010,157,(2):185-197.
    [61] H.F.Liu, Z.Y.Jia, F.J.Wang, et al. Research on the constant output force control system for giantmagnetostrictive actuator disturbed by external force Original Research Article.Mechatronics, In Press,Corrected Proof, Available online13August2012
    [62] Z.Y.Jia, H.F.Liu, F.J.Wang. Researches on the computer digital control system of giant magnetostrictiveactuator Original Research Article.Mechatronics,2009,19(7):1191-1196.
    [63] A.Grunwald, A.G.Olabi.Design of a magnetostrictive (MS) actuator, Sens. Actuators, A,2008,144:161-175.
    [64] R. Angara, L. Si, M. Anjanappa. Smart Mater. Struct.,2009,18:1-7
    [65] Y.M. Pei, X. Feng, X. Gao, D.N. Fang. Anisotropic magnetostriction for Tb0.3Dy0.7Fe1.95alloys undermagnetomechanical loading, J. Alloys Compd.,476(2009), pp.556-559.
    [66] Q.X.Yang, R.G.Yan, C.Z.Fan, et al. A Magneto-Mechanical Strongly Coupled Model for GiantMagnetostrictive Force Sensor,IEEE Trans. Magn.,43(2007), pp.1437-1440.
    [67] H.M. Zhou, Y.H. Zhou, X.J. Zheng, et al. A general3-D nonlinear magnetostrictive constitutive modelfor soft ferromagnetic materials, J. Magn. Magn. Mater.,2009,321(2009):.281-290.
    [68] K. Linnemann, S. Klinkel, W. Wagner. A constitutive model for magnetostrictive and piezoelectricmaterials, Int. J. Solids Struct.,46(2009), pp.1149-1166.
    [69] A. Bergqvist, G. Engdahl. A stress-dependent magnetic Preisach hysteresis model, IEEE Trans. Magn.,27(1991), pp.4796-4798.
    [70]樊长在.超磁致伸缩逆效应与传感技术研究[博士学位论文].天津:河北工业大学,2007
    [71]翁玲.磁场和应力作用下的超磁致伸缩换能器的动态模型与磁致伸缩振动传感技术研究[博士学位论文].天津:河北工业大学,2008
    [72]翁玲,王博文,孙英,李淑英,杨庆新.超磁致伸缩振动传感器输出特性的实验研究.中国电机工程学报, Nov.25,2008, Vol.28, No.33:110-114.
    [73]李淑英.粘结稀土-铁巨磁致伸缩材料的制备工艺与磁特性研究:[硕士学位论文].天津:河北工业大学,2002
    [74]张纳,王博文,王莉,李淑英,王志华,翁玲,黄文美,李娜.磁致伸缩、压电层状复合磁电传感器非线性动态有限元模型[J].电工技术学报.2012,27(07):146-152.
    [75] H.Evangelos, K.Aphrodite. Magnetostriction and magnetostrictive materials for sensing applications.Journal of Magnetism and Magnetic Materials,316(2007):372-378.
    [76] I. Giouroudi, J. Kosel, H. Pfutzner, W. Brenner. Magnetostrictive bilayer sensor system for testing ofrotating microdevices. SensorsandActuatorsA,142(2008):474-478.
    [77] P.R. Downey, M.J. Dapino, Extended frequency bandwidth and electrical resonance tuning in hybridTerfenol-D/PMN-PTtransducers in mechanical series configuration, Journal of Intelligent MaterialSystems and Structures16(9)(2005)757-772.
    [78] S.C. Butler, F.A. Tito, A broadband hybrid magnetostrictive/piezoelectric transducer array, OCEANS2000MTS/IEEE, Vol.3,2000, pp.1469-1475.
    [79] J.L. Butler, A.L. Butler, S.C. Butlerm, Hybrid magnetostrictive/piezoelectric Tonpilz transducer, Journalof the Acoustical Society of America94(2)(Part1)(1993).
    [80] J.L. Butler, S.C. Butler, A.E. Clark, Unidirectional magnetostrictive/piezoelectric hybrid transducer,Journal of the Acoustical Society of America88(1)(1990)7-11.
    [81] X.J.Zheng, L. Sun. A nonlinear constitutive model of magneto-thermo-mechanical coupling for giantmagnetostrictive materials. Appl. Phys.100,063906(2006)
    [82] Y.R. Liang, X.J.Zheng. Experimental researches on magneto-thermo-mechanical characterize ation ofTerfenol-D. Acta Mech. Solida Sinica,2007,20(4):283-288..
    [83] Y. H.Zhou, X.J.Zheng. A variational principle on magnetoelastic interaction of ferromagnetic thinplates.Acta Mech. Solida Sinica.10,1(1997).
    [84] Y. H.Zhou, Y. W. Gao, X. J.Zheng. Perturbation analysis for magnetoplastic instability of ferromagneticbeamplates with geometric imperfectionActa Mech. Solida Sinica.17,297(2004)
    [85] B.Peng, W. L.Zhang, et al. Finite element simulations of the magnetostrictive film Acta Mech. SolidaSinica,27,288(2006)
    [86] M. B.Moffett, A. E.Clark, et al. McLaughlin Characterization of Terfenol-D for magnetostrictivetransducers.J. Acoustical Society of America,89,1448(1991).
    [87] D. Kendall, A. R. Piercy, Magnetisation processes and temperature dependence of the magnetome-chanical properties of Tb0.27Dy0.73Fe1.9.IEEE Trans. Magn.26,1837(1990).
    [88] M.J.Sablik, D.C.Jiles.Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEETrans.Magn.,July1993,29(3):2113-2123
    [89] D. C. Jiles. Theory of the magnetomechanical effect. J. Phys. D,1995, vol.28:1537-1546.
    [90] L.Lu, D.C.Jiles. Modified Law of Approach for the Magnetomechanical Model: Application of theRayleigh Law to Stress. IEEE TRANSACTIONS ON MAGNETICS, Vol.39(5),2003,9:3037-3039
    [91] W.D.Armstrong. An incremental theory of magnetoelastic hysteresis in pseudo-cubic ferro-magnetostric-tive alloys. Journal of Magnetism and Magnetic Materials,2003,263:208-218.
    [92] X.E.Liu,X.J.Zheng. A nonlinear constitutive model for magnetostrictive Materials. Acta Mech Sinica,2005,21:278-285.
    [93] G.P.Carman, M.Mitrovic. Nonlinear constitutive relations for magnetostrictive materials.Proc.of the2ndIntemational Conference of Intelligent Materials, July,1994:265-278.
    [94] G.P.Carman, M.Mitrovic. Nonlinear constitutive relations for magnetostrictive materials with applicationto1-D problems. J.Intell.Mater.Syst.Struct.,1995,6:673-683.
    [95]万永平,方岱宁,黄克智.磁致伸缩材料的非线性本构关系.力学学报,200l,33(6):749-757.
    [96] M.B.Moffet,A.E.Clark,M.Wun-Fogle, et al. Characterization of Terfenol-D for magnetostrictive trans-ducers. J.Acoust.Soc.Am.,1991,89(3):1448-1455.
    [97] Y.P.Wan, D.N.Fang, K.C.Hwang. Non-linear constitutive relations for magnetostrictive materials. Inter.J.Non-linear Mechanics,2003,38(7):1053-1065.
    [98] K.S.Kannan, A.DasGuPta. Nonlinear finite element scheme for modeling the magneto-elastic response ofmagnetostrictive smart structures. Proc.,SPIE North American Conference on Smart structures andMaterials,1994,2190:182-193.
    [99] T.Duenas, L.Hsu, G.P.Carman. Magnetostrictive composite material systems analytical and experimental.Materials Research Society Symposium, Advances in Materials for Smart Systems-Fundamentals andapplications, Boston:1996
    [100] Butler J L. Application manual for the design of extreme Terfenol-D magnetostrictive transducers. Ames,IA:Etrema Products Inc.,1988
    [101] X.J. Zheng, X.E. Liu, A nonlinear constitutive model for Terfenol-D rods J. Appl. Phys.97,05390(2005).
    [102] B.W. Wang, S.C. Busbridge, Z.J. Guo, et al. Magnetization processes and magnetostriction of Tb0.27Dy0.73Fe2single crystal along <110> direction, J. Appl. Phys.,2003,93(10):8489.
    [103] L.Weng, B.W.Wang, Y.Sun, et al. Magnetoelastic Performance of <110> Aligned Polycrystalline Tb0.3Dy0.7Fe2, Rare Metals,2008,27(2):142.
    [104] B.W.Wang, W.M. Huang, L.Weng, et al. Effect of stress and magnetic field on Young’s modulus ofTb0.3Dy0.7Fe2<110> oriented alloy, Materials Science Forum,2011,1159:675-677.
    [105] M.J.Dapino, R.C.Smith, A.B. Flatau. Structural Magnetic Strain Model for Magnetostrictive Transdu-cers. IEEE Transactions on Magnetics,2000,36(3):545-556.
    [106] D.Kendall, A.R.Piercy. Magnetisation processes and temperature dependence of the magneto-mechanicalproperties of Tb0.27Dy0.73Fe1.9, IEEE Trans. Magn.,1990,26(5):1837.
    [107] A.E.Clark, J.P.Teter, O.D.McMasters. Magnetostriction”jumps” in twinned Tb0.3Dy0.7Fe1.9, J. Appl. Phys.,1988,63(8):3910.
    [108] M.H.Benbouzid. Artificial neural network for finite element modeling of giant magnetostrictive devices.Magnetics IEEE Transactions on,1998,34(6):3853-3856.
    [109] Y.P.Wan, D.N.Fang. Experimental and theoretical study of the nonlinear response of a giantmagnetostrictive rod. Acta Mechanica Sinica,2003,19(4):324-329.
    [110] M.J.Sablik, G.L.Burkhardt, H.Kwun, and D.C.Jiles, A model for the effect of stress on the low-frequency harmonic content of the magnetic induction in ferromagnetic materials, J. Appl. Phys.,1988,63(8):3930-3932.
    [111] M.J.Sablik, Y. Chen, D. C. Jiles, Rev. Progr. Quant. Nondestruct. Eval.19,1565(2000)
    [112] D.Feng, Metal Physics,vol.4, Superconductivity and Magnetic, Science Press, Beijing,441(1998).
    [113] J.Hausehild, H.Fritzsehe,S.Bonn,et al. Determination of the temperature dependence of the coereivity inFe/Cr<110> multilayers,Appl.Phys.A:Mater.Sci.Process.,2002,74(1),1541-1543.
    [114] A.Raghunathan,Y.A.Melikhov,J.E.Snyder, et al. Generalized form of anhysteretic magnetization functionfor Jiles-Atherton theory of hysteresis.Appl.Phys.Lett.,2009,95,172510
    [115] A.Raghunathan, Y.A.Melikhov, J.E.Snyder, et al. Theoretieal model of temperature dependence ofhysteresis based on mean field theory.IEEE Trans.Magn.,2010,46(6):1507-1510.
    [116] T.Erdogan. Fiber Grating Spectra. IEEE. Jounal of Lightwave Technology,1997,15(8):1277-1294.
    [117]张卫华,刘波,罗建花,等.基于光纤环形腔衰落的压力传感器研究[J].光子学报,2008,37(3):466-468.
    [118] N.Ni, C.C.Chan, W.C.Wong, et al. Cavity ring-down long period grating pressure sensor [J]. Sens.Actuators A,2010,158(2):207-211.
    [119] B.Liu,J.H. Luo, G.Y.Kai. Temperature and strain sensor based on weak LPG and fiber ring down [J].Microw. Opt. Tech. Lett.,2008,50(1):111-114.
    [120] M.Jiang,W.G.Zhang,Q.Zhang, et al. Investigation on an evanescent wave fiber-optic absorption sensorbased on fiber loop cavity ring-down spectroscopy [J]. Opt. Commun.,2010,283(2):249-253.
    [121] K.Liu, T.G.Liu,G.D.Peng,et al. Theoretical investigation of an optical fiber amplifier loop for intra-cavityand ring-down cavity gas sensing[J]. Sens. Actuators B,2010,146(1):116-121.
    [122] R.C.Smith, M.J.Dapino, S.Seelecke. Free energy model for hysteresis in magnetostrictive transducers[J].Journal of Applied Physics,2003,93(1):458-466.
    [123] D.C.Jiles, D.L.Atherton. Ferromagnetic hysteresis[J]. IEEE Trans. on Mag.1983,19(5):2183-2185.
    [124]张志荣,张冠茂,张晓萍.长周期光纤光栅应变和温度传感灵敏度研究[J].光子学报,2009,38(1):103-106.
    [125]曹淑瑛,王博文,闫荣格,等.超磁致伸缩致动器的磁滞非线性动态模型[J].中国电机工程学报,2003,23(11):145-149.
    [126] S. Thomasa, J.Mathewb,et. Metglas thin film based magnetostrictive transducers for use in long periodfibre grating sensors. Sensors and Actuators A.2010,161:83-90
    [127] K.S.Sang. Optical fiber interferometers with [3×3] directional couplers: Analysis. J.App.Phys,1981,52(6):3865-3872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700