用户名: 密码: 验证码:
长白山火口湖溃决引发的火山泥石流灾害危险性预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长白山天池火山是世界上著名的且是中国最具有喷发可能的火山。尤其是长白山顶部的天池有一个水容量达20.4亿m3的火口湖,一旦火山再次爆发或其他因素引发火口湖溃决,火山泥石流将是最主要的灾害。更重要的是长白山天池火山坐落于我国吉林省东部长白山地区的腹地,是长吉图开发开放先导区的重要组成部分,是我国著名的旅游区。如果大规模的洪水及火山泥石流暴发,必将带来严重的危害。因此,对火口湖溃决及引发的泥石流灾害的研究具有重要的理论意义和现实价值。
     本文以“长白山火山喷发次生灾害预警研究”项目为依托,选择长白山火山次生泥石流灾害(火口湖溃决型)为研究对象,在系统归纳总结火山次生泥石流灾害(火口湖溃决型)研究现状、整理分析研究区相关文献资料的基础上,开展了野外现场的调查、分析、取样以及人口社会经济要素的搜集和整理等工作,完成了研究区火山碎屑物的室内物理力学参数试验,通过对数据的整理与分析,获得了研究区松散碎屑物的分布及特征。设计并搭建了适合研究区实际情况的室内物理模拟试验平台,进行了洪水冲刷形成泥石流及危险范围的试验研究。利用数值模拟软件-颗粒流(PFC2D)软件结合物理试验模拟的方式对研究区泥石流的暴发、运动过程以及堆积情况进行数值模拟,掌握了研究区火山泥石流暴发的过程,最后,实现了洪水及火山泥石流灾害的危险范围预测,并基于ARCGIS平台开发了火山泥石流预测预警系统,可实现预测结果的显示、查询及预警。论文的主要研究内容及取得的主要结论如下:
     1)首先对研究区火山碎屑堆积物进行了研究,借助野外调查、室内试验以及粒度分析等手段,基本查明了作为火山泥石流物源的松散碎屑物的分布、储量以及粒度特征。火山碎屑物分布面积达到1262km2,占研究区面积的35.38%,堆积物总量估算超过3km3。研究区火山松散碎屑物整体上可分成三类,即火山空落堆积物、火山碎屑流堆积物以及火山泥石流堆积物,各类型堆积物的分布及性质差异明显,其中火山碎屑流堆积物和火山泥石流堆积物为研究的重点。火山松散碎屑物粒径平均值集中在-1.5-1.5Ф,偏度集中于0-0.4,峰度集中于0.8-1.4,标准偏差有明显的两个集中区域,具有“双元性”。频度曲线以中等至尖窄为主,分别处于分选好和分选差两段。所有取样点堆积物的沉积环境综合判别值均小于9.8433,相应于浊流相沉积环境,火山碎屑流携带物质的能量相对较大、速度快,火山泥石流则沿河谷向下流动到达的距离较远,二者的破坏力都很大。
     2)以筛析试验及室内物理力学参数试验为基础,结合分形理论知识,得到了以下结论:火山碎屑流堆积物和火山泥石流堆积物的物理力学性质指标值差异显著,火山碎屑流堆积物具有质轻、含水率高、孔隙大等显著特点。而火山泥石流堆积物,受其它碎屑物加入及河流搬运等作用,相互之间的物理力学性质差异性小。松散堆积物粒度分布和其颗粒累积百分含量的线性关系明显,相关系数较大,具有明显的分形特点。整体上碎屑流堆积物的分维值明显大于火山泥石流堆积物,火山泥石流沟床相堆积的分维值大于洪泛平原相堆积。分维值与堆积物的分选性相对应,分维值越大其分选性越差,分维值的变化体现了松散碎屑堆积物的复杂性特征,反映了松散堆积物形成演化特征的差异。粒度分维值与火山松散碎屑物基本物理力学性质指标的相关性好,能很好地反映指标间差异,分维值可以作为衡量松散碎屑堆积物基本物理力学性质的定量表示指标。
     3)搭建了室内物理模拟试验平台,进行了泥石流输沙体积浓度、泥石流暴发过程演示和泥石流危险范围模拟三大方面的物理模型试验。首先通过泥石流输沙体积浓度试验获得了以下结论:水槽坡度对泥石流输沙体积浓度影响作用明显,泥石流输沙体积浓度与床面坡度关系曲线总体上是随着水槽坡度的增加,呈上凸状而渐趋平缓的规律,同时揭示出现有的计算模式也存在经验系数不唯一的问题。水源条件(水源流量和总水量)对泥石流输沙体积浓度影响较小,但对泥石流的暴发量及堆积有较大影响。
     4)在松散物充足的试验条件下,泥石流堆积扇的长度受水源流量和堆积区坡度的影响较大;泥石流堆积扇的宽度和泥石流暴发量与总水量和水槽坡度关系密切,受它们的影响较大,其作用明显;堆积扇厚度受水槽坡度与堆积区坡度的影响作用显著;堆积面积则受四个试验因素的影响均较大,在选定的α=0.05检验水平下,堆积区坡度、总水量和水槽坡度影响显著;泥石流输沙体积浓度则只和水槽坡度关系密切,受其影响显著。
     5)在泥石流危险范围模拟试验的基础上,提出了基于广义回归神经网络(GRNN)的泥石流危险范围预测模型。模型检验时预测值的最大误差为11.63%,总平均误差为6.38%,预测精度及稳定性均较高,为预测火山泥石流危险范围提供了可行的方法,可为制定泥石流防灾减灾规划提供参考的依据。
     6)结合室内物理模型试验,利用颗粒流数值模拟软件(PFC2D),对洪水冲刷形成的火山泥石流的启动、运动及堆积过程进行模拟,得到泥石流启动具有龙头现象;坡面的侵蚀作用形式是由表及里的,逐渐向内发展,直至碎屑物全部被冲出,而不会出现整体破坏形式;堆积形态整体上呈近抛物线型并呈向源堆积效果。模拟方法可行并能为从细观上研究火山泥石流的运动机理提供可行的方法。
     7)应用HEC-RAS软件可模拟火口湖溃决型洪水的淹没范围,结合ARCGIS强大的绘图及查询功能,可实现洪水诱发的次生泥石流危险范围的预测,洪水泛滥范围和泥石流危险范围预测结果实现了在ARCGIS平台上的显示,实例应用结果表明该方法简单可行,能为火山泥石流预测预警的应用提供基础数据服务。
     8)基于COM的GIS组件的ArcObjects10.0,并以Microsoft Visual Studio.NET为开发环境,利用Visual Basic.net语言进行开发,开发了基于GIS的火山泥石流预测预警平台系统。该系统主要由地质环境条件要素存储、基础数据管理、输入危险范围图形显示、图层信息叠加分析、查询、发布灾害预测预警信息等模块组成。能实现火山泥石流危险范围的图形显示、管理、查询、叠加人口经济信息图层、分析,并发布预测预警信息等功能。应用结果表明,系统完善升级后可为实际应用提供可能。
The Tianchi Volcano in Changbai Mountains is one of the international famousvolcanoes which has the highest potentially dangerous to erupted in China. At the topof the Tianchi Volcano in Changbai Mountains has a crater lake with2.04billion m3water in it. Once the volcano erupt again, or other factors lead the crater lake outburst,the lahar will be the main disaster. More important, it is located in the hinterland ofChangbai Mountains area, in the east of Jilin Province, it has been the importantcomponent of Changjitu development and opening-up pilot area and China's famoustourist area. If large-scale floods and lahar erupted, it would bring serious damage.For those reasons, it has important theoretical and practical value to do the research ofthe Crater lake outburst and triggered mudslides disaster.
     This article rely on the program of Changbai Mountains’ Early Warning of theEruptions Caused by Secondary Disasters, selected Changbai Mountains volcano’ssecondary debris flow hazards,the type of crater lake outburst, as the research object.After systematic summarized research status of the volcanic secondary debris flowhazards(crater lake outburst type)and analyzed the related research documents, webegin to carry out the field site survey, analysis, sampling and the populationsocio-economic factors’ collecting and collating, taking samples of loose debris todo the experiments of physical mechanical parameters, and summarizing thedistribution and characteristics of the loose material in the study area. Based on theexperimental data and combined with the actual situation of the study area, wedesigned and built a physical simulation test platform to get the debris flow impactfactors cause by the flood impact and the prediction model of hazard range.With helpof numerical simulation software combines physical simulation test to have thenumerical simulation in the study area, such as the outbreak of debris flows, thecourse of the campaign, and accumulation. Master the mechanism and process oflahar’s eruption in study area. Base on the ARCGIS, we exploited the lahar forecastand early warning systems. Made the prediction results display, inquiries and warningcome true. The thesis has made the following main conclusions:
     1) Firstly, study on the debris loose in the research area. With the means of fieldinvestigation, laboratory experiments, and particle size analysis theory, basicallyidentified the distribution, reserves, as well as the particle size characteristics of the loose debris as the provenance of the volcanic debris flow. Pyroclastic deposits’distribution area can be1262km2,35.38%of the study area, The total amount ofaccumulation estimates more than3km3. Loose debris on the whole of the study areacan be divided into three categories: volcanic falling debris accumulation, pyroclasticflow accumulation and lahar accumulation. The distribution and nature of the varioustypes’ loose debris are significant differences. We focus on the pyroclastic flowaccumulation and lahar accumulation. The average particle size of the loose debris isin-1.5-1.5Ф, the skewness is in0-0.4, the kurtosis is in0.8-1.4, standard deviationhas two obvious centralized region, it has dualism. Frequency curve is given priorityto moderately to sharp a narrow, respectively in the well-sorted and poorly sorted.Depositional environment discriminant value of all sampling points were less than9.8433, corresponding to turbidite sedimentary environment, The energy ofpyroclastic flow to carry substances is relatively large, has fast speed, lahars flowsdownward along the river valley to reach distant, both are of great destructive forces.
     2) Based on sieve analysis experiments and physical mechanics parametersexperiments, combined with fractal theory gets that pyroclastic flow accumulation andlahar accumulation have significant difference in physical and mechanical properties.Pyroclastic flow accumulation has the characteristics of light weight, high moisturecontent, macropore and so on, while lahar accumulation influenced by other clasticsparticipating and fluviatile transport has little physical property difference betweeneach other. Loose deposit particle size distribution has remarkable linear relation withpercentage content of particle cumulative, with remarkable fractal characteristics.Fractal dimension corresponds to the grain of deposit,the grain is worse when thefractal dimension is higher, the range of the fractal dimension reflects the complexcharacteristics of loose pyroclastic deposits in free organization system, and the loosepyroclastic Grain-size fractal dimension and physical mechanical index of loosematerial have good relativity, it can reflect the differences between index, theGrain-size fractal dimension can be used as the index of loose pyroclastic deposits’quantitative of the physical mechanics character.
     3) Set up a physical simulation experimental platform, and three main physicalmodel experiments of sediment concentration、demo process from outbreak todepositionin and hazard range about lahar were carried out on the platform. Thefollowing main results had been obtained. The gradient of flume makes significantimpacts on sediment concentration in debris flow. The sediment concentration indebris flow. increase nearly convex and then gently with the increasing of the gradientof flume generally, but it also has the problem of some calculation patterns’empricalcoefficient is not unique. Water source condition (total body water and water sourceflow rate) make less influence on sediment concentration in debris flow, but make remarkable influence on the amount of debris flow and accumulation.
     4)Under the condition of enough loose material, the length of debris fans isremarkably influenced by flow rate of water source and slope of accumulation area.The length of debris fans and the amount of debris flow outbreak are in close relationand influenced remarkably by the whole water amount and slope of the sink. Thethickness of debris fans is influenced by slope of the sink and accumulation area. Thearea of accumulation is influenced by all the four factors. Under the selected condition,the accumulation area slope, the water amount, and sink slope works effectively.Concentration of debris flow transportation is only remarkably influenced by sinkslope.
     5)Based on the experiment of debris flow hazard range, established the hazardrange model of debris flows prediction model which based on general regressionneural network model(GRNN).The forecasts’largest error is11.63%, relativeaverage error of prediction result is6.38%, it is not only convenient and high stability,but also have much higher prediction accuracy, it provides possible methods for theforecasts of the hazard warning area of lahar, it can provide reference base to makeplanning for the prevention and reduction of debris flow disaster.
     6)With the help of laboratory physical model experiments combines numericalsimulation software to simulate the start, movement and accumulation of lahar causedby flood, and analyzing the result of numerical simulation.It has debris flow headphenomenon; The action form of slope erosion is from surface to inside and graduallyinward until debris all washed away;Accumulation form is similar to parabolic typeeffect as a whole.It is provides the measures to study the motion mechanism of lahar.
     7)Using the software of HEC-RAS can stimulate the range of the type of craterlake outburst flood. Combined with ARCGIS in mapping and inquirying can achievethe forecast of the hazard range of secondary debris flow, the range of flood anddebris flow hazard displayed on the platform of ARCGIS. The tested and appliedresults showed that the measures are simple and feasible and can provide the basisdata service for applying in forecasting lahar.
     8) Based on the ArcObjects10.0of COM’s GIS components, takes theMicrosoft Visual Studio.NET as its development environment and Visual Basic.net asit’s development language of software, and developed a system of lahar warningbased on GIS. This system mainly consists of the element of geologicalenvironment’s storage、the management of basal Data、input the image display ofharzard area、superimposition analysis of Layer、inrequiring、give early warning toenterprises and so on. It enables the image display of lahar hazardous area、management、 researching、 the economic information layer of superpositionpopulation、analysis, and release early-warning information. Result of application indicates that the system can provide the possibility of actual application after it’supgrade and improvement.
引文
[1]刘嘉麒,郭正府,刘强.火山灾害与监测[J].第四纪研究,1999,(5):414-421.
    [2]刘若新,李继泰,魏海泉.长白山天池火山—一座具潜在喷发危险的近代火山[J].地球物理学报,1992,35(5):661-664.
    [3] Wei Haiquan,Hong Hanjing,Parks R S J S.Potential Hazards of Eruptions Around the TianchiCaldera Lake,China[J].Journal of the Geological Society of China,2004,78(3):790-794.
    [4]刘祥,向天元等.中国东北地区新生代火山和火山碎屑堆积物资源与灾害[M].长春:吉林大学出版社,1997.
    [5] Neall V E.Lahar as Major Geological Hazards[J].Bull of International Association ofEngineering Geology,1976,(14):233-240.
    [6] Waitt R B J,Pierson T C,Macleod N S, et al.Eruption-Triggered Avalanche, Flood, and Lahar atMount St. Helens-Effects of Winter Snowpack[J].Science (New York, N.Y.),1983,221(4618):1374-1397.
    [7] Steven R B,Richard B W.Interrelations Among Pyroclastic Surge,Pyroclastic Flow, and Laharsin Smith Creek Valley During First Minutes of18May1980Eruption of Mount St. Helens,USA [J].Bull Volcanol,1988,(50):304-326.
    [8] Richard B Waitt.Swift Snowmelt and Floods (lahars) Caused by Great Pyroclastic Surge atMount St Helens Volcano, Washington,18May1980[J].Bull Volcanol,1989,(52):138-157.
    [9] Sigurdsson H,Carey S.Volcanic disasters in Latin America and the13th November1985Eruption of Nevado Del Ruiz Volcano in Colombia[J].Disasters,1986,10(3):205-216.
    [10] Naranjo J L,Sigurdsson H,Carey S N,et al.Eruption of the Nevado Del Ruiz Volcano,Colombia, on13November1985: Tephra Fall and Lahars[J].Science (New York, N.Y.),1986,233(4767):961-963.
    [11] Jon J M,Christopher G N. Snow and Ice Perturbation During Historical Volcanic Eruptionsand the Formation of Lahars and Floods[J].Bull Volcanol,1989,(52):1-27.
    [12] Marianne V,Graham J W.A General Model for Mt. Ruapehu Lahars[J].Bull Volcanol,1990,(52):381-390.
    [13] Caruso P,Pareschi M T.Estimation of Lahar and Lahar-Runout Flow Hydrograph on NaturalBeds[J].Environmental Geology,1993,(22):141-152.
    [14] Thouret J C,Abdurachman K E,Bourdier J L,et al.Origin, Characteristics, and Behaviour ofLahars Following the1990Eruption of Kelud Volcano, Eastern Java (Indonesia)[J].BullVolcanol,1998,(59):460-480.
    [15] Franck L.Lahar Hazard Micro-Zonation and Risk Assessment in Yogyakarta City, Indonesia[J].Geo-Journal,1999,(49):173-183.
    [16] Kerle N,Oppenheimer C. Satellite Remote Sensing as a Tool in Lahar Disaster Management[J].Disasters,2002,26(2):140-160.
    [17] Norman K,Benjamin-van W V,Clive O.New Insight into the Factors Leading to the1998Flank Collapse and Lahar Disaster at Casita Volcano,Nicaragua[J].Bull Volcanol,2003,(65):331-345.
    [18] Aguilera E,Pareschi M T,Rosi M,et al.Risk from Lahars in the Northern Valleys of CotopaxiVolcano (Ecuador)[J].Natural Hazards,2004,(33):161-189.
    [19]余斌.美国纽约州立大学布法罗分校火山碎屑流和泥石流数学模型研究近况[J].山地学报,2005,23(1):126-128.
    [20] Emmanuel J M C,OffliaT C.Predicting Lahar-Inundation Zones:Case Study in West MountPinatubo,Philippines[J].Natural Hazards,2006,(37):331-372.
    [21] Munoz-Salinas E,Manea V C,Palacios D,et al.Estimation of Lahar Flow Velocity on Popoca-tepetl Volcano (Mexico)[J].2007,92(1-2):91-99.
    [22] Esperanza M,Renschler C S,Palacios D,et al.Updating Channel Morphology in Digitalelevation Models:Lahar Assessment for Tenenepanco Huiloac Gorge,Popocate′pet volcano,Mexico[J].Nat Hazards,2008,(45):309-320.
    [23] Alison H G,Vern M,Roger M B.Depositional Record of Historic Lahars in the UpperWhangaehu Valley,Mt. Ruapehu,New Zealand:Implications for Trigger Mechanisms,FlowDynamics and Lahar Hazards[J].Bull Volcanol,2009,(71):1-18.
    [24] Jonathan L C,Vern M,Shane J C.A Fluid Dynamics Approach to Modelling the18th March2007Lahar at Mt. Ruapehu,New Zealand[J].Bull Volcanol,2009,(71):153-169.
    [25] Carrivick J L,Manville V,Graettinger A,et al. Coupled Fluid Dynamics-Sediment TransportModelling of a Crater Lake Break-Out Lahar: Mt. Ruapehu, New Zealand[J].Journal ofHydrology,2010,388(3-4):399-413.
    [26] Procter J,Cronin, S J,Fuller I C,et al. Quantifying the Geomorphic Impacts of a Lake-Breakout Lahar, Mount Ruapehu, New Zealand[J].Geology,2010,38(1):67-70.
    [27] Procter J N,Cronin S J,Fuller I C. Lahar Hazard Assessment Using Titan2D for an AlluvialFan with Rapidly Changing Geomorphology: Whangaehu River, Mt. Ruapehu[J].Geomor-phology,2010,116(1-2):162-174.
    [28] Procter J N,Cronin S J,Sheridan M F.Evaluation of Titan2D Modelling Forecasts for the2007Crater Lake Break-Out lahar, Mt. Ruapehu, New Zealand[J].Geomorphology,2012,136(S1):95-105.
    [29]刘嘉麒.中国火山[M].北京:科学出版社,1999.
    [30]刘若新,魏海泉,汤吉,等.长白山天池火山研究进展[J].地震地磁观测与研究,1996,(4):3-11.
    [31]崔钟燮,张三焕,安在律.长白山火山活动的现状和未来展望[J].国际地震动态,1999,(3):1-5.
    [32]陶奎元,赵宇.火山学与环境[J].火山地质与矿产,1997,18(1):1-12.
    [33]刘祥,隋维国,王锡魁.长白山火山1000年前火山泥流堆积及其灾害[J].长春科技大学学报,2000,30(1):14-17.
    [34]魏海泉,刘若新.中国的活火山及有关灾害[J].自然杂志,1998,20(4):196-200.
    [35]魏海泉,金伯禄,等.长白山天池火山地质学研究的若干进展与灾害分析[J].岩石矿物学杂志,2004,23(4):305-312.
    [36]杨清福,刘若新,魏海泉,等.长白山天池火山潜在的火山灾害评价[J].地质论评,1999,45(S):215-220.
    [37]孙平,王钢城,曹炳兰.长白山旅游区泥石流灾害研究[J].世界地质,2002,21(2):167-170.
    [38]王慧.长白山天池地区泥石流形成条件及危险度研究[D].吉林大学,2004.
    [39]张学霞,薄立群,张树文.基于RS和GIS的长白山火山灾害风险评估研究[J].自然灾害学报,2003,12(1):47-55.
    [40]李花淑,崔天日.图们江流域中更新世火山泥石流分布及其特征[J].吉林地质.2005,(3):73-77.
    [41]姚文清,王文喜,杨子荣.应用层次分析法进行长白山天池泥石流危险度研究[J].四川地质学报,2006,26(3):188-190.
    [42]徐建东.我国火山灾害的主要类型及火山灾害区划图编制现状探讨[J].震灾防御技术,2006,(3):266-272.
    [43]聂保锋,刘永顺,彭年.长白山天池火山泥石流分布特征及其形成模式研究[J].首都师范大学学报(自然科学版),2009,30(1):70-75.
    [44]万园,徐建东,林旭东,等.基于数值模拟的长白山火山泥石流灾害展布范围分析及预测[J].吉林大学学报:地球科学版,2011,41(5):1638-1645.
    [45] Wan Yuan,Xu Jiandong,Pan Bo. Define the Energy Cone Threshold and Extent of TianchiVolcano[J].Journal of Earth Science,2012,23(5):768-774.
    [46]盛俭,杜江,邹春红,等.火山泥石流研究回顾[J].防灾科技学院学报,2011,13(2):43-47.
    [47]盛俭,吕晗,王禹萌.长白山天池火山泥石流堆积物粒度分布及其结构维数[J].自然灾害学报,2012,21(4):132-138.
    [48]武成智,刘俊清.长白山天池火山灾害防御对策[J].国际地震动态,2012,(6):256.
    [49]杨清福,李继泰,等.长白山天池火山公元750~960年浮岩流搬运和堆积的物理机制[J].地震地磁观测与研究,1996,17(6):11-19.
    [50] TAKAHASHI T.Debris flow on Prismatic Open Channel[J].Journal of Hydraulic Division,1980,106(3):381-396.
    [51]水山高久,上原信司.土石流の堆积形状[J].第17回自然灾害科学ツンボツム,1980,169-172.
    [52] Takahashi T,Tsujimmoto H.Delineation of the Debris Flow Hazardous Zone by a NumericalSimulation Method[C].Proceeding of International Symposium On Erosion,Debris Flow andDisaster Prevention,Tsukuba:Japan of Erosion Control Engineering Society,1985,457-462.
    [53]山下佑一,石川芳治.土石流の直击を受ける范围の设定[J].新砂防,1991,44(2):22-25.
    [54]池谷浩,米尺谷,诚悦.土石流危险区域の设定に关する研究(第二报)[J].土木技术资料,1979,21(9):46-50.
    [55]高桥保,土石流の堆积危险范围の预测[J].第17回自然灾害科学总合ツソボツテム,1980,133-148.
    [56]水山高久,渡边正幸,上原信司.土石流の堆积形状[J].第17回自然灾害科学总合ツソボツテム,1980,169-172.
    [57]高桥保,中川一,山路昭彦.土石流泛滥危险范围の指定法に关する研究[J],京都大学防灾研究所年报,38(B-2),1987,611-625.
    [58]水山高久,下东久已.土石流扇形地の地形と土石流の堆积泛滥[J].新砂防,1985,37(6):11-19.
    [59] Takahashi T.Estimation of Potential Debris Flows and Their Hazardous Zones;Soft CounterMeasures for a Disaster[J].Journal of Natural Disaster Science,1981,3(1):57-89.
    [60]高桥保,中川一.土石流泛滥危险范围の的指定法に关ず为研究[J].京都大学防灾学报,30(2):611-622.
    [61] Mizuyama T,Yazawa A.Computer Simulafion of Debris Flow Depositional Processes[C].Erosion and Sedimentation in the Pacific Rim.Wallingford:IAHS Press.1987,179-190.
    [62]水山高久,北原一平.土石流泛滥シミコレシヨソモラルよ为土石流对策的效果评价[J].新砂防,1989,40(5):14-21.
    [63] Hungr O,Morgan G C,Kellerhals R.Quantitative Analysis of Debris Torrent Hazard forDesign of Remedial Measures[J].Canadian Geotechnical Journal,1984,21(4):663-677.
    [64] Hunger O, Morgan C, Vandine F D, et al. Debris Flow Defenses in British Columbia[J].Geological Society of America Reviews in Engineering Geology,1987,7(2):201-222.
    [65] Cannon S H,Savage W Z.A Mass-change Model for the Estimation of Debris-flowRunout[J].Journal of Geology,1988,(96):221-227.
    [66] Rickenmann D.Runout Prediction Methods[A].In:Jakob M.,Hungr O.(Eds.),Debris-flowHazards and Related Phenomena.Praxis,Chichester,UK[C],2005,305-324.
    [67] Ikeya H.Debris Flow and Its Countermeasures in Japan[J].Bulletin of the InternationalAssociation of Engineering Geology,1989,40(1):15-33.
    [68] Schil ling S P, Iverson R M. Automated, Reproducible Delineation of Zones at Risk fromInundation by Large Volcanic Debris Flows[A].Debris Flow Hazards Mitigation[C].ASCE,1997.176.
    [69] O’Brien J S,Julian P Y,Fullerton W T.Two-dimensional Water Flood and Mudflow Simulation[J].Journal of Hydraulic Engineering,1993,119(2):244-261.
    [70] Rickenmann D.Empirical Relationships for Debris Flows[J].Natural Hazards,1999,19(1):47-77.
    [71] Adam B,Prochaska,Paul M Santia,Jerry,et al.Debris-flow Runout Predictions Based on theAverage Channel Slope(ACS)[J].Engineering Geology,2008,(98):29-40.
    [72] Lorente A,Beguerua S,Garcia-Ruiz J M.Debris Flow Characteristics and Relationships in theCentral Spanish Pyrenees[J].Natural Hazards and Earth System Sciences,2003,(3):683-692.
    [73] Berti M,Simoni A.Prediction of Debris Flow Inundation Areas Using Empirical MobilityRelationships[J].Geomorphology,2007,(90):144-161.
    [74] Huerliman M,Rickenmann D,Medina V,et al.Evaluation of Approaches to Calculate Debris-flow Parameters for Hazad Assessment[J].Engineering Geology,2008,(102):152-163.
    [75]刘希林,唐川.泥石流堆积扇泛滥范围的流域背景预测法[C]//中国减轻自然灾害研究会.全国减轻自然灾害研讨会论文集.北京:气象出版社,1992.
    [76]刘希林,唐川,陈明,等.泥石流危险范围的实验研究[C]//中国水土保持学会.首届全国泥石流滑坡防治学术会议论文集.昆明:云南科学技术出版社,1993.
    [77]刘希林,唐川,张松林,等.泥石流危险范围模型实验[J].地理研究,1993,12(2):77-85.
    [78]刘希林,唐川.泥石流危险性评价[M].北京:科学出版社,1995.
    [79]绍颂东.流团模型在洪水与泥石流大尺度流动计算中的应用[D].北京:清华大学,1997.
    [80]罗元华,陈崇希.泥石流堆积数值模拟及泥石流灾害风险评估方法[M].北京:地质出版社,2000.
    [81]柳金峰,欧国强,游勇.泥石流流速与堆积模式之实验研究[J].水土保持研究,2006,13(1):120-121.
    [82]周志广,李广杰,陈伟韦.磐石市富太镇泥石流危险性评价与危险范围预测[J].水文地质工程地质,2007,2(2):101-105.
    [83]杨军,刘兴荣,冯乐涛,等.洛门镇响河沟泥石流危险性评价与危险范围预测[J].防灾科技学院学报,2009,11(2):83-86.
    [84]苏永超.雅鲁藏布江米林段泥石流堆积扇形态特征与堆积范围研究[D].成都:成都理工大学,2011.
    [85]刘希林.泥石流堆积扇危险范围雏议[J].灾害学,1990,5(3):86-89.
    [86]刘希林,唐川,朱静,等.泥石流危险范围的流域背景预测法[J].自然灾害学报,1992,1(3):56-57.
    [87]罗元华.泥石流堆积数值模拟及泥石流灾害风险评估方法研究[D].武汉:中国地质大学,1998.
    [88] Shieh Chenglun, Jan Chyandeng,Tsai Yuanfan. A Numerical Simulation of Debris Flow andIts Application[J].Natural Hazards,1996,(13):39-54.
    [89] Han Guoqi, Wang Deguan. Numerical Modeling of Anhui Debris Flow[J].Journal ofHydraulic Engineering,1996,122(5):262-265.
    [90] Wang Guangqian, Shao Songdong, Fei Xiangjun. Particle Model for Alluvial Fan Formation[A].Debris Flow Hazards Mitigation[C].ASCE,1997.143-145.
    [91]唐川.泥石流堆积泛滥过程的数值模拟及其危险范围预测模型的研究[J].水土保持学报,1994,8(1):45-50.
    [92]章书成.泥石流运动数值模拟[J].中国学术期刊文摘,1995,1(2):62-63.
    [93]李阔,唐川.泥石流危险范围预测模型及在昆明东川城区的应用[J].地球科学与环境学报,2006,28(4):70-72.
    [94]铁永波,唐川,倪化勇.暴雨泥石流冲出距离预测[J].山地学报,2011,29(2):250-253.
    [95]朱静,常鸣,丁军,等.汶川震区暴雨泥石流危险范围预测研究[J].工程地质学报2012,20(1):7-13.
    [96]常鸣,唐川,苏永超,等.雅鲁藏布江米林段泥石流堆积扇危险范围预测模型[J].工程地质学报,2012,20(6):971-978.
    [97]李同春,李杨杨,章书成,等.泥石流泛滥区域数值模拟[J].水利水电科技进展,2008,28(6):1-4.
    [98]张晨,陈剑平,王清,等.泥石流危险范围预测及在乌东德地区的应用[J].吉林大学学报(地球科学版),2010,40(6):1365-1370.
    [99]张晨,王清,张文,等.基于神经网络对泥石流危险范围的研究[J].哈尔滨工业大学学报,2010,42(10):1642-1645.
    [100]韦方强,胡凯衡,崔鹏,等.山区城镇泥石流减灾决策支持系统[J].自然灾害学报,2002,17(6):31-36.
    [101]李发斌,韦方强,胡凯衡.山区公路地质灾害减灾决策支持系统—以西藏古乡沟泥石流为例[J].中国地质灾害与防治学报,2006,17(4):52-56.
    [102]王纯祥,白世伟,江崎哲郎,等.基于GIS泥石流二维数值模拟[J].岩土力学,2007,28(7):1359-1368.
    [103]孟凡奇.基于GIS的泥石流预测预报[D].长春:吉林大学,2011.
    [104]娄丹丹,徐刚.GIS在地质灾害风险评价中的应用研究进展[J].四川地质学报,2008,28(4):335-338.
    [105] Mckean J,Bueche S,Gaydos L.Remote Sensing and Landslide Hazard Assessment[J].Photogrammetric Engineering and Remote Sensing,1991,57(9):1185-1193.
    [106] Iverson R M,Schilling S P,Vallance J W.Objective Delineation of Lahar-Inundation HazardZones[J].Bulletin of the Geological Society of America,1998,110(8):972-984.
    [107] Ohlmacher G C,Davis J C.Using Multiple Llogistic Regression and GIS Technology toPredict Landslide Hazard in Northeast Kansas,USA[J].Engineering Geology,2003,(69):331-343.
    [108] Lee S,Min K.Statistical Analysis of Landslide Susceptibility at Yongin,Korea[J].Environ-mental Geology,2001,(40):1095-1113.
    [109] Lin M L,Tung C C.A GIS-Based Potential Analysis of the Landslides Induced by the Chi-Chi Earthquake[J].Engineering Geology,2003,(64):63-77.
    [110] Yalcin A.GIS-Based Landslide Susceptibility Mapping Using Analytical Hierarchy Processand Bivariate Statistics in Ardesen (Turkey):Comparisons of Results and Confirmations[J].Catena,2008,72(1):1-12.
    [111] Pradhan B,Youssef A M.Manifestation of Remote Sensing Data and GIS on LandslideHazard Analysis Using Spatial-Based Statistical Models[J].Arabian Journal of Geo-sciences,2010,3(3):319-326.
    [112] Lepore C,Kamal S A,Shanahan P, et al.Rainfall-Induced Landslide Susceptibility Zonationof Puerto Rico[J].Environmental Earth Sciences,2012,66(6):1667-1681.
    [113]姜云,王兰生.地理信息系统在山区城市地面岩体稳定性管理与控制中的应用[J].地质灾害与环境保护,1994,5(1):32-38.
    [114]曹中初,孙苏南.GIS在煤矿底板突水危险性预测中的应用[J].水文地质工程地质,1996,23(1):45-48.
    [115]王治华,徐起德,徐斌,等.5.12汶川地震航空遥感应急调查灾害遥感初步调查[J].中国科学:E辑,2009,39(7):1304-1311.
    [116]黄润秋,李为乐.”5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,27(12):2585-2592.
    [117]杨泰平,唐川,齐信.基于GIS技术的汶川810级地震诱发地质灾害危险性评价-以四川省安县为例[J].灾害学,2009,24(4):68-72.
    [118]殷跃平.汶川八级地震滑坡特征分析[J].工程地质学报,2009,17(1):29-38.
    [119] Tang, Chuan,Zhu Jing,Qi Xin. Landslide Hazard Assessment of the2008WenchuanEarthquake: A Case Study in Beichuan Area[J].Canadian Geotechnical Journal,2011,8(1):128-145.
    [120] Landslide Hazard Mapping Using GIS and Weight of Evidence Model in Qingshui RiverWatershed of2008Wenchuan Earthquake Struck Region[J].Journal of Earth Science,2012,23(1):97-120.
    [121]向灵芝,崔鹏,张建强,等.汶川县地震诱发崩滑灾害影响因素的敏感性分析[J].四川大学学报(工程科学版),2010,42(5):105-112.
    [122]郭兆成,周成虎,孙晓宇,等.汶川地震触发崩滑地质灾害空间分布及影响因素[J].地学前缘,2010,17(5):234-242.
    [123] Huang Runqiu,Huang Jian,Ju Nengpan,et al.WebGIS-Based Information ManagementSystem for Landslides Triggered by Wenchuan Earthquake[J].Natural Hazards,2013,65(3):1507-1517.
    [124]曲华.基于GIS的白鹤滩水电站库区大寨沟、海子沟流域地质灾害危险性评价研究[D],重庆:西南大学,2006.
    [125]黄勇,黄润秋,何政伟,等.GIS集成技术在天山公路地质灾害评价与决策中的应用研究[J].物探化探计算技术,2012,34(5):604-613.
    [126]张明明,苑振宇,刘晓龙.三维GIS技术支持下的尾矿库溃坝地质灾害演进过程模拟—以相思谷尾矿库为例[J].矿床地质2010,29(S1):815-816.
    [127]丛威青,潘懋,任群智,等.泥石流灾害多元信息耦合预警系统[J].北京大学学报(自然科学版),2006,1(1):1-5.
    [128]白利平,王业耀,龚斌,等.基于可拓理论的泥石流灾害预警预报系统开发:以北京市为例[J].现代地质,2009,23(1):157-163.
    [129]冯杭建,李伟,麻土华,等.地质灾害预警预报信息发布系统—基于ANN和GIS的新一代发布系统[J].自然灾害学报,2009,18(1):187-193.
    [130]单九生,魏丽,边晓庚,等.基于Web-GIS技术的滑坡灾害预报预警业务系统[J].高原气象,2008,27(1):222-229.
    [131]中国科学院成都山地灾害与环境研究所.泥石流研究与防治[M].成都:四川科学技术出版社,1989.
    [132]谢宇平.第四纪地质学与地貌学[M].北京:地质出版社,2003.
    [133]唐川.泥石流堆积特征与扇形地危险范围预测[D].成都:中国科学院成都山地灾害与环境研究所,1988.
    [134]黄芮.基于PPA的乌东德水电站库区泥石流流速模型建立与计算[D].长春:吉林大学2011.
    [135]李昌志,王裕宜.泥石流、冰碛和河湖沉积物的粒度特征及判别[J].山地学报,1999,17(1):50-54.
    [136]陈怀录,韩敏.武都地区泥石流粒度分析及其特征[M].成都:四川科学技术出版社,1986.
    [137]成都地质学院陕北队编.沉积岩(物)粒度分析及其应用[M].北京:地质出版社,1978.
    [138]唐大雄,刘佑荣,张文殊,等.工程岩土学[M],北京:地质出版社,1998.
    [139]中华人民共和国国家发展和改革委员会.水利水电工程粗粒土试验规程[Z].2007-05-01.
    [140]陈颙,陈凌.分形几何学[M].北京:地震出版社,1998.
    [141]倪化勇,刘希林.泥石流灾害的分形研究[J].灾害学,2005.20(4):18-19.
    [142](美)特科特著,陈歇译.分形与混沌[M].地震出版社,1993.
    [143]付昱华.用变维分形确定海岸线长度[J].海洋通报,1996,15(5):86-87.
    [144]倪化勇,刘希林.泥石流粒度分维值的初步研究[J].水土保持研究,2006,13(1):89-91.
    [145]易顺民.泥石流堆积物的分形结构特征[J].自然灾害学报,2006,3(2):91-96.
    [146]易顺民,孙云志.泥石流的分形特征及其意义[J].地理科学,1997,17(1):24-31.
    [147]戴丽燕.关于Rosin-Rammler粒径分布函数的研究[J].有色矿冶,2000,16(3):15-17.
    [148]张国权.气溶胶力学—除尘净化理论基础[M].中国环境科学出版社,1987.
    [149]柏春广,王建.一种新的粒度指标.沉积物粒度分维值及其环境意义[J].沉积学报,2003,21(2):234-235.
    [150]连惠邦.泥石流泥沙体积浓度之研究[J].泥沙研究,2000,(5):6-15.
    [151]沈寿长,李良勋,魏鸿.稀性泥石流龙头形成机制的试验研究[J].中国铁道科学,1996,17(3):42-49.
    [152] Itasca Consulting Group Inc.PFC2D Version3.0Particle Flow Code in2Dimensions OnlineManual Table of Contents[M].Minneapolis:Itasca Consulting Group Inc,2002.
    [153]马建全.黑方台灌区台缘黄土滑坡稳定性研究[D].长春:吉林大学,2012.
    [154]杨静.高粘粒含量吹填土加固过程中结构强度的模拟试验研究[D].长春:吉林大学建设工程学院,2008.
    [155]张刚.管涌现象细观机理的模型试验与颗粒流数值模拟研究[D].上海:同济大学,2007.
    [156]罗勇,龚晓南,连峰.三维离散颗粒单元模拟无黏性土的工程力学性质[J].岩土工程学报2008,40(2):292-297.
    [157]王兆印.泥石流龙头运动的实验研究及能量理论[J].水利学报,2001,(3):18-26.
    [158]王兆印,张新玉.水流冲刷沉积物生成泥石流的条件及运动规律的试验研究[J].地理学报,1989,44(3):291-301.
    [159]任露泉.试验设计及其优化[M].北京:科学出版社,2009.
    [160]任露泉.试验优化设计与分析[M].吉林:吉林科学技术出版社,2001.
    [161]李云雁,胡传荣.试验设计与数据处理(第二版)[M].北京:化学工业出版社,2008.
    [162]任露泉.回归设计及其优化[M].北京:科学出版社,2009.
    [163]范黎明.贯通式潜孔锤钻头反循环机理研究及结构优化[D].长春:吉林大学,2011.
    [164]闫龙海.基于正交试验方法的薄壁压杆截面优化分析[D].哈尔滨:哈尔滨工业大学,2009.
    [165]王万中.试验的设计与分析[M].第1版.北京.高等教育出版社.2004.
    [166]刘振学.黄仁和.田爱民.实验设计与数据处理[M].第1版.北京.化学工业出版社.2005.
    [167] Taguchi G.The Experimental Design Method[M].3rd.Tokyo:Maruzen Pub.1976.
    [168] Douglas C.Montgomery Design and Analysis of Experiments[M].3rd.Edition.1998.
    [169]李云雁.胡传荣.试验设计与数据处理[M].第1版.北京.化学工业出版社.2005.
    [170]邓勃.分析测试数据的统计处理方法[M].第1版.北京.清华大学出版社.1995.
    [171]郭印同.盐膏层套管外载的参数敏感性研究[D].北京:中国科学院,2010.
    [172]李钦,左廷英,何卓臣,等.广义回归神经网络在深基坑监测中的应用[J].现代测绘,2012,35(4):8-10.
    [173]曾洪飞,周健,贾斌.RBF神经网络在深基坑监测预测中的运用[J].上海地质,2004(2):44-46.
    [174]王小川.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010.
    [175]石喜光,郑立刚,周昊,等.基于广义回归神经网络与遗传算法的煤灰熔点优化[J].浙江大学学报:工学版,2005,39(8):1189-1192.
    [176] Xia Xiaoyan, Meek L.Computer Cutting Pattern Generation of Membrane Structures[J].International Journal of Space Structures,2002,15(2):95-110.
    [177]谢任之.溃坝水力学[M].济南:山东科学技术出版社,1993.
    [178]李炜.水力计算手册[M].北京:中国水利水电出版社,2版,2006.
    [179]李春茂,魏海泉,高玲,等.天池和二道白河流域洪水灾害预测[J].吉林地质,2006,25(3):69-73.
    [180]秦胜伍.基于GIS的隧道施工超前地质预报[D].长春:吉林大学,2009.
    [181]范大凯,吴健平.基于MapX的GIS应用开发实例[J].东北测绘,2001,24(2):31-35.
    [182]诸云强,宫辉力,赵文吉,等.基于组件技术的地理信息系统二次开发—以地下水资源空间分析系统为例[J].地理与地理信息科学,2003,19(1):16-19.
    [183]史学建,秦奋,等.基于GIS和RS的黄土高原土壤侵蚀预测预报技术[M].郑州:黄河水利出版社,2011.
    [184] Zhong E, Song G, Wang E. Development of a Components GIS Based on Applications[C].Beijing:Proceedings of IEAS '97&IWGIS '97.
    [185]刘丹,郑坤,彭黎辉.组件技术在GIS系统中的研究与应用[J].地球科学—中国地质大学学报,2002,27(3):263-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700