用户名: 密码: 验证码:
螺旋升流式SUFR-UCT系统脱氮除磷试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验在课题组前期研究的基础上,采用螺旋升流式反应器实现UCT工艺的处理单元,考察了螺旋升流式SUFR-UCT系统中同时硝化反硝化、反硝化除磷现象,对影响系统脱氮除磷效果的因素进行试验研究;确定脱氮除磷的最佳运行条件;对系统中的活性污泥进行研究;分析了SRT、C/N、C/P对系统生物脱氮除磷的影响,并结合螺旋升流流态特性进行分析;同时,从系统的好氧反应器中分离、筛选出好氧反硝化菌和聚磷菌并进行鉴定。论文的主要成果简述如下:
     ①螺旋升流式SUFR-UCT系统对COD、总氮和总磷都有较高的去除率,出水COD为6~24mg/L,总磷为0.01~0.41mg/L,总氮为2.57~11.52mg/L。厌氧反应器内去除的COD约占总去除量的87%。在好氧反应器中有同时硝化反硝化现象,在缺氧反应器中有明显的反硝化除磷现象。
     ②螺旋升流式SUFR-UCT系统活性污泥的沉降性能良好,SVI值介于50~150mL/g,由于螺旋升流流态的推流特征,反应器内易形成颗粒污泥,颗粒直径多在0.7mm~0.9mm之间,属于小颗粒污泥;污泥活性(MLVSS/MLSS)均在0.75以上。活性污泥的比好氧速率SOUR的平均值为31.8mg/(g·h),比硝化速率SNR约为1.95mg/(g·h),比厌氧释磷速率SPRR30为26.82mg/(g·h),比好氧吸磷速率ASPUR为6.04mg/(g·h),比缺氧吸磷速率NSPUR为4.27mg/(g·h),活性污泥对氮、磷有较好的去除能力。此外,污泥产率系数约为0.60,比传统活性污泥法要小15%左右。活性污泥中生物相丰富,其中以固着型纤毛虫为主,其次还有游泳型纤毛虫和轮虫、线虫等后生动物。
     ③螺旋升流式SUFR-UCT系统活性污泥的有机物去除能力对进水COD、C/N和C/P都有较大的抗冲击能力。进水C/N对系统脱氮效果有一定影响,在持续性高COD进水时,系统的脱氮效果大幅度降低。较高的SRT有利于硝化菌的增殖而使SND和脱氮效果都有所加强,但SRT大于25天后,污泥老化严重,使脱氮效率有所下降。除磷效果对进水COD的耐冲击负荷较高,受进水C/N的影响也较小。在进水C/P较低时,系统因不能及时将厌氧释放的磷和进水中的磷吸收而使除磷率偏低;在C/P较高时,由于进水磷浓度较低,限制了微生物的正常生命活动,使厌氧释磷和好氧吸磷量都有所下降。此外,除磷效果对SRT也有一定的耐冲击能力。
     螺旋升流式SUFR-UCT系统在经过72小时的停运之后恢复运行,一周内氮磷的去除基本恢复至停运前的处理水平。根据分析,螺旋升流式反应器独特的结构特征和流态特点是系统内颗粒污泥形成及运行高效稳定的根本原因。
     ④试验通过分离纯化和筛选得到两株具有良好好氧反硝化效果的菌株,经过16SrDNA测序确定分别属于Rhodococcus.sp(红球菌属)和Gordonia.sp(戈登氏菌属)。经过四天好氧反硝化,两菌株总氮去除率达61.2%和58.7%,且都有较高的氧耐受浓度和较宽的温度适应范围。
     ⑤针对系统中的反硝化吸磷现象进行了试验研究,发现提高厌氧阶段时水中COD浓度而使厌氧释磷量增加,并未对反硝化吸磷带来增加,并不能将厌氧阶段释放的磷完全吸收;通过对厌氧释磷量与COD消耗量的数据进行线性模拟,得到比例常数KΔP/ΔCOD为0.21;在超量投加硝酸盐的情况下并未带来缺氧吸磷速率和吸磷量的大幅提升;缺氧条件下COD的存在不利于反硝化除磷而有利于反硝化脱氮;在同样的反应时间内,缺氧吸磷尚达不到将厌氧阶段释放的磷完全吸收,而好氧吸磷却可以实现超量吸磷。
     ⑥通过分离纯化和筛选得到四株对总磷有较好去除效果的菌株,在24小时内对总磷的去除率分别为:26.68%、46.11%、40.78%和37.46%。对其中吸磷效果最好的菌株进行16SrDNA测序,结果显示该菌属于芽孢杆菌属(Bacillus)为枯草芽孢杆菌。
     ⑦通过回归分析,得出SRT、C/N和C/P对SUFR-UCT系统TN去除率、TP去除率、硝化速率、反硝化速率、释磷速率和吸磷速率的拟合方程,并验证了该方程有较好的显著性、拟合度和准确性;得到TN去除率最优时SRT、C/N和C/P约为25d、25和70;TP去除率最优时SRT、C/N和C/P分别为17d、8、80;硝化速率、释磷吸磷速率最优时SRT、C/N和C/P均分别为8d、5和100;反硝化速率最优时SRT、C/N和C/P均分别为30、25和100。
     ⑧建立系统物料平衡方程,计算得出在不同进水水质条件下对氮磷去除的动力学模式。验证该动力学模式进行,结果预测值与实测值较吻合,证明此动力学模式对螺旋升流式SUFR-UCT系统运行状况有较好的预测能力。
On the basis of preliminary studies, spiral up flow technology was combined with the UCT process to study the phenomenon of SND and denitrifying phosphorus removal, the factors affecting nitrogen and phosphorus removal and the best conditions for nitrogen and phosphorus removal. The activated sludge were studied too. Aerobic denitrifies and phosphorus accumulating bacteria were isolated selected and identified. Detailed work and major conclusion are as follows:
     ①The SUFR -UCT system based on spiral up flow could obtain high removal efficiency of phosphorus COD and nitrogen. The effluent concentration of COD was in the rage of 6~24mg/L, the effluent concentration of phosphorus was in the rage of 0.01~0.41mg/L, the effluent concentration of nitrogen was in the rage of 2.57~11.52mg/L. The COD were removed in the anaerobic reactor 87% of the total. There were phenomenon of simultaneous nitrification and denitrification in the aerobic reactor and phenomenon of denitrifying phosphorus removal in the anoxic reactor.
     ②The settlement of activated sludge was good in SUFR-UCT system based on spiral up flow. The SVI was in the rage of 50~150mL/g. The plug-flow characteristics of spiral up flow within the reactor was easy to form granular sludge, the sludge particle size was in the rage of 0.7~0.9mm, MLVSS/MLSS was above 0.75. The average of SOUR was 31.8 mg/(g?h), the SNR was about 1.95mg/(g·h), the SPRR30 was26.82mg/(g·h), The ASPUR was 6.04mg/(g·h), The NSPUR was 4.27mg/(g·h), The activated sludge had a good ability to remove nitrogen and phosphorus. In addition, the sludge yield coefficient of SUFR-UCT system was about 0.60 which was 15% lower the traditional. There were rich activated sludge biological phases, of which the sessile ciliates were the major and still some swimming ciliates or rotifers, nematodes and other metazoans.
     ③The organic removal had a greater impact resistance on the COD, C/N and C/P. The denitrification significantly reduced with persistent high COD. Influent C/N also had some impacts on the nitrogen removal. Higher SRT was conducive to the proliferation of nitrifying bacteria and the SND and nitrogen removal had been strengthened. But sludge aging serious and the nitrogen removal decreased when the SRT was more than 25 days. The phosphorus removal had a higher resistance to influent COD and C/N. When the influent C/P is low, the phosphorus removal rate was lower because it can not absorb the phosphorus in time. When the C/P was high, anaerobic phosphorus release and aerobic phosphorus uptake had declined because the lower influent P limited the normal life activities of microorganisms. In addition, phosphorus removal also had a certain impact resistance capacity on SRT.
     The removal of nitrogen and phosphorus returned to the level of before within a week after 72 hours’outage. According to the analysis, the unique structure and flow characteristics of spiral up-flow reactor were the root cause of the formation of granular sludge within the system.
     ④After the isolation, purification, screening, selected and sequencing 16SrDNA, the two strains belonged Rhodococcus.sp and Gordonia.sp. The nitrogen removal rate of the two strains were 61.2% and 58.7% after four days’aerobic denitrification. In addition, the two strains had higher concentrations of oxygen tolerance and a wide range of temperature adaptation.
     ⑤The phenomenon of denitrifying phosphorus uptake were studied, it was found that denitrifying phosphorus was not increased when increasing the anaerobic phosphorus release. by the amount of linear analog to the anaerobic phosphorus release and COD consumption obtained the conostant KΔP /ΔCOD was 0.21. In the case of excessive dosing nitrate did not bring anoxic phosphorus uptake rate and the P uptake increase significantly. The existence of COD in anoxic reactor is not conducive to denitrification but not to denotrifying phosphorus removal. In the same reaction time, the anoxic phosphorus uptake could not absorb all the P released in the anaerobic reactor, but the aerobic phosphorus could.
     ⑥After the isolation, purification, screening, selected and sequencing 16SrDNA, the strain which had the best phosphorus uptake capacity belonged Bacillus.sp. The phosphorus removal rates of the four strains were 26.68%, 46.11%, 40.78% and 37.46% in 24 hours.
     ⑦By means of the regression analysis, obtained the regression equations of TN removal rate, TP removal rate, nitrification rate, denitrifying rate, release phosphorus rate and P uptake rate. The regression equations were proved having good significant, fitting degree and accuracy. The analysis also got the optimal SRT, C/N and C/P as about 25d, 25 and 70 for TN removal rate, and the optimal SRT, C/N and C/P as 17d, 8, 80 for TP removal rate, and the optimal SRT, C/N and C/P respectively as 8d, 5 and 100 for nitration rate and release phosphorus P uptake rate, the optimal SRT, C/N and C/P respectively as 30d, 25, 100 for denitrifying rate.
     ⑧The material balan ce equation of SUFR-UCT system was established . The kinetics of nitrogen and phosphorus removal was got by calculating. Combined with experimental data on the sewage treatment, evaluate the kinetic models. The results showed that predicted and measured values were in good agreement which proved the kinetic models had good predictability.
引文
[1]张杰.水资源、水环境与城市污水再生回用.给水排水, 1998, 24(8):1-4.
    [2]王烨,朱琨.我国水资源现状与可持续利用方略.兰州交通大学学报, 2005, 24(5):77-80.
    [3]万本太.我国水资源的问题与对策.环境保护, 1999, 1:7-8.
    [4]鲍孝容.关于我国污水资源化的研究.环境科学与技术, 2005, 28(2):51-53.
    [5]吕炳南,吕岩松,冯令艳.污水资源化是污水处理的发展方向.哈尔滨建筑大学学报, 1996, 29(5):17-21.
    [6]张宏仁.中国的淡水资源问题.环境保护, 2001, 5:3-7.
    [7]夏邦天,邹斌.污水处理技术的方法原理、问题与发展趋势.中国科技信息, 2010, 5:22-23.
    [8]杨明先.四川升钟水库水体富营养化评价.环境科学与管理, 2010, 35(1):176-180.
    [9]梁鸣,我国城市湖泊富营养化现状及外源控制技术.武汉理工大学学报, 2007, 29(8):194-197.
    [10]赵永宏,邓祥征,战金艳,等.我国湖泊富营养化防治与控制策略研究进展.环境科学与技术, 2010, 33(3):92-98.
    [11]朱亮.水体氮磷营养源控制对策研究.给水排水, 1998, 24(1):61-65.
    [12] Nowak O, Svardal K. Observation on the kinetics of nitrification under inhibiting conditions caused by industrial wastewater compounds. Water Science and Technology, 1993, 28(2): 115- 123.
    [13] Kuba T, van Loosdrecht M C M, et al. Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a full-scale waste water treatment plant. Wat Sci Tech, 1997, 36(12):75-82.
    [14] Zeng R J, van Loosdrecht M C M, Yuan Z G, et al. Metabolic model for glycogen accumulating organisms in anaerobic/aerobic activated sludge systems. Biotechnology and Bioengineering, 2003, 81(1):92-105.
    [15]吕锡武,稻森悠平,等.同步硝化反硝化脱氮及处理过程中N2O的控制研究.东南大学学报, 2001, 31(1):95-99.
    [16] Junfeng Wan, Mathieu Seperandio. Possible role of denitrification on aerobic granular sludge formation in sequencing batch reactor. Chemosphere, 2009, 75(2):220-227.
    [17]黄廷林,苏俊峰,李倩.好氧反硝化菌株的筛选培养及其反硝化性能研究.西安建筑科技大学学报(自然科学版), 2009, 41(5):704-707.
    [18]王磊,汪苹,刘健楠,尹明锐.固定异养硝化-好氧反硝化菌脱氮能力的研究.北京工商大学学报(自然科学版), 2010, 28(1):18-23.
    [19] Hung-Soo Joo, Mitsuyo Hirai, Makoto Shoda. Piggery wastewater treatment using Alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification. Water Reasearch, 2006, 40(16):3029-3036.
    [20]陈胜,孙德智,遇光禄.填充床快速启动厌氧氨氧化反应器及其脱氮性能研究.环境科学, 2010, 31(3):691-696.
    [21] N Chamchoi, S Nitisoravut, J E Schmidt. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation and denitrification. Bioresource Technology, 2008, 99(9):3331-3336.
    [22]薛通,薛源,杨凤林,等.污泥厌氧水解与短程硝化反硝化耦合工艺处理低碳氮比城市污水.高校化工工程学报, 2010, 24(1):150-154.
    [23] Leonidia Maria Castro Daniel, Eugenio Foresti, et al. Romval of ammonium via simultaneous nitrification-denitrification nitrite-shortcut in a single packed-bed batch reactor. Bioresource Technology, 2009, 100(3):1100-1107.
    [24] Watanabe W, et al. Simultaneous Nitrification and Denitrification in Micro-aerobic Biofilm. Water Sci & Tech, 1992, 26:511-522.
    [25] Lijiao Ren, Yining Wu, Nanqi Ren, Kun Zhang, et al. A/O reactor treating diluted livestock wastewater during start-up period. Journal of environmental sciences, 2010, 5:656-662.
    [26] Uemoto H, Saiki H. Behavior of immobilized nitrosomonas europaea and paracoccus denitrificans in tubular gel for nitrogen removal in wastewater. Prog Biotech, 1996, 11:695-701.
    [27]曹国民,赵庆祥,张彤.单级生物脱氮技术的发展.中国给水排水, 2000, 16(2):20-24.
    [28] Mia Kim, Seong-Yun Jeong, Su Jeong Yoon, et al. Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios. Journal of Bioscience and Bioengineering, 2008, 106(15):498-502.
    [29] Hung-Soo Joo, Mitsuyo Hirai, Makoto Shoda. Improvement in ammonium removal efficiency in wastewater treatment by mixed culture of Alcaligenes faecalis No. 4 and L1. Journal of Bioscience and Bioengineering, 2007, 103(1):66-73.
    [30] S K Gupta, Mona Kshirsagar. Quantitative estimation of Thiosphaera pantotropha from aerobic mixed culture. Water Research, 2000, 34(15):3765-3768.
    [31] Norbert Weissenbacher, Christian Loderer, et al. NOx monitoring of a simultaneous nitrifying-denitrifying(SND) activated sludge plant at different oxidation reduction potentials. 2007, 41(2):397-405.
    [32] Huihui chen, Sitong Liu, Fenglin Yang, et al. The development of simultaneous partial nitrification, ANAMMOX and denitrification(SNAD) process in a single reactor for nitrogen removal. Bioresource Technology, 2009, 100(4):1548-1554.
    [33] Yousef Rahimi, Ali Torabian, et al. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor(FBSBR). Journal of Hazardous Material, 2011, 185(2-3):852-857.
    [34] Bruce E R, Wayne E L. Simultaneous denitrification with nitrification in single-channel oxidation ditches. WPCE, 1985, 57(4)368-371.
    [35] Y. Watanabe, S Okabe, K. Hirata, et al. Simultaneous removal of organic materials and nitrogen by micro-aerobic biofilms. Water Sci & Tech, 1995, 31(1):195-203.
    [36] Mervyn C Goronszy, Gunnar Demouiin, Mark Newland. Aerated nitrification in fullscale activated sludge facilities. Wat Sci &Tech, 1997, 35(10):45-49.
    [37]苏俊峰,黄廷林,刘燕,等.异养型同步硝化反硝化处理微污染水源水.环境科学与技术, 2010, 33(3):141-143.
    [38]陈英文,赵冰怡,刘明庆,等.碱度指示MBR中同步硝化反硝化的研究.环境工程学报, 2010, 2:273-277.
    [39]杜馨,张可方,方茜.同步硝化反硝化影响因素的试验研究.广州大学学报(自然科学版), 2007, 6(1):70-74.
    [40]汪慧贞,张雅君,陈鹏,等.氧化还原电位在CAST工艺中的应用.水处理技术, 2008, 34(11):65-67.
    [41]熊振湖,汪艳宁.溶解氧和pH值对CAST工艺脱氮效果的影响.环境工程, 2003, 21(6):14-16.
    [42]方茜,张朝升,张可方,等.污泥龄及pH值对同步硝化反硝化过程的影响.广州大学学报(自然科学版), 2008, 7(3):50-54.
    [43] Yasunori Kawagoshi, Yasuhiro Nakamura, et al. Enrichment culture of marine anaerobic ammonium oxidation(anammox) bacteria from sediment of sea-based waste disposal site. Journal of Bioscience and Bioengineering, 2009, 107(1):61-63.
    [44] TatsuoSumino, Kazuichi Isaka, Hajime Ikuta, et al. Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor. Journal of Bioscience and Bioengineering, 2006, 102(4):346-351.
    [45] Van der Star W R L, Abma W R, Blommers D, et al. Start upof reactors for anoxic am monium oxidation: experiences from the first full scale ANAMMOX reactor in Rotterda. Water Research, 2007, 41(18):4149-4163.
    [46] A Gali J, Dosta M C M, van Loosdrecht, et al. Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process. Process Biochemistry, 2007, 42(4):715-720.
    [47]苏彩丽,余泳昌,季宝杰.短程硝化-厌氧氨氧化生物脱氮研究进展.环境科学与技术,2009, 32(4):92-96.
    [48]朱月琪,张丽娟,曾国驱,等.低浓度氨氮废水在ABR中的厌氧氨氧化研究.环境工程学报, 2010, 4(6):1224-1230.
    [49]赖杨岚,周少奇.厌氧氨氧化与反硝化的协同作用特性研究.中国给水排水, 2010, 13: 6-10
    [50]赵宗升,刘鸿亮,李炳伟,等.高氨氮废水的高效生物脱氮途径.中国给水排水, 2001, 17(5):24-28.
    [51]林进条,林涛,刘丽玲.新型生物脱氮工艺的研究和进展.净水技术, 2005, 24(2):48-50
    [52]袁林江,短程硝化-反硝化生物脱氮.中国给水排水, 2000, 16(2):29-31.
    [53] Kempen van R, Mulder J W, et al. Overview: Full scale experience of the Sharon process for treatment of rejection water of digested sludge dewatering. Wat Sci & Tech, 2001, 44:145-152.
    [54] Hyungseok Yoo, Kyu-Hong Ahn, Hyung-Jib Lee, et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification(SND) via nitrite in an intermittently-aerated reactor. Wat Res, 1999, 33(1):145-154.
    [55]肖文胜,郭建林,短程硝化反硝化生物脱氮工艺及影响因子.黄石理工学院学报, 2005, 21(1):21-23.
    [56]吴广华,张耀斌,等.温度及反硝化聚磷对SBMBBR脱氮除磷的影响.环境科学, 2007. 28(11):2484-2487.
    [57]殷旭东,李德蒙,高桂枝.新型一体化生物反应器脱氮的影响因素研究.环境工程学报, 2009, 3(10):1778-1782.
    [58]刘医鳞,李小明,王冬波. SBR单级好氧法在低pH值条件下对氮的去除.环境科学学报, 2008, 28(9):1793-1799.
    [59] Hannaneh Rasouli-Kenari, Mohammad H, Sarrafzadeh, et al. Factors affecting the biological nitrogen removal from wastewater in simultaneous nitrification denitrification process. Journal of Biotechnology, 2008, 136(1):670-671.
    [60]彭永臻,郭建华,王淑莹,等.低溶解氧污泥微膨胀节能理论与方法的发现、提出及理论基础.环境科学, 2008, 29(12):3342-3347.
    [61]王建龙,彭永臻,王淑莹.污泥龄对A2/O工艺脱氮除磷效果的影响.环境工程, 2007, 25(1):16-18.
    [62]李亚静,孙力平,郑淑平.碳源浓度和污泥龄对反硝化聚磷脱氮影响研究.环境科学与技术, 2008, 31(5):112-115.
    [63]许劲,孙俊贻.生物除磷脱氮系统工程设计中的污泥龄.重庆建筑大学学报, 2005, 27(5): 83-86.
    [64]丁永伟,王琳,王宝贞,等.悬浮态污泥的SRT对复合式A2/O工艺性能的影响.环境科学学报, 2005, 25(12):1608-1614.
    [65]赵晨红,彭永臻,王淑莹.碳氮比对UniFed SBR工艺性能的影响.环境科学, 2008, 29(5):1210-1215.
    [66]张朝升,林峰,荣宏伟,等. C/N对Carrousel2000氧化沟同步脱氮除磷的影响研究.环境工程学报, 2009, 3(3):451-454.
    [67]侯红娟,洪洋,周琪.进水COD浓度及C/N值对脱氮效果的影响.中国给水排水, 2005, 21(12):19-23.
    [68]高景峰,彭永臻,王淑莹.有机碳源对低碳氮比生活污水好氧脱氮的影响.安全与环境学报, 2005, 5(6):11-15.
    [69]祝学兵,彭永臻,吴淑云,等.碳氮比对分段进水生物脱氮的影响.中国环境科学, 2005, 25(6): 641-645.
    [70] Cathy R, Hood, Andrew Amis Randall. A biochemical hypothesis explaining the response of enhanced biological phosphorus removal biomass to organic substrates. Water Reasearch, 2001, 35(11):2758-2766.
    [71] Nazik Artan, Derin Orhon, Adeline S M, et al. Population dynamics in a sequencing batch reactor fed with glucose and operated for enhanced biological phosphorus removal. Bioresource Technology, 2010, 101(11):4000-4005.
    [72] Niandong Wang, Jian Peng, Gordon Hill. Biochemical model of glucose induced enhanced biological phpsporus removal under anaerobic condition. Water Research, 2002, 36(1):49-58.
    [73] Osborn D W, Nicholls H A. Optimization of the activated sludge process for the biological removal of phosphorus. Pro Wat Tech, 1978, 10:261-271.
    [74] Lotter L H, Wentzel M C, Loewenthal R E C, et al. A study of selected characteristics of Acinetobacter spp. Isolated from acticated sludge in anaerobic/anoxic/aerobic and aerobic system. Water S A, 1986, 12:203-208.
    [75] Philippe Lefrancois, Jaume Puigagut, Yves Comeau, et al. Minimizing phosphorus discharge from aquaculture earth phonds by a novel sediment retention system. Aquacultural Engineering, 2010, 43(3):94-100.
    [76] Kuba T, Smolders G J F, van Loosdrecht M C M, et al. Biological phosphorus removal from wastewater anaerobic-anoxic sequencing batch reactor. Wat Sci Tech, 1993, 27(5-6).
    [77] Kerrn-Jespersen J P, Henze M, Strbe R. Biological phosphorus release and uptake under alternating anaerobic and anoxic conditions in a fixed-film reactor . Wat Res, 1994, 28(5): 1253-1265.
    [78] Ng W J, Ong S L, Hu J Y. Denitrifying phosphorus removal by anaerobic/anoxic SBR . Water Science Technology, 2001, 43(3):139-146.
    [79]张波,高延耀.倒置A/O工艺的院里与特点研究.中国给水排水, 2000, 16(7):11-15.
    [80]罗宁.双泥生物反硝化吸磷脱氮系统工艺的试验研究[学位论文]重庆大学, 2003:78-104.
    [81]罗固源,吉芳英,罗宁.硝酸盐电子受体反硝化同时除磷试验分析.环境工程, 2004, 22(1):32-35.
    [82]郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑出版社, 1998:33-67.
    [83] Jeet K, Mishra, Tzachi M. Sasmita Patnaik, et al. Performance of an intensive nursery for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering, 2008, 38(1):2-15.
    [84]吴广华,张耀斌,等.温度及反硝化聚磷对SBMBBR脱氮除磷的影响.环境科学, 2007, 28(11):2484-2487.
    [85] Kuba T, Mumleitner E, van Loosdrecht M C M, et al. A metabolic model for the biological phosphorus removal by denitrifying organisms. Wat Sci Tech, 1994, 30(6):263-269.
    [86] Kuba T, van Loosdrecht M C M, Heijnen J J. Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a full-wastewater treatment plant. Wat Sci Tech, 1997, 36(12):75-82.
    [87] Neslihan Semerci, Nevin Bakici, B Alpaslan Kocamemi. Effects of nitrite, oxygen and initial pH on biological phosphorus removal in a post-denitrification system. Journal of Biotechnology, 2010, 150(1)292.
    [88] T Nittami, H Oi, K Matsumoto, et al. Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions. Journal of Biotechnology, 2010, 150(1):237.
    [89] Thongchai Panswad, Apiradee Doungchai, Jin Anotai. Temperature effect on microbial community of enhanced biological phosphorus removal system. Water Research, 2003, 37(2): 409-415.
    [90]吉芳英.溶解氧对NBIAS系统生物除磷脱氮的影响.重庆建筑大学学报, 1999, 21(6):49-52.
    [91] Larose A, et al. Respirometric control of the anaerobic period duration of an SBR bio-process. Wat Sci Tech, 2003, 36(5):293-300.
    [92]王佳伟,周军,甘一萍,等.溶解氧对A2/O工艺脱氮除磷效果的影响及解决方法.给水排水, 2009, 35(1):35-37.
    [93]李勇智,彭永臻,张艳萍,等.硝酸盐浓度及投加方式对反硝化除磷的影响.环境污染与防治, 2003, 12(6):323-325.
    [94] Ekama G A, Wentzel M C. Denitrification kinetics in biological N and P removal activated sludge systems treating municipal wastewater. Wat Sci Tech, 1999, 39(6):69-77.
    [95] Merzouki M, Bernet N, Delgenes J P, et al. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater. Bioresource Technology, 2005, 96(12): 1317-1322.
    [96] Kerrn-Jespersen J P, Henze M, Strbe R. Biological phosphorus release and uptake under alternating anaerobic and anoxic conditions in a fixed-film reactor. Wat Res, 1994, 28(5):1253- 1265.
    [97]刘建广,付昆明,杨义飞,等.不同电子受体对反硝化除磷菌缺氧吸磷的影响.环境科学, 2007, 28(7):1472-1476.
    [98] Hu J Y, Ong S L, Ng W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors. Wat Res, 2003, 37(14): 3463-3471.
    [99] Lee D S, Jeon C D, Park J M. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Wat Res, 2001, 35(16):3968-3976.
    [100] Saito T, Brdjanovic D, van Loosdrecht M C M. Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Wat Res, 2004, 38(17):3760-3768.
    [101] Carucci A, et al. Different mechanisms for the anaerobic storage of organic substrates and their effect on enhanced biological phosphate removal. Wat Sci Tech, 1999, 39(6):21-28.
    [102] Meinhold J, et al. Effect of continuous addition of an organic substrate to the anoxic phase on biological phosphorus removal. Wat Sci Tech, 2001, 38(1):97-105.
    [103]郝王娟,薛涛,黄霞.进水碳磷比对聚磷菌与聚糖菌竞争生长的影响.中国给水排水, 2007, 23(17):95-98.
    [104]刘勤亚,张业健.泥龄应用中有关问题的探讨.污染防治技术, 2003, 16(2):13-16.
    [105]王春丽,马放,刘慧,等.泥龄对反硝化除磷效能的影响.东北农业大学学报, 2007, 38(5): 637-640.
    [106]彭永臻,吴蕾,马勇,等.好氧颗粒污泥的形成机制、特性及应用研究进展.环境科学, 2010, 31(2):273-279.
    [107] Beun J J, Hendriks A, van Loosdrecht M C M, et al. Aerobic granulation in a sequencing batch reactor. Water Research, 1999, 33(10):2283-2290.
    [108]李慧琴,涂响,孔云华,等.交变负荷调控法培养好氧颗粒污泥的试验研究.环境科学, 2010, 31(3):743-749.
    [109]韩洪军,刘立凡. UASB+AF反应器的快速启动.中国给水排水, 2001, 17 (2):53-55.
    [110] Kuo Shing Lee, Ping Jei Lin, Jo Shu Chang. . Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. International Journal of Hydrogen Energy, 2006, 31(4):465-472.
    [111]韩剑宏.低温条件下硬硅钙石二次粒子对UASB反应器污泥颗粒化的影响研究,化工环保. 2004, 24(2):86-89.
    [112] Wanqian Guo, Nanqi Ren, Xiangjing Wang, et al. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed(EGSB) reactor. International Journal of Hydrogen Energy, 2008, 33(19):4981-4988.
    [113] YU H Q, Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminium chloride. Chemosphere, 2001, (44):31-36.
    [114] UYANIKS, The effect of polyer addition on granulation in an anaerobic baffled reactor(ABR). Water Research, 2002, 36(4):933-943.
    [115] Rencun Jin, Ping Zheng, Qaisar Mahmood, et al. Hydrodynamic characteristics of airlift nitrifying reactor using carrier-induced granular sludge. Journal of Hazardous Materials, 2008, 157(2-3):367-373.
    [116] Appala R, Badireddy, Shankararaman Chellam, Paul L, et al. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Research, 2010, 44(15):4505-4516.
    [117] M K de Kreuk, N Kishida, M C M van Loosdrecht, et al. Behavior of polymeric substrates in an aerobic granular sludge system. Water Research, 2010, 44(20):5929-5938.
    [118] Eric D, van Hullebusch, Jarno Gieteling, et al. Cobalt sorption onto anaerobic granular sludge: Isotherm and spatial localization analysis. Journal of Biotechnology, 2006, 121(2)227-240.
    [119] Tarek Sabry. Application of the UASB inoculated with flocculent and granular sludge in treating sewage at different hydraulic shock loads. Bioresource Technology. 2008, 99(10):4073-4077
    [120] A A Abreu, J C Costa, P Araya-Kroff, et al. Quantitative image analysis as a revival process of anaerobic granular sludge. Water Research, 2007, 41(7):1473-1480.
    [121] Gang Luo, Li Xie, Qi Zhou. Ehaned treatment efficiency of an anaerobic sequencing batch reactor(ASBR) for cassava stillage with high solids content. Journal of Bioengineering, 2009, 107(6):641-645.
    [122] Eric D, van Hullebusch, Jarno Gieteling, et al. Effect of sulfate and iron on physic-chemical characteristics of anaerobic granular sludge. Biochemical Engineering Journal, 2007, 33(2): 168-177.
    [123] Sunil S Adav, Duu-Jong Lee, Kuan-Yeow, et al. Aerobic granular sludge: Recent advances. Biotechnology Advances, 2008, 26(5):411-423.
    [124] Zhiwei Song, Yuejun Pan, Kun Zhang, et al. Effect of seed sludge on characteristics andmicrobial community of aerobic granular sludge. Journal of Enironmental Sciences, 2010,
    [111]韩剑宏.低温条件下硬硅钙石二次粒子对UASB反应器污泥颗粒化的影响研究,化工环保. 2004, 24(2):86-89.
    [112] Wanqian Guo, Nanqi Ren, Xiangjing Wang, et al. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed(EGSB) reactor. International Journal of Hydrogen Energy, 2008, 33(19):4981-4988.
    [113] YU H Q, Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminium chloride. Chemosphere, 2001, (44):31-36.
    [114] UYANIKS, The effect of polyer addition on granulation in an anaerobic baffled reactor(ABR). Water Research, 2002, 36(4):933-943.
    [115] Rencun Jin, Ping Zheng, Qaisar Mahmood, et al. Hydrodynamic characteristics of airlift nitrifying reactor using carrier-induced granular sludge. Journal of Hazardous Materials, 2008, 157(2-3):367-373.
    [116] Appala R, Badireddy, Shankararaman Chellam, Paul L, et al. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Research, 2010, 44(15):4505-4516.
    [117] M K de Kreuk, N Kishida, M C M van Loosdrecht, et al. Behavior of polymeric substrates in an aerobic granular sludge system. Water Research, 2010, 44(20):5929-5938.
    [118] Eric D, van Hullebusch, Jarno Gieteling, et al. Cobalt sorption onto anaerobic granular sludge: Isotherm and spatial localization analysis. Journal of Biotechnology, 2006, 121(2)227-240.
    [119] Tarek Sabry. Application of the UASB inoculated with flocculent and granular sludge in treating sewage at different hydraulic shock loads. Bioresource Technology. 2008, 99(10):4073-4077
    [120] A A Abreu, J C Costa, P Araya-Kroff, et al. Quantitative image analysis as a revival process of anaerobic granular sludge. Water Research, 2007, 41(7):1473-1480.
    [121] Gang Luo, Li Xie, Qi Zhou. Ehaned treatment efficiency of an anaerobic sequencing batch reactor(ASBR) for cassava stillage with high solids content. Journal of Bioengineering, 2009, 107(6):641-645.
    [122] Eric D, van Hullebusch, Jarno Gieteling, et al. Effect of sulfate and iron on physic-chemical characteristics of anaerobic granular sludge. Biochemical Engineering Journal, 2007, 33(2): 168-177.
    [123] Sunil S Adav, Duu-Jong Lee, Kuan-Yeow, et al. Aerobic granular sludge: Recent advances. Biotechnology Advances, 2008, 26(5):411-423.
    [124] Zhiwei Song, Yuejun Pan, Kun Zhang, et al. Effect of seed sludge on characteristics andmicrobial community of aerobic granular sludge. Journal of Enironmental Sciences, 2010,庆大学, 2007:67-115.
    [142]吴江航,韩庆书.计算流体力学的理论、方法及应用.北京:科学出版社. 1988:14-44.
    [143] Benjapon Chalermsinsuwan, Prapan Kuchonthara, Pornpote Piumsomboon. CFD modeling fluidized bed reactor risers: Hydrodynamic descriptions and chemical reaction responses. Chemical Engineering and Processing: Process Intensification, 2010, 49(11):1144-1160.
    [144]韩占中,王敬,兰小平.流体工程仿真计算实例与应用.北京:北京理工大学出版社. 2004:8-22.
    [145] W.罗迪著,贺益英译.环境问题的紊流模型.北京:水力电力出版社. 1987:53-66.
    [146]闻德荪.工程流体力学.北京:高等教育出版社, 1988:52-77.
    [147]夏震寰.现代水力学.北京:高等教育出版社. 1992:35-60.
    [148]季铁军,罗固源.螺旋升流反应器的流态特性及流动模型研究.中国给水排水. 2006, 22(15): 5458.
    [149]季铁军,罗固源.较长泥龄时SUFR系统运行效果的试验分析.重庆大学学报(自然科学版). 2005, 28 (8):126-128 .
    [150]豆俊峰.螺旋升流式反应器处理城市污水的试验研究[学位论文],重庆大学, 2004, 38-54.
    [151]徐亚同,史嘉梁,张明.污染控制微生物工程.北京,化学工业出版社, 2001:73-80.
    [152]曾国敏,马邕文.常温下IC反应器启动过程中的颗粒污泥性能研究.环境工程学报, 2010, 4(1):67-70.
    [153] Alphenaar P A, Groeneveld N and van aelst A C. Scanning electron microscopical for internalstructure analysis of anaerobic granular sludge. Micron 1994, 25(2):129-133.
    [154]罗志腾主编.水污染控制工程微生物学.北京,北京科学技术出版社, 1988:233-236.
    [155]崔洪升,白晓慧,李刚.寒冷地区城市污水处理厂污泥膨胀及其控制方法.哈尔滨建筑大学学报, 2001, 34(2): 79-82.
    [156] Yu Liy, Qishan Liu. Cause and control of filamentous growth in granular sludge sequencing batch reactors. Biotechnology advances, 2006, 24(1):115-127.
    [157]李凌云,彭永臻,李论,等.活性污泥系统比耗氧速率在线监测与变化规律.化工学报, 2010, 61(4):995-1000.
    [158] Yongqiang Liu, Joo Hwa Tay. Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequencing batch reactors. Enzyme and Microbial Technology, 2007, 41(4):516-522.
    [159]邹晨,邓彪,乌兰,等.悬浮填料A2/O工艺硝化特性研究.中国给水排水, 2009, 25(13): 58-60.
    [160]阙添进. SUFR流态与氧传递性能分析[学位论文].重庆大学, 2004:47-57.
    [161] Dalzell D J B, Alte S, Aspichueta E. A comparison of five rapid direct toxicity assessmentmethods to determine toxicity of pollutants to active sludge. Chemosphere, 2002, 47(5):535-545.
    [162]符成泽,李咏梅,顾国维.硝化速率法用于活性污泥活性测试的研究.环境污染与防治, 2006, 28(4):264-266.
    [163] Shaoqi Zhou, Xiaojie Zhang, Linyu Feng. Effect of different types of electron acceptors on the anoxic phosphorus uptake activity of denitrifying phosphorus removing bacteria. Bioresource Technology, 2010, 101(6):1603-1610.
    [164] Hoi-Ping Shi, Chi-Mei Lee. Combining anoxic denitrifying ability with aerobic-anoxic phosphorus-removal examinations to screen denitrifying phosphorus-removaling bacteria. 2006, 57(2):121-128.
    [165]朱广汉,李春光.污水生物脱氮工程技术参数的探讨.中国给水排水, 2009, 25(4): 105- 108.
    [166]梁鹏,黄霞,钱易,等.污泥减量化技术的研究进展.环境污染治理技术与设备, 2003, 4(11): 44-52.
    [167] Wei Y S, Van Houten R T, Borger A R, et al. Comparison performances of membrane bioreactor (MBR) and conventional activated sludge (CAS) processes on sludge reduction induced by Oligochaete. Environ Sci Tec, 2003, 37(14):3171-3180.
    [168] Daniele Di Trapani, Marco Capodici, Alida Cosenza, et al. Evaluation of biomass activity and wastewater characterization in a UCT-MBR pilot plant by means of respironmetric techniques. Desalination, 2011, 269(1-3):190-197.
    [169] Ratsak C R. Grazer induced sludge reduction in wastewater treatment. PhD thesis, the Netherlands: Vrije Universiteit, 1994:56-102.
    [170]周可新,许木启,曹宏,等.活性污泥系统原生动物多样性动态及其与运转效能的关系.应用环境生物学报, 2001, 13(6):840-842.
    [171] C A Papadimitriou, A Papatheodoulou, V Takavakoglou, et al. Investigation of protozoa as indicators of wastewater treatment efficiency in constructed wetlands. Desalination, 2010, 250(1):378-382.
    [172]陈声贵,许木启,曹宏,等.活性污泥微型动物种群动态与水质净化效能的关系.动物学报, 2003, 49(6):775-786.
    [173]侯红娟,王洪洋,周琪.进水COD浓度及C/N值对脱氮效果的影响.中国给水排水, 2005, 21(12):19-23.
    [174]郝晓地,戴吉,兰荔等.控制BNR工艺好氧、反硝化除磷效果因素试验研究.环境科学学报, 2008, 28(11):2186-2191.
    [175]王凤祥,龙腾锐,郭劲松.活性污泥膨胀的影响因素及调控措施研究.重庆建筑大学学报, 2007, 29(1):117-121.
    [176]郝火凡,胡晓明.高氮垃圾渗滤液SBBR生物脱氮工艺特性研究.水处理技术, 2009, 35(9):48-55.
    [177]章北平,颜岗,毛敏,等. CBR工艺处理低碳磷比城市污水的除磷研究.中国给水排水, 2008, 24(9):30-37.
    [178]赵玉华,韩敏.有机物含量及碳磷比对生物接触氧化法除磷效果的影响.辽宁化工, 2008, 37(1):4-7.
    [179]徐伟锋,顾国维,陈银广. SRT对A2/O工艺脱氮除磷的影响.水处理技术, 2007, 33(9):68-71.
    [180]戴兴春,谢冰,黄民生,等.氧化沟污泥膨胀和生物泡沫的控制及应用研究.环境科学与技术, 2007, 30(9):14-17.
    [181]魏琛.浅议影响污水生物除磷的因素.重庆环境科学, 2002, 24(2):85-87.
    [182]王长生,傅金祥,张萍,等.抚顺污水处理长活性污泥培养训话与启动调试.给水排水, 2003, 19(4):6-8.
    [183]张静.北小河污水处理厂反渗透系统的调试运行和保存.中国给水排水, 2010, 26(2):93-98.
    [184] Wilen B M, Onuki M, Hermansson M, et al. Microbial commumity structure in acriated sludge floc analused by fluorescence in hybridization and its relation to floc stability. Water Research, 2008, 42(8-9):2300-2308.
    [185]高景峰,郭建秋,陈冉妮,等. SBR反应器排水高度与直径比对污泥好氧颗粒化的影响.中国环境科学, 2008, 28(6):512-516.
    [186] Yu Tian, Yaobin Lu. Simultaneous nitrification and denitrification in a new Tubificidae-reactor for minimizing nutrient release during sludge reduction. Water Reasearch, 2010, 44(20):6031-6040.
    [187] Duu-Jong Lee, Yuyou Chen, Kuan-Yeow Show, et al. Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnology Advances, 2010, 28(6):919-934.
    [188] Bernardino Virdis, Suzanne T Read, Korneel Rabaey, et al. Biofilm stratification during simultaneous nitrification and denitrification at a biocathode. Bioresource Technology, 2011, 102(1): 334-341.
    [189] Bernardino Virdis, Korneel Rabaey, Rene A, et al. Simultaneous nitrification and carbon removal in microbial fuel cells. Water Research, 2010, 44(9):2970-2980.
    [190] In S Kim, Sung-min Kim, Am Jang. Characterization of aerobic granules by microbial density at different COD loading rates. Bioresource Technology, 2008, 99(1):18-25.
    [191] Anjie Li, Shufang Yang, Xiaoyan Li, et al. Mivrobial population dynamics during aerobic sludge granulation at different organic loading rates. Water Research, 2008, 42(13): 3552-3560.
    [192]季铁军.螺旋升流式反应器在低温、长泥龄时处理城市污水的试验研究[学位论文].重庆大学, 2004:53 -64.
    [193]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社, 2001:361-370.
    [194]汪苹,项慕飞,翟茜.从不同反应器筛选、鉴别好氧反硝化菌.环境科学研究, 2007, 20(4):120-124.
    [195]马放,任南琪,杨基先.污染控制微生物学实验.哈尔滨:工业大学出版社, 2002:48-52.
    [196]和文祥.环境微生物学.北京:中国农业大学出版社, 2007:307-327.
    [197]黄廷林,刘燕,苏俊峰,等.微生物固定化技术对微污染水源水脱氮的试验研究.环境污染与防治, 2009, 31(12):32-34.
    [198] Ahn J, Daidou T, Tsuneda S, et al. Characterization of denitrifying phosphate-accumulating organisms euhivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay. Water Res, 2002, 36(2): 403-412.
    [199] Shaohui Zhang, Yi Huang, Yumei Hua. Denitrifying dephosphorus over nitrite: Effects of nitrite concentration, organic carbon, and pH. Bioresource Technology, 2010, 101(11): 3870-3875.
    [200]金永祥,陶丽娟,周展浩,等.复合式缺氧-好氧法处理晚期垃圾渗滤液研究.水处理技术, 2010, 36(2):98-104.
    [201]何晓群,刘文卿.应用回归分析.北京:中国人民大学出版社, 2001, 1-212.
    [202]张志伟,胡伍生,黄晓明.线性回归模型精化方法.东南大学学报(自然科学版), 2009, 39(6):1279-1282.
    [203]董大校,基于MATLAB的多元非线性回归模型.云南师范大学学报, 2009, 29(2):45-48.
    [204]李小胜,陈珍珍.如何正确应用SPSS软件做主成份分析.统计研究, 2010, 27(8):105-108.
    [205]周毅,刘治彦,赵景柱.中国区域环境资源极其相关分析.北京理工大学学报, 2007, 27(5): 455-459.
    [206]林桂芸,王跃华,廖科伟,等.应用生物微核技术检测垃圾场周边地区水质污染.西南农业学报, 2009, 22(6):1761-1764.
    [207]周彦,王国长.基于经验似然的拟合优度检验及应用题.哈尔滨理工大学学报, 2010, 15(1): 87-91.
    [208]高晶,翟玉人.室内氡气含量的回归分析.沈阳师范大学学报(自然科学版), 2010, 28(1): 21-23.
    [209]童璧.粒子群算法与工程优化[学位论文].上海:上海交通大学, 2007:52-54.
    [210]沈学利,张红岩,张纪锁.改进粒子群算法对BP神经网络的优化.计算机系统应用, 2010, 19(2):15-61.
    [211] A Pala, O Bolukbas. Evaluation of kinetic parameters for biological CNP removal from a municipal wastewater through batch tests. Process Biochemistry, 2005, 40(2):629-635.
    [212] Albert Magri, Xavier Flotats. Modelling of biological nitrogen removal from the liquid fraction of pig slurry in a sequencing batch reactor. Biosystems Engineering, 2008, 101(2):239-259.
    [213] A Akhbari, A A L, Zinatizadeh, et al. Process modeling and analysis of biological nutrients removal in an integrated RBC-AS system using reponse surface methodology. Chemical Engineering Journal, 2011, 168(1):269-279.
    [214] P van Rensburg, E V Musvoto, M C Wentzel, et al. Modelling multiple mineral precipitation in anaerobic digester liquor. Water Research, 2003, 37(13):3087-3097.
    [215] Koichi Sorjima, Shinya Matsumoto, Satoshi Ohgushi, et al. Modelling and experimental study on the anaerobic/aerobic/anoxic process for simultaneous nitrogen and phosphorus removal: The effect of acetate addition. Process Biochemistry, 2008, 43(6):605-614.
    [216]马勇,彭永臻. A/O生物脱氮工艺的反硝化动力学试验.中国环境科学, 2006, 26(4):464-468.
    [217]王亚宜,王淑莹,彭永臻.反硝化除磷的生物化学代谢模型.中国给水排水, 2006, 22(6):4-7.
    [218] Arnold E Greenberd, Lenore S Clesceri, Andrew D Eaton (Editors). ISBN 0-87553-207-1. 1992. Standard methods for the examination of water and wastewater. Alexandria, USA: Water Environment Federation, 1992, 1025 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700