用户名: 密码: 验证码:
A~2/O工艺脱氮除磷及其优化控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
A~2/O工艺(厌氧-缺氧-好氧)是一种在城市污水厂应用最为广泛的同步脱氮除磷工艺之一,其具有构造简单、总水力停留时间短且控制运行的复杂性小等优点。就目前来看,在没有更好的生物脱氮除磷工艺出现之前,国内将在较长的一段时期内,仍会以A~2/O工艺原理为主导来设计、修建各种规模的城市污水处理厂。
     虽然A~2/O工艺已得到了广泛应用,但是其本身存在一些难以克服的内在矛盾,如基质竞争和污泥龄矛盾,使得脱氮和除磷关系无法均衡,处理效率难以提高。随着人们生活水平的提高和生活习惯的改变,我国城市污水水质也发生了相应变化,目前低C/N比污水在我国十分常见,碳源的缺乏会使得A~2/O工艺中的内在矛盾更加激化,A~2/O工艺原有的设计参数是否适合也值得探讨。基于此,本研究以连续流和序批试验结合的方式对A~2/O工艺脱氮除磷及其优化控制进行了系统研究。
     通过维持好氧段平均DO浓度为4.0、3.0、2.0和1.0mg/L研究了DO对A~2/O工艺运行的影响,结果发现COD的去除基本不受DO浓度的影响,TN去除率随着DO浓度的降低逐渐提高,同时系统的SND率也会逐渐提高。若仅仅维持较高的脱氮效率,可使得A~2/O工艺在低DO条件下运行。DO浓度对生物除磷有着明显的影响,在DO浓度不低于1.0mg/L的时候,系统一直维持较高的生物除磷活性,而当DO浓度维持在1.0mg/L左右的时候,系统的除磷效率逐渐恶化,必须辅以化学除磷。综合来看,若维持A~2/O工艺有较高的脱氮除磷效率,好氧区的平均DO至少应为2.0mg/L。
     碳源类型对A~2/O工艺脱氮除磷及其代谢过程有明显影响。乙酸和丙酸作为碳源的研究结果表明厌氧段的代谢符合选择性缩合理论。乙酸为碳源的时候糖原的含量和变化量较大,推测其代谢可能是能是ED和EMP的混合途径。碳源类型对生物脱氮的影响不大,但是对生物除磷及其过程变化有较大的影响。和乙酸相比,丙酸作为碳源时需要更少的曝气量(节省能量)、代谢过程中的能量循环及需求较小,且胞内物质的转化量小,反应过程更为平稳。
     采用阿特拉津作为目标物质进行的有毒物质冲击试验研究表明,短时(3d)阿特拉津冲击(15、10、5mg/L)不会对A~2/O系统的有机物、脱氮和除磷效率产生明显影响,SOUR测定结果显示,不同种类的微生物对阿特拉津冲击的响应不同。异养菌的活性受到阿特拉津的影响较小,冲击前后的SOUR分别为5.74 mgO_2/g-SS h和5.56 mgO_2/g-SS h,而硝化细菌受到的影响较大,AOB和NOB的SOUR在阿特拉津冲击期间分别降低了66.0%和12.3%。
     pH和ORP的变化可以动态指示A~2/O工艺中的反应过程。pH可用于反应过程及处理结果的初步判断;ORP可用于指示系统进水COD负荷的高低,同时还和缺氧区出水NOx--N(NO_2--N~+NO_3~--N)浓度的高低对应。
     正常运行的A~2/O工艺中缺氧区存在吸磷现象,研究发现当缺氧吸磷的比例在50%左右时,系统整体的脱氮除磷效率较高。维持适当大的混合液回流比,增加适当大的缺氧区容积,可强化缺氧区吸磷,节省碳源从而提高脱氮除磷的效率,这为A~2/O工艺用于处理低C/N比生活污水提供了一个运行思路,也是对传统设计运行参数的一个改良。PCR-DGGE研究结果表明,微生物群落的变化和反应器处理效率及缺氧区吸磷比例的变化动态对应,但是这种变化是缓慢过渡的,在本系统中Uncultured Chlorobi bacterium是一种具有反硝化除磷作用的菌群。
     采用配水研究表明,A~2/O工艺运行控制不当也会出现污泥膨胀问题,在生物脱氮除磷系统中,负荷控制比DO控制对控制污泥膨胀更为有效。
     在序批试验中发现,当运行状态从脱氮状态转换至除磷状态时,随着除磷性能的好转,系统中的污泥容易形成颗粒污泥。除磷系统中形成的颗粒污泥具有发达的微孔结构,随着污泥粒径的增加,污泥的孔径、总孔容积和比表面积逐渐减小。颗粒污泥较小时,其微观结构更加复杂,从而使得物质在颗粒内外的传递更加容易,生物活性更强。颗粒污泥的生物活性区域的厚度随着粒径的增加其百分比逐渐下降,除磷活性和除磷能力也随之下降。
Anaerobic-anoxic-oxic(A~2/O)process is one of the widely used techniques in municipal wastewater treatment plants for simultaneous biological phosphorus and nitrogen removal. The technology has many advantages, such as simple configuration and short hydraulic retention time (HRT). In addition, it is easy to operate. Therefore, A~2/O will be continuously taken as the main process in all kinds of newly designed and built wastewater treatment plants before some better biological phosphorus and nitrogen removal processes are invented.
     Though A~2/O process has been used widely, it has some inherent contradictions which are difficult to overcome, for example, the contradiction between substrate competition and SRT makes the good nitrogen and phosphorus removal efficiency can not be achieved at the same time, as a result, the removal efficiency of the system can not be improved. As the standard of living improved and the living habits changed, the wastewater quality was influenced. At present, low influent C/N ratio is rather common in our country. The lack of carbon source will make the inherent contradictions of A~2/O process more serious. Therefore, the conventional design parameters of A~2/O process are relatively dated. According to this, the thesis systematically investigated how to improve the nitrogen and phosphorus removal efficiency of domestic wastewater with low C/N ratio, and utilize the carbon resource in influent wastewater effectively based on the employment of continuous-flow and batch experiments.
     The effect of DO on the performance of A~2/O process was studied by setting the concentration of DO at 4.0, 3.0, 2.0, 1.0 mg/L. It was observed that the effect of DO on COD removal was invisible, whereas the removal rate of TN increased with the decrease of DO, and the efficiency of SND of the system gradually improved. The A~2/O system could run in low DO condition when high nitrogen removal efficiency is required only. The concentration of DO has a great influence on phosphorus removal, the system keep high biological activity on phosphorus removal when the concentration of DO was not less than 1.0 mg/L. While when the concentration of DO was approximately 1.0 mg/L, the efficiency of phosphorus removal deteriorated gradually, chemical phosphorus removal was needed to complete the phosphorus removal performance of the system. On the whole, in order to achieve excellent nitrogen and phosphorus removal efficiency, the mean concentration of DO should be 2.0 mg/L at least.
     The carbon sources has a significant influence on the efficiency of nitrogen and phosphorus removal and the metabolism process of A~2/O. Acetate and propionate were selected as sole carbon sources and the result showed that the anaerobic step fit the selective condensed theory. When acetate was used as the carbon source, the concentration and variation of glycogen were larger. The supposed metabolic pathway of this process was the combination of ED and EMP. The influence of carbon sources on nitrogen removal was insignificant, while it plays an important role in phosphorus removal. Compared with acetate, when propionate was the carbon source, there was less aeration needed (saving energy), the amount of energy cycled and needed was less as well as the transformation of intracellular substance. In addition, the reaction process was more stable.
     The simulation of toxic substance shock on the performance of the A~2/O process showed that short-term (3 d) atrazine impact (15, 10, 5 mg/L) did not affect the removal efficiency of organics, nitrogen and phosphorus obviously. The SOUR results demonstrated that different microorganisms had different resistant capacity of atrazine. The heterotrophic bacteria activity was insignificantly influenced by atrazine addition, and the SOUR achieved were 5.74 mgO_2/g-SS h and 5.56 mgO_2/g-SS h respectively before and after the Atrazine impact. However, the nitrobacteria was greatly influenced, the SOUR of AOB and NOB were declined by 66.0% and 12.3% respectively during the atrazine addition.
     The variation of pH and ORP could be employed to indicate the A~2/O dynamic process. pH can be used to indicate the reaction process and to preliminarily determine the result; ORP can work as the indicator of influent COD loading rate, at the same time , it corresponds to the concentration of NO_x~--N (NO+3~--N~+NO_2~--N) in the anoxic effluent.
     There are phosphorus uptake phenomena in anoxic zone in A~2/O process. It was found that when the anoxic phosphorus uptake ratio was approximately 50%, the integrated nitrogen and phosphorus removal efficiency of the system was relatively high. Keeping proper high recycle ratio, enlarging anoxic volume properly could enhance the anoxic phosphorus uptake, saving carbon source, consequently improved the performance of nitrogen and phosphorus removal. This provided a feasible way to treat wastewater with low C/N ratio in A~2/O process. Furthermore, it would be favorable to amend the operational parameters. The microbial population variation was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The result showed that the microbial community structure and dominant bacteria change was consistent with the performance of the system and the anoxic phosphorus uptake ratio, while the variation was gradual transition. It was also found that Uncultured Chlorobi bacterium might be the major denitrifying phosphate accumulating organisms in the system.
     Based on synthetic wastewater, the sludge bulking caused by improper operation was investigated in A~2/O system. It was found that the control of loading rate was more effective than DO concentration to inhibit sludge bulking in A~2/O process.
     When the operation mode of the system changed from nitrogen removal to phosphorus removal in SBR, the activated sludge flocs in the system tended to become granular sludge gradually as the phosphorus removal performance became better. The granules formed in enhanced biological phosphorus removal system based on SBR configuration had a large amount of micropores. With the increase of the diameter of granules, the average pore width, total volume of the pores and specific area decreased gradually. Smaller granules had more complex microstructure, which favored the transition of substrates from the surface to the center of the granules, and the biological activity was greater. As the granules became bigger, the percentage of the depth of the biological activated zone in the granular sludge was decreased gradually, at the same time its activity and capacity of phosphorus removal declined correspondingly.
引文
1郑兴灿,李亚新.污水除磷脱氮技术.中国建筑工业出版社. 1998
    2中华人民共和国环境保护部. 2008中国环境状况公报. 2008:4~21
    3马培舜,王海玲,成丽华,等.昆明的城市污水处理现状及发展.中国给水排水. 2003, 19(4):19~22
    4张雁秋,李昂,李燕,等.分点进水脱氮除磷新工艺的理基础和实践.中国给水排水. 2008, 24(24):13~15
    5王德河,房安富,何远光. CAST工艺处理市政污水的设计与运行.中国给水排水. 2008, 24(24):45~47
    6杨鲁豫,王琳,王宝贞.适宜中小城镇的水污染控制技术.中国给水排水. 2001, 17(1):23~25
    7 M. Henze. Capabilities of biological nitrogen removal processes from wastewater. Water Sci. Technol. 1991, (23):669~679
    8王晓莲,彭永臻,等. A2/O法污水生物脱氮除磷处理技术与应用.科学出版社. 2009
    9林荣忱,李金河,林文波.污水处理厂泵站与曝气系统的节能途径.中国给水排水. 1999, 15(1):21~23
    10 R. Crites, G. Tchobanoglous. Small and decentralised wastewater management systems. McGraw Hill. 1998:397~526
    11 G. H. Kristensen, P. E. Jorgensen, P. H. Nielsen. Settling characteristics of activated sludge in Danish treatment plants with biological nutrients removal. Water Sci. Technol. 1994, 29(7):157~165
    12郝晓地,朱景义,曹秀芹.污泥膨胀形成机理及控制措施研究现状和进展.环境污染治理技术与设备. 2006, 7(5):1~9
    13 O. Krhutkova, I. Ruzickova, J. Wanner. Microbial evaluation of activated sludge and filamentous population at eight Czech nutrient removal activated sludge plants during year 2000. Water Sci. Technol. 2002, 46:471~478
    14 H. J. Lee, J. H. Bae, K. M. Cho. Simultaneous nitrification and denitrification in a mixed methanotrophic culture. Biotechnol. Lett. 2001, 23:935~941
    15王晓莲. A2/O工艺运行优化及其过程控制的基础研究.北京工业大学博士学位论文. 2007:17~19
    16华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策.给水排水. 2000, 26(12): 1~4
    17 J. P. Votes, H. Vanstaen, W. Verstraete. Removal of nitrogen from highly nitrogenous wastewaters. J. Water Pollut. Control Fed. 1975, 47:394~398
    18 G. Zhu, Y. Peng, B. Li, et al. Biological removal of nitrogen from wastewater. Rev. Environ. Contam. Toxicol. 2008, 192:159~195
    19 I. Schmidt, O. Sliekers, M. Schmid, et al. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol. Rev. 2003, 27:481~492
    20郑循华,王明星,王跃思,等.温度对农田N2O产生与排放的影响.环境科学. 1997, 18(5):1~5
    21袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮. 2000, 16(2):29~31
    22 M. S. M. Jetten, S. J. Horn, M. C. M. van Loosdrecht. Towards a more sustainable municipal wastewater treatment system. Water Sci. Technol. 1997, 35(9):171~180
    23 J. W. Mulder, M. C. M. van Loosdrecht, C. Helliga, et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Sci. Technol. 2001, 43(11):127~134
    24 C. Grunditzm, G. Dalhammar. Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter. Water Res. 2001, 35(2):433~440
    25 H. Yoo. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification via nitrite in an intermittently-aeated reactor. Water Res. 1999, 33(1):146~152
    26 B. Balmelle. Study of factors controlling nitrite build-up in biological processes for water nitrification. Water Sci. Technol. 1992, 26:1018~1025
    27高景峰,彭永臻,王淑莹.温度对亚硝酸型硝化/反硝化的影响.高技术通讯. 2002, 12(12):88~93
    28 R. Blackburne, Z. Yuan, J. Keller. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Water Res. 2008, 42:2166~2176
    29 H. J. Laanbroek, S. Gerards. Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures. Arch. Microbiol. 1993, 159:453~459
    30 J. H. Hunik, J. Tramper, R. H. Wijffels. A strategy to scale up nitrification processes with immobilized cells of Nitrosomonas europaea and Nitrobacter agilis. Bioprocess Biosyst. Eng. 1994, 11(2):73~82
    31 U. Wiesmann. Biological nitrogen removal from waste water. Advances in Biochemistry and Engineering/Biotechnology. Berlin, New York: Springer. 1994, 51:113~154
    32 H. J. Laanbroek, P. L. E. Bodelier, S. Gerards. Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed cultures at different oxygen concentrations. Arch. Microbiol. 1994, 161:156~162
    33 K. Hanaki, W. Chalermaraj, O. Shinichiro. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Res. 1900, 24:297~302
    34 N. Bernat, N. Dangjong, J. P. Delgenes, et al. Nitrification at low oxygen concentration in biofilm reactor. J. Environ. Eng. 2001, 127(3):266~271
    35 G. Gaval, J. J. Pernelle. Impact of the repetition of oxygen deficiencies on the filamentous bacteria proliferation in activated sludge. Water Res. 2003, 37:1991~2000
    36高大文,彭永臻,王淑莹.控制pH实现短程硝化反硝化生物脱氮技术.哈尔滨工业大学学报. 2005, 37(12): 1664~1666
    37刘俊新.生物膜与活性污泥结合新工艺脱氮除磷研究.哈尔滨建筑大学博士论文. 1998:99~102
    38 D. W. Han, J. S. Chang, D. J. Kim. Nitrifying microbial community analysis of nitrite accumulating biofilm reactor by fluorescence in situ hybridization. Water Sci. Technol. 2003, 47(1):97~104
    39 J. Groeneweg, B. Sellner, W. Tappe. Ammonia oxidation in nitrosomonas at NH3 concentrations near km: effects of pH and temperature. Water Res. 1994, 28(12):2561~2565
    40宋学起,彭永臻.以氯化方法实现生物膜法短程硝化.中国给水排水. 2005,21(12):10~14
    41 L. W. Belser, E. L. Mays. Specific inhibition of nitrite oxidation by chlorate and its use in assessing nirification in soils and sediments. Appl. Environ. Microbiol. 1980, 39:505~510
    42 E. Cotteux, P. Duchene. Nitrification preservation in activated sludge during curative bulking chlorination. Water Sci. Technol. 2003, 47(11):85~92
    43 L. Ye, C. Peng, B. Tang, et al. Determination effect of influent salinity and inhibition time on partial nitrification in a sequencing batch reactor treating saline sewage. Desalination 2009, 246:556~566
    44李春杰,耿琰,周琪,等. SMSBR处理焦化废水中的短程硝化反硝化.中国给水排水. 2001, 17(11):74~76
    45 P. Alfieri, T. Valter, L. Carmela. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Res. 2002, 36(10):2541~2546
    46 Q. Yang, Y. Peng, X. Liu, et al. Nitrogen removal via nitrite from municipal wastewater at low temperatures using real-time control to optimize nitrifying communities. Environ. Sci. Technol. 2007, 41:8159~8164
    47 Y. Ma, Y. Peng, S. Wang, et al. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant. Water Res. 2009, 43:563~572
    48 T. Saito, D. Brdjanovic, M. C. M. van Loosdrecht. Effect of nitrite on phosphate uptake by phosphate accumulatingorg anisms. Water Res. 2004, 38:3760~3768
    49 D. J. Zhang, P. L. Lu, T. R. Long, V. Willy. The integration of methanogensis with simultaneous nitrification and denitrification in a membrane bioreactor. Process Biochem. 2005, 40:541~547
    50 H. Yoo. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification via nitrite in an intermittently-aerated reactor. Water Res. 1999, 33(1):146~152
    51高大文,彭永臻,王淑莹.高氮豆制品废水的亚硝酸型同步硝化反硝化生物脱氮工艺.化工学报. 2005, 56(4):699~704
    52 K. Pochana, J. Keller, P. Lant. Model development for simultaneous nitrification and denitrification. Water Sci. Technol. 1999, 39(1):235~243
    53 E. Morgentoth, T. Sherden, M. C. M. van Loosdrecht. Aerobic granulation in a sequencing batch reactor. Water Res. 1997, 31(12):3191~3194
    54 W. B. Marie, B. Peter. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs. Water Res. 1999, 33(2):391~400
    55 A. B. Gupta. Thiosphaera pantotropha: a sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification. Enzyme Microb. Technol. 1997, 21:589~595
    56 S. M. J. Mike, S. Logemann, M. Gerard, et al. Novel principle in the microbial conversion of nitrogen compounds. Antonie van Leeuwenhoek. 1997, 71:75~93
    57邹联沛,张立秋,王宝贞,等. MBR中DO对同步硝化反硝化的影响.中国给水排水. 2001, 17(6):10~14
    58 E. V. Munch, P. A. Lant, J. Keiler. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Res. 1996, 30:277~284
    59郭建华.活性污泥微膨胀低能耗方法的研究.哈尔滨工业大学硕士学位论文. 2007
    60 B. E. Rittmann, W. E. Langeland. Simultaneous denitrification with nitrification in single-channel oxidation ditches. J. WPCP. 1985, 57(4):300~308
    61 R. J. Zeng, R. Lemaire, Z. Yuan, J. Keller. Simultaneous nitrification, denitrification, and phosphorus removal in a lab scale sequencing batch reactor. Biotechnol. Bioeng. 2003, 84(2):170~178
    62 M. C. Hascoet, M. Florentz. Infuence of nitrates on biological phosphorus removal nutrient wastewater. Water SA. 1985, 11(1):23~26
    63 T. Kuba, G. Smolders, M. C. M. van Loosdrecht, et al. Phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor. Water Sci. Technol. 1993, 27(5-6):241~252
    64 T. Kuba, M. C. M. van Loosdrecht, J. J. Heijnen. Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence ofdenitrifying dephosphatation in a full-scale waste water treatment plant. Water Sci.Technol. 1999, 36(12):75~82
    65 A. Wachtmeister, T. Kuba, M. C. M van Loosdrecht, et al. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge. Water Res. 1997, 31(3):471~478
    66 J. Y. Hu, S.L. Ong, W. J. Ng, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors. Water Res. 2003, 37:3463~3471
    67 E. Morgenroth, P. A. Wilderer. Modeling of enhanced biological phosphorus removal in a sequencing batch biofilm reactor. Water Sci. Technol. 1998, 37(4 -5):583~587
    68 H. Furumai, A. A. Kazmi, Y. Furuya, et al. Effect of sludge retention time (SRT) on nutrient removal in sequencing batch reactors. J. Environ. Sci. Health Part A.1999, 34(2):317 ~328
    69王亚宜,彭永臻,王淑莹,等.碳源和硝态氮浓度对反硝化聚磷的影响及ORP的变化规律.环境科学. 2004, 25(4):54~58
    70 A. R. Pitman. Management of biological nutrient removal plant sludges-change the paradigms? Water Res. 1999, 33(5):1141~1146
    71 S. M. Ruel, Y. Comeau, A. Heduit, et al. Operating conditions for the determination of the biochemical acidogenic potential of wastewater. Water Res. 2002, 36:2337~2341
    72 Y. Comeau, D. Lamarre, F. Roberge, et al. Biological nutrient removal from a phosphorus-rich pre-fermented industrial wastewater. Water Sci. Technol. 1996, 34(1-2):169~177
    73 M. Merzouki, N. Bernet, J.P. Delgenes, et al. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater. Bioresource Technol. 2005, 96:1317~1322
    74 G. Carvalho, P. C. Lemos, A. Oehmen, et al. Denitrifying phosphorus removal: Linking the process performance with the microbial community structure. Water Res. 2007, 41(19):4383~4396
    75 P. Dabert, B. Sialve, J. P. Delgenes, et al. Characterisation of the microbial 16S rDNA diversity of an aerobic phosphorus-removal ecosystem and monitoring of its transition to nitrate respiration. Appl. Microbiol. Biotechnol. 2001, 55(4):500~509
    76李洪静,陈银广,顾国维.丙酸的加入对厌氧低氧同时生物除磷脱氮系统的影响.环境科学. 2007, 28(8):1681~1686
    77 S. A. McClintock, C. W. Randall, V. M. Pattarkine. Effects of temperature and mean cell residence time on biological nutrient removal processes. Water Environ. Res. 1993, 65(5):110~118
    78 A. Converti, M. Rovatti , M. Del Borghi. Biological removal of phosphorus from wastewaters by alternating aerobic and anaerobic conditions. Water Res. 1995, 29(1):263~269
    79 M. Florentz, D. Caille, F. Bourdon, et al. Biological phosphorus removal in France. Water Sci. Technol. 1987, 19(4):1171~1173
    80 T. Panswad, A. Doungchai, J. Anotai. Temperature effect on microbial community of enhanced biological phosphorus removal system. Water Res. 2003, 37(2):409~415
    81王亚宜,王淑莹,彭永臻,等.污水有机碳源特征及温度对反硝化聚磷的影响.环境科学学报. 2006, 26(2):186~192
    82傅金祥,池福强,王颖,等.反硝化作用脱氮除磷特性的静态试验.沈阳建筑大学学报. 2007, 23(2):284~287
    83 L. James, Barnard, P. G. J. Meiring. Dissolved oxygen control in the activated sludge process. Water Sci. Technol. 1989, 20(4-5):93~100
    84 T. Kuba, M. C. M. van Loosdrecht, J. J. Heijnen. Effect of cyclic oxygen exposure on the activety of denitrifying phosphorus removing bacteria. Water Sci. Technol. 1996, 34(1-2):33~40
    85 J. P. Keren-Jespersen, M. Henze. Biological phosphorus uptake under anoxic and aerobic conditions. Water Res. 1994, 5(28):1253~1255
    86 W. J. Ng, S. L. Ong, J. Y. Hu. Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor. Water Sci. Technol. 2001, 3(43):139~146
    87 D. Mulkerrins, A. D. W. Dobson, E. Colleran. Parameters affecting biological phosphate removal from wastewaters. Environ. Int. 2004, 30:249~259
    88 T. Kuba, M. C. M. van Loosdrecht, J. J. Heijnen. Phosophorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Res. 1996, 30(7):1702~1710
    89 Y. Y. Wang, Y. Z. Peng, C.Y. Peng. et al. Influenceof ORP variation, carbon source and nitrate concentration on denitrifying phosphorus removal by DPB sludge from dephanox process. Water Sci. Technol. 2004, 50(10):153~161
    90 X. Wang, Y. Peng, S. Wang, et al. Influence of wastewater composition on nitrogen and phosphorus removal and process control in A2O process. Bioprocess Biosyst. Eng. 2006, 28:397~404
    91张立卿,袁林江,王磊,等.乙酸钠浓度对反硝化聚磷效果的影响试验研究.西安建筑科技大学学报. 2007, 39(3):349~352
    92 I. M. Sudiana, T. Mino, H. Satoh, et al. Metabolism of enhanced biological phosphorus removal and non-enhanced phosphorus removal sludge with acetate and glucose as carbon source. Water Sci. Technol. 1999, 39(6):29~35
    93 W. T. Liu, T. L. Marsh, L. J. Forney. Determination of the microbial diversity of anaerobic-aerobic activated sludge by a novel molecular biological technique. Water Sci. Technol. 1998, 37(4-5):417~422
    94 P. L. Bond, R. Erhart, M. Wagner, et al. Identification of some of the major groups of bacteria in efficient and non-efficient biological phosphorus removal activated sludge systems. Appl. Environ. Microbiol. 1999, 65(9):4077~4084
    95 T. Kuba, M. C. M. van Loosdrecht, J. J. Heijnen. Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a full-scale wastewater treatment plant. Water Sci. technol. 1997, 36(12):75~82
    96 G. J. F. Smolders, J. van der Meij, M. C. M. van Loosdrecht, et al. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence. Biotechnol. Bioeng. 1994, 44:837~848
    97王亚宜.反硝化除磷脱氮机理及工艺研究.哈尔滨工业大学博士学位论文. 2004:114-115
    98蒋轶锋.短程反硝化除磷工艺特征及运行效能研究.哈尔滨工业大学博士学位论文. 2006:78-81
    99周康群,刘晖,孙彦富,等. A2/O厌氧段聚磷菌的反硝化聚磷特性.中南大学学报. 2007,38(4):645~651
    100 K. Dircks, M. Henze, M. C. M. van Loosdrecht, et al. Storage and degradation of poly-β-hydroxybutyrate in activated sludge under aerobic conditions. Water Res. 2000, 35(9):2277~2285
    101 S. Tsuneda, T. Ohno, K. Soejuma, et al. Simultaneous nitrogen and phosphorus removal using denitrifying phoshphate-accumulating organisms in a sequencing batch reactor. Biochem. Eng. J. 2006, 27:191~196
    102 M. Merzouki, N. Bernet, J. P. Delgenes, et al. Biological denitrifying phosphorus removal in SBR: Effect of added nitrate concentration and sludge retention time. Water Sci. Technol. 2001, 3(43):191~194
    103 S. H. Chuang, C. F. Ouyang, H. C. Yuang, et al. Phosphorus and polyhydroxyalkanoates variation in a combined process with activated sludge and biofilm. Water Sci. Technol. 1998, 37(4-5):593~537
    104徐伟峰,陈银广,张芳,等.污泥龄对AAO工艺反硝化除磷的影响.环境科学. 2007, 28(8):1693~1696
    105曹雪梅. A2/O工艺反硝化除磷的实现及性能的研究.哈尔滨工业大学硕士学位论文. 2007:39~41
    106 J. P. Kerrn-Jespersen, M. Henze. Biological phosphorus release and uptake under alternation anaerobic and anoxic conditions in a fixed film reactor. WaterRes. 1993, 27(4):617~624
    107 J. Meinhold, E. Arnold, S. Isaacs. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge. Water Res. 1999, 33:1871~1883
    108 J. Ahn, T. Daidou, S. Tsuned, et al. Metabolic behaviour of denitrifying phosphate-accumulating organisms under nitrate and nitrite electron acceptor conditions. J. Biosci. Bioeng. 2001, 92:442~446
    109王爱杰,吴丽红,任南琪,等.亚硝酸盐为电子受体反硝化除磷工艺的可行性.中国环境科学. 2005, 25(5):515~518
    110刘建广,付昆明,杨义飞,等.不同电子受体对反硝化除磷菌缺氧吸磷的影响.环境科学. 2007, 28(7):1472~1476
    111张晓洁,周少奇,丁进军,等.不同电子受体影响下的反硝化除磷过程.华南理工大学学报. 2007, 35(6):120~126
    112傅金祥,王颖,池福强,等.电子受体质量浓度对反硝化除磷过程的影响.沈阳建筑大学学报. 2007, 23(5):806~809
    113 T. Saito, D. Brdjanovic, M. C. M. van Loosdrecht. Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Res. 2004, 38:3760~3768
    114 S. Y. Weon, C. W. Lee, S. I. Lee, et al. Nitrite inhibition of aerobic growth of Acinetobacter sp. Water Res. 2002, 36:4471~4476
    115 V. M. Vadivelu, Z. Yuan, C. Fux, et al. The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched Nitrobacter culture. Environ. Sci. Technol. 2006, 40:4442~4448
    116 Y. Zhou, M. Pijuan, Z. Yuan. Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms. Biotechnol. Bioeng. 2007, 98(4):903~912
    117 L. Buchan. Possible biological mechanism of phosphorus removal. Water Sci. Technol. 1983, 15(34):87~103
    118 L. H. Lotter. The role of bacterial phosphate metabolism in enhanced phosphorus removal from the activated sludge process. Water Sci. Technol. 1985, 17:127~138
    119 R. E. Cloete, P. L. Steyn, L. Bucham. Anaul ecological study of acinetobacter in activated sludge. Water Sci. Technol. 1985,17:139~146
    120 R. C. Bayly, A. Dunncan, J. W. May, et al. Microbiological and genetic aspectsof the synthesis of polyphosphate by species of acinetobacter. Water Sci. Technol. 1990, 23:747~754
    121 A. M. Beacham, R. J. Seviour, K. C. Lindrea, et al. Genospecies diversity of acinetobacter isolates obtained from a biological nutrient removal pilot plant of a modified UCT configuration. Water Res. 1990, 24:23~29
    122 R. J. Seviour, T. Mino, M. Onuki. The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol. Rev. 2003, 27(1):99~127
    123 M. Wagner, R. Erhart, W. Manz, et al. Development of an ribosomal-RNA targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in-situ monitoring in activated sludge. Appl. Environ. Microbiol. 1994, 60 (3):792~800
    124 K. E. U. Brodisch, Joyner S.J. The Role of Microorganisms in Biological Phosphate Removal.Wat.Sci.Technol. 1989,15:117~125
    125 A. Hiraishi, K. Masa mune, H. Kiatamura. Characterization of the bacterial population structure in anaerobic aerobic activated sludge system on the basis of respiratory quinone profiles. App. Micro. 1984,55:897~901
    126朱怀兰,史家墚,徐亚同. SBR除磷系统中的积磷细菌.上海环境科学. 1994,13(4):16~18
    127 K. Nakamura, A. Hiraishi, Y. Yoshimi, et al. Microlunatus phosphovorus gen-nov, sp-nov, a new gram-positive polyphosphate-accumulating bacterium isolated from activated-sludge. Int. J. Syst. Bacteriol. 1995, 45(1):17~22
    128 M. M. Santos, P. C. Lemos, M. A. M. Reis, et al. Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus. Appl. Environ. Microbiol. 1999, 65(9):3920~3928
    129 J. Meinhold, C. D. M. Filipe, G. T. Daigger, et al. Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal. Water Sci. Technol. 1999, 39(1):31~42
    130 J. Ahn, T. Daidou, S. Tsuneda, et al. Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using olymerase chain reaction-denaturing gradient gel electrophoresis assay. Water Res. 2002, 36(2):403~412
    131 M. Merzouki, N. Bernet, J. P. Delgenes, et al. Kinetic behaviour of some polyphosphate-accumulating bacteria isolates in the presence of nitrate andoxygen. Curr. Microbiol. 1999, 38:300~308
    132 Y. Barak, J. van Rijn. Atypical polyphosphate accumulation by the denitrifying bacterium Paracoccus denitrifcans. Appl. Environ. Microbiol. 2000, 66:1209~1212
    133 Y. Barak, J. van Rijn. Relationship between nitrite reduction and active phosphate uptake in the phosphate-accumulating denitrifer Pseudomonas sp. strain JR 12. Appl. Environ. Microbiol. 2000, 66:5236~5240
    134 R. J. Zeng, A. M. Saunders, Z. Yuan, et al. Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms. Biotechnol. Bioeng. 2003, 83(2):140~148
    135 Y. H. Kong, J. L. Nielsen, P. H. Nielsen. Microautoradiographic study of Rhodocyclus-Related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl. Environ. Microbiol. 2004, 70(9):5383~5390
    136 H. G. Martín, N. Ivanova, V. Kunin, et al. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat. Biotechnol. 2006, 24(10):1263~1269
    137 S. He, A. Z. Gu, K. D. McMahon. Fine-scale differences between Accumulibacter-like bacteria in enhanced biological phosphorus removal activated sludge. Water Sci. Technol. 2006, 54(1):111~117
    138 M. Henze, W. Gujer, T. Mino, et al. Activated sludge model no.2d, ASM2d. Water Sci. Technol. 1999, 39(1):165~182
    139 G. J. F. Smolders, J. van der Meij, M. C. M. van Loosdrecht, et al. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotechnol. Bioeng. 1994, 44(7):837~848
    140 G. J. F. Smolders, M. C. M. van Loosdrecht, J. J. Heijnen. A metabolic model for the biological phosphorus removal process. Water Sci. Technol. 1995, 31(2):79~93
    141 G. J. F. Smolders, J. M. Klop, M. C. M. van Loosdrecht, et al. A metabolic model of the biological phosphorus removal process: effect of the sludge retention time. Biotechnol. Bioeng. 1995, 48(3):222~233
    142 G. J. F. Smolders, J. van der Meij, M. C. M. van Loosdrecht, et al. A structured metabolic model for the anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process. Biotechnol. Bioeng. 1995,47(3):277~287
    143 T. Kuba, E. Murnleitner, M. C. M. van Loosdrecht, et al. A metabolic model for the biological phosphorus removal by denitrifying organisms. Biotechnol. Bioeng. 1996, 52:685~695
    144 E. Murnleitner, T. Kuba, M. C. M. van Loosdrecht, et al. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal process. Biotechnol. Bioeng. 1997, 54(5):434~450
    145 R. Brun, M. Kuhni, H. Siegrist, et al. Practical identifiability of ASM2d parameters-systematic selection and tuning of parameter subsets. Water Res. 2002, 36(16):4113~4127
    146 L. Rieger, G. Koch, M. Kuhni, et al. The EAWAG bio-P module for activated sludge model no. 3. Water Res. 2001, 35(16):3887~3903
    147 R. Carrette, D. Bixio, C. Thoeye, et al. Full-scale application of the IAWQ ASM No. 2d model. Water Sci.Technol. 2001, 44(2-3):17~24
    148 M. Wichern, F. Obenaus, P. Wulf, et al. Modelling of full-scale wastewater treatment plants with different treatment processes using the activated sludge model no. 3. Water Sci. Technol. 2001, 44(1):49~56
    149 P. Ingildsen, C. Rosen, K. V. Gernaey, et al. Modelling and control strategy testing of integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Res. 2006, 30(7):1702~1710
    150 S. H. Lee, J. H. Ko, J. B. Park, et al. Use of activate sludge model No. 3 and Bio-P module for simulating five-stage step-feed enhanced biological phosphorous removal process. Kor. J. Chem. Eng. 2006, 23(2):203~208
    151 T. Mino, W. T. Liu, F. Kurisu, et al. Modeling glycogenstorage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Water Sci. Technol. 1995, 31(2):25~34
    152 J. Manga, J. Ferrer, F. Garcia-Usach, et al. A modification to the activated sludge model no. 2 based on the competition between phosphorus-accumulating organisms and glycogen accumulating organisms. 2001, Water Sci. Technol. 43(11):161~171
    153 J. Serralta, J. Ferrer, L. Borras, et al. An extension of ASM2d including pH alculation. 2004, Water Res. 38(19):4029~4038
    154 M. Pijuan, A. M. Saunders, A. Guisasola, et al. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the solecarbon source. Biotechnol. Bioeng. 2004, 85(1):56~67
    155 N. Yagci, G. Insel, R. Tasli, et al. A new interpretation of ASM2d for modeling of SBR performance for enhanced biological phosphorus removal under different P/HAc ratios. Biotechnol. Bioeng. 2006, 93(2):258~270
    156 A. J. Schuler. Diversity matters: dynamic simulation of distributed bacterial states in suspended growth biological biological phosphorus removal in full-scale plants. Water Sci. Technol. 2005, 54(1):267~275
    157 H. M. van Veldhuizen, M. C. M. van Loosdrecht, J. J. Heijnen. Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process. 1999, Water Res. 33 (16):3459~3468
    158 D. Brdjanovic, M. C. M. van Loosdrecht, P. Versteeg, et al. Modeling COD, N and P removal in a full-scale wwtp Haarlem Waarderpolder. Water Res. 2000, 34(3):846~858
    159 S. C. F. Meijer, M. C. M. van Loosdrecht, J. J. Heijnen. Metabolic modelling of full-scale biological nitrogen and phosphorus removing WWTP's. Water Res. 2001, 35(11):2711~2723
    160 X. Hao, M. C. M. van Loosdrecht, S. C. F. Meijei, et al. Model based evaluation of two BNR process UCT and A2N. Water Res. 2000, 35(12):2851~1860
    161 R. C. Ky, Y. Comeau, M. Perrier, et al. Modelling biological phosphorus removal from a cheese factory effluent by an SBR. Water Sci. Technol. 2001, 43(3):257~264
    162 T. Satoshi, O. Takashi, S. Koichi, et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor. Biochem. Eng. J. 2006, 27:191~196
    163 S. Koichi, O. Kazuma, T. Akihiko, et al. Effects of acetate and nitrite addition on fraction of denitrifying phosphate-accumulating organisms and nutrient removal efficiency in anaerobic/aerobic/anoxic process. Bioprocess Biosyst. Eng. 2006, 29:305~313
    164 J. H. Guo, Y. Z. Peng, C. Y. Peng, et al. Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen. Bioresource Technol. 2010, 101:1120~1126
    165范婕. A2/O工艺反硝化除磷机理与性能的研究.哈尔滨工业大学硕士学位论文. 2006
    166彭轶. A2/O工艺中的反硝化除磷及其优化控制研究.哈尔滨工业大学硕士学位论文. 2008
    167国家环保总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002
    168 American Public Health Association. Standard Methods for the Examination of Water and Wastewater (19th ed). Washington, DC, 1995
    169 Y. Liu, Y. Chen, Q. Zhou. Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids. Chemosphere 2007, 66:123~129
    170 X. Huang, R. Liu, Y. Qian. Behaviour of soluble microbial products in a membrane bioreactor. Process Biochem. 2000, 36:401~406
    171 J. S. Kim, C. H. Lee, H. D. Chun. Comparison of ultrafiltration characteristics between activated sludge and BAC sludge. Water Res. 1998, 32:3443~3451
    172 C. Y. Wu, Y. Z. Peng, S. Y. Wang, et al. Enhanced biological phosphorus removal by granular sludge-From macro- to micro- scale. Water Res. 2010, 44:807~814
    173 D. J. Batstone, J. Keller, L. L. Blackall. The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass. Water Res. 2004, 38:1390~1404
    174 A. Felske, B. Engelen, U. Nubel, et al. Direct ribosomal isolation from soil to extract bacterial rRNA for community analysis. Appl. Environ. Microbiol. 1996, 62:4162~4167
    175 T. E. Freitag, J. I. Prosser. Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Appl. Environ. Microbiol. 2003, 69(3):1359~1371
    176 L. L. Guan, K. E. Hagen, G. W. Tannock, et al. Detection and identification of Lactobacillus species in crops of broilers of different ages by using PCR-denaturing gradient gel electrophoresis and amplified ribosomal DNA restriction analysis. Appl. Environ. Microbiol. 2003, 69(11):6750~6757
    177 Metcalf & Eddy, Inc. Wastewater Engineering: Treatment and Reuse (Fourth Edition). McGraw-Hill companies, Inc. 2003:801~814
    178 H. Satoh, Y. Nakamura, H. Ono, et al. Effect of oxygen concentration on nitrification and denitrification in single activated sludge flocs. Biotechnol. Bioeng. 2003, 83(5):604~607
    179王晓莲,彭永臻,王淑莹. A2/O工艺中反硝化除磷及过量曝气的试验研究.化工学报. 2005, 56(8):1565~1570
    180 X. Wang, S. Wang, Y. Peng. Anoxic biological phosphorus uptake in A2O process. J. Chinese Chem. Eng. 2005, 13(4):516~521
    181 Z. R. Hu, M. C. Wentzel, G. A. Ekama. Anoxic growth of phosphate-accumulating organism (PAOs) in biological nutrient removal activated sludge system. Water Res. 2002, 36:4927~4937
    182娄金生,谢水波.提高A2O工艺总体处理效果的措施.中国给水排水. 1998, 14(3):27~30
    183 S. H. Chuang, C. F. Ouyang, H. C. Yuang, et al. Evaluation of phosphorus removal in anaerobic-anoxic-aerobic system via phoyhydroxylakonoates measurements. Water Sci. Technol. 1998, 38(l):107~114
    184 J. H. Rensink, H. J. Donker, S. J. Simons. Phosphorus removal at low sludge loadings. Water Sci. Technol. 1985, 17(1-2):177~186
    185徐伟峰.生物脱氮除磷ASM2D模拟及机理研究.同济大学博士学位论文. 2006:39~44
    186王晓莲,王淑莹,马勇,等. A2O工艺中反硝化除磷及过量曝气对生物除磷的影响.化工学报. 2005, 56(8):1565~1570
    187 D. Brdjanovic, A. Slamet, M. C. M. van Ioosdrecht, et al. Impact of excessive aeration on biological phosphorus removal from wastewater. Water Res. 1998, 34(1):200~208
    188王建龙,吴立波,齐星,等.用氧吸收速率(OUR)表征活性污泥硝化活性的研究.环境科学学报. 1999, 19(3):225~229
    189 A. Katie, B. T. Natalie, C. R. Ralf. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR. Biotechnol. Bioeng. 2003, 83:706~720
    190闫骏. Orbal氧化沟处理实际生活污水脱氮除磷中试研究.北京工业大学硕士学位论文. 2007
    191 A. M. P. Martins, K. Pagilla, J. J. Heijnen, et al. Filamentous bulking sludge-a critical review. Water Res. 2004, 38:793~817
    192 Y. Chen, A. A. Randall, T. McCue. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Res. 2004, 38(1):27~36
    193 H. Jun, H. Shin. Substrates transformation in a biological excess phosphorusremoval system. Water Res. 1997, 31(4):893~899
    194 M. Pijuan, A. M. Saunders, A. Guisasola, et al. Enhanced biological phosphorus removal in a sequencing batch reactor using propoinate as the sole carbon source. Biotechnol. Bioeng. 2004, 85(1):56~67
    195 N. Yagci, E. U. Cokgor, N. Artan, et al. The effect of substrate on the composition of polyhrdroxyalkanoates in enhanced biological phosphorus removal. J. Chem. Technol. Biotechnol. 2007, 82:295~303
    196 S. Puig, M. Coma, H. Monclus, et al. Selection between alcohols and volatile fatty acids as external carbon sources for EBPR. Water Res. 2008, 42:557~566
    197刘燕,行智强,陈银广,等.聚羟基烷酸转化对强化生物除磷的影响研究.环境科学. 2006, 27(6):1103~1106
    198 R. Zeng, Z. Yuan, M. C. M. van Loosdrecht, et al. Proposed modifications to metabolic model for glycogen accumulating organisms under anaerobic conditions. Biotechnol. Bioeng. 2002, 80(3):277~279
    199 H. Lu, A. Oehmen, B. Virdis, et al. Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. Water Res. 2006, 40(20):3838~3848
    200 A. Oehmen, A. M. Saunders, M. T. Vives, et al. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. J. Biotechnol. 2006, 123(1):22~32
    201 A. Oehmen, P. C. Lemos, G. Carvalho, et al. Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Res. 2007, 41:2271~2300
    202 A. Oehmen, R. J. Zeng, Z. Yuan, et al. Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems. Biotechnol. Bioeng. 2005, 91(1):43~53
    203 T. Mino, W. Liu, F. Kurisu, et al. Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal process. Water Sci. Technol. 1995, 31(2):25~34
    204 M. C. Wentzel, L. H. Lotter, G. A. Ekama, et al. Evaluation of biochemical-Models for biological excess phosphorus removal. Water Sci. Technol. 1991, 23(4-6):567~576
    205 R. P. X. Hesselmann, R. von Rummell, S. M. Resnick, et al. Anaerobicmetabolism of bacteria performing enhanced biological phosphate removal. Water Res. 2000, 34(14):3487~3494
    206 P. C. Burrell, J. Keller, L. L. Blackall. Microbiology of a nitrite-oxidizing bioreactor. Appl. Environ. Microbiol. 1998, 64(5):1878~1883
    207 S. Hallin, I. N. Throback, J. Dicksved, et al. Metabolic profiles and genetic diversity of denitrifying communities in activated sludge after addition of methanol or ethanal. Appl. Environ. Microbiol. 2006, 72(8):5445~5452
    208 Y. Liu, C. Geiger, A. A. Randall. The role of poly-hydroxy-alkanoate form in determining the response of enhanced biological phosphorus removal biomass to volatile fatty acids. Water Environ. Res. 2002, 74:57~67
    209 A. A. Randall, Y. Liu. Polyhydroxyalkanoates form potentially a key aspect of aerobic phosphorus uptake in enhanced biological phosphorus removal. Water Res. 2002, 36(14):3473~3478
    210 K. Bernat, B. Wojnowska, A. Dobrzynska. Denitrification with endogenous carbon source at low C/N and its effect on P(3HB) accumulation. Water Res. 2008, 99:2410~2418
    211司友斌,孟雪梅.除草剂阿特拉津的环境行为及其生态修复研究进展.安徽农业大学学报. 2007, 34(3):451~455
    212万年升,顾继东,段舜山.阿特拉津生态毒性与生物降解的研究.环境科学学报. 2006, 26(4):552~560
    213刘春,黄霞,孙炜,等.基因工程菌生物强化MBR工艺处理阿特拉津试验研究.环境科学. 2007, 28(2):417~421
    214 H. F. Downing, M. E. Delorenzo, M. H. Fulton, et al. Effects of the agricultural pesticides atrazine, chlorothalonil, and endosulfan on South Florida microbial assemblages. Ecotoxicology 2004, 13(3):245~260
    215 K. L. Boundy-Mills, M. L. de Souza, R. T. Mandelbaum, et al. The AtzB gene of Pseudomonas sp strain ADP encodes the second enzyme of a novel atrazine degradation pathway. App. Environ. Microbiol. 1997, 63(3):916~923
    216 C. Kauffmann, O. Shoseyov, E. Shpigel, et al. Novel methodology for enzymatic removal of atrazine from water by CBD-fusion protein immobilized on cellulose. Environ. Sci. Technol. 2000, 34(7):1292~1296
    217 T. Bouchez, D. Patureau, P. Dabert, et al. Successful and unsuccessful bioaugmentation experiments monitored by fluorescent in situ hybridization. Water Sci. Technol. 2000, 41(12):61~68
    218 N. Shapir, R. T. Mandelbaum, P. Fine. Atrazine mineralization by indigenous and introduced Pseudomonas sp. strain ADP in sand irrigated with municipal wastewater and amended with composted sludge. Soil Bio. Biochem. 2000, 32(7):887~897
    219 Z. Yuan and L. L. Blackall. Sludge population optimisation: a new dimension for the control of biological wastewater treatment systems. Water Res. 2002, 36:482~490
    220刘春,黄霞,王慧.基因工程菌对阿特拉津的生物转化及其影响因素.微生物学通报. 2007, 34(1):10~14
    221 C. Y. Wu, Z. Q. Chen, X. H. Liu, et al. Nitrification-denitrification via nitrite in SBR using real-time control strategy when treating domestic wastewater. Biochem. Eng. J. 2007, 36:87~92
    222 J. Charpentier, G. Martin. W. Herve, et al. ORP Regulation and Activated Sludge: 15 years of Experience. Water Sci. Technol. 1998, 38(2):197~208
    223高景峰. SBR法脱氮实时控制在线参数的基础研究.哈尔滨工业大学博士学位论文. 2002
    224赫晓地,张向平,曹亚莉.对强化生物除磷机理与工艺认识误区的剖析.中国给水排水. 2008, 24(6):1~5
    225 T. Kuba, M. C. M. van Loosdrecht, F. A. Brandse, et al. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Water Res. 1997, 31(4):777~786
    226 K. ?stgaard, M. Christensson, E. Lie, et al. Anoxic biological phosphorus removal in a full-scale UCT process. Water Res. 1997, 31(11):2719~2726
    227吴昌永,彭永臻,彭轶. A2/O工艺的反硝化除磷特性研究.中国给水排水. 2008, 24(15):11~14
    228吴昌永,彭永臻,彭轶,等. A2O工艺中的反硝化除磷及其强化.哈尔滨工业大学学报. 2009, 41(7):1569~1572
    229 J. Ma, Q. Yang, S. Wang, et al. Effect of free nitrous acid as inhibitors on nitrate reduction by a biological nutrient removal sludge. J. Hazard. Mater. 2010, 175:518~523
    230 A. Matsumoto, K. E. Comatas, L. Liu, et al. Screening for nitric oxide-dependent protein-protein interactions. Science. 2003, 301(5633):657~66
    231 T. Hagen, C. T. Taylor, F. Lam, et al. Redistribution of intracellular oxygen in hypoxia by nitric oxide: Effect on HIF1α. Science. 2003,302(5652):1975~1978
    232 Z. Yuan, A. Oehmen, P. Ingildsen. Control of nitrate recirculation flow in predinitrification systems. Water Sci. Technol. 2002, 45(4-5):29~36
    233 A. Guisasola, M. Qurie, M. del Mar Vargas, et al. Failure of an enriched nitrite-DPAO population to use nitrate as an electron acceptor. Process Biochem. 2009, 44:689~695
    234吴昌永,彭永臻,彭轶. A2O工艺处理低C/N比生活污水的试验研究.化工学报. 2008, 59(12):3126~3130
    235吴昌永,彭永臻,王淑莹,等.强化反硝化除磷对A2O工艺微生物群落变化的影响.化工学报. 2010, 61(1):186~190
    236 Z. Yuan, A. Oehmen, Y. Peng, et al. Sludge population optimisation in biological nutrient removal wastewater treatment systems through on-line process control: a re/view. Rev. Environ. Sci. Biotechnol. 2008, 7:243~254
    237 G. W. Fuhs and M. Chen. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microb. Ecol. 1975, 2(2):119~138
    238 G. H. Kristensen, P. E. Jorgensen, P. H. Nielsen. Setting characteristics of activated sludge in Danish treatment plants with biological nutrients removal. Water Sci. Technol. 1994, 29(7):157~165
    239王淑莹,高春娣,彭永臻,等. SBR法处理工业废水中有机负荷对污泥膨胀的影响.环境科学学报. 2000, 20(2):129~133
    240 A. M. P. Martins, J. J. Heijnen, M. C. M. van Loosdrecht. Bulking sludge in biological nutrient removal systems. Biotechnol. Bioeng. 2004, 86(2):125~135
    241 G. A. Ekama, M. C. Wentzel, T. G. Casey, et al. Filamentous organism bulking in nutrient removal activated sludge systems. Water SA. 1996, 22:147~152
    242 S. S. Adav, D. J. Lee, K. Y. Show, et al. Aerobic granular sludge: Recent advances. Biotechnol. Adv. 2008, 26:411~423
    243高春娣,王淑莹,吴凡松,等.化工污水处理场污泥膨胀与上浮的原因及其控制.哈尔滨建筑大学学报. 1999, 32(5):52~55
    244 A. M. P. Martins, M. C. M. van Loosdrecht, J. J. Heijnen. Effect of dissolved oxygen concentration on the sludge settleability. Appl. Microbiol. Biotechnol. 2003, 62(5-6):586~593
    245 L. Barahona, W. E. Eckenfeder. Relationship between organic loading and zone settling velocity in the activated sludge process. Water Res. 1984, 18(1):91~94
    246高春娣,彭永臻,王淑莹.等.氮缺乏引起的非丝状菌活性污泥膨胀.环境科学. 2001, 22(6):61~65
    247 P. Hu, F. Peter. Strom "Research Note". Res. J. WPCF. 1991, 63:276~277
    248曾薇,彭永臻,王淑莹,等.以溶解氧浓度作为SBR法模糊控制参数.中国给水排水. 2000, 16(4):5~10
    249 J. Chudoba, J. Blaha, V. Madera. Control of activated sludge filamentous bulkingⅢ: Effect of sludge loading. Water Res. 1974, 8(3):231~237
    250 I. Takacs, E. Fleit. Modelling of the micromorphology of the activated sludge floc: low DO, low F/M bulking. Water Sci. Technol. 1995, 31(2):235~243
    251 M. W. Tsai, M. C. Wentzel, G. A. Ekama. The effect of residual ammonia concentration under aerobic conditions on the growth of Microthrix parvicella in biological nutrient removal plants. Water Res. 2003, 37:3009~3015
    252 X. Y. Li, R. P. C. Leung. Determination of the fractal dimension of microbial flocs from the change in their size distribution after breakage. Environ. Sci. Technol. 2005, 39:2731~2735
    253王超,郑晓英.剪切应力对好氧颗粒污泥形态结构和微生物活性的影响机制研究.环境科学. 2008, 29(8):2235~2241
    254宋志伟,梁洋.好氧颗粒污泥的培养及其性能.黑龙江科技学院学报. 2008, 18(3):164~167
    255由阳,彭轶,袁志国,等.富含聚磷菌的好氧颗粒污泥的培养与特性.环境科学. 2008, 29(8):2242~2248
    256 Y. M. Lin, J. H. Tay. Development and characteristics of phosphorus accumulating microbial granules in sequencing batch reactors. Appl. Microbiol. Biotechnol. 2003, 62:430~435
    257 S. S. Adav, D. J. Lee, J. H. Tay. Extracellular polymeric substances and structural stability of aerobic granule. Water Res. 2008, 42:1644~1650
    258 H. L. Jiang, J. H. Tay, A. M. Maszenan, et al. Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains. Environ. Sci. Technol. 2006, 40(19):6137~6142
    259 Z. W. Wang, Y. Liu, J. H. Tay. The role of SBR mixed liquor volume exchange ratio in aerobic granulation. Chemosphere 2006, 62:767~771
    260 S. G. Wang, X. W. Liu, W. X. Gong. Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresource Technol. 2007, 98:2142~2147
    261 J. B. Neethling, M. Benisch. Struvite control through process and facility design as well as operation strategy. Water Sci. Technol. 2004, 49(2):191~199
    262 B. M. Wilen, P. Balmer. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs. Water Res. 1999, 33:391~400
    263 K. Z. Su, H. Q. Yu. Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environ. Sci. Technol. 2005, 39:2818~2827
    264 B. S. McSwain, R. L. Irvine, M. Hausner, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl. Environ. Microbiol. 2005, 71:1051~1057
    265 M. C. Wentzel, R. E. Loewenthal, G. A. Ekama, et al. Enhanced polyphosphate organism cultures in activated sludge system. Water S. A. 1988, 14:81~92
    266 A. Oehmen, Z. Yuan, L. L. Blackall, et al. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol. Bioeng. 2005, 91(2):162~168
    267 Y. G. Chen, Y. Liu, Q. Zhou, et al. Enhanced phosphorus biological removal from wastewater-effect of microorganism acclimatization with different ratios of short-chain fatty acids mixture. Biochem. Eng. J. 2005, 27(1):24~32
    268 J. H. Tay, S. T. L. Tay, V. Ivanov, et al. Biomass and porosity profiles in microbial granules used for aerobic wastewater treatment. Lett. Appl. Microbiol. 2003, 36:297~301
    269 Y. M. Zheng, H. Q. Yu. Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography. Water Res. 2007, 41:39~46
    270 V. Fierro, V. Torné-Fernández, D. Montané, et al. Adsorption of phenol onto activated carbons having different textural and surface properties. Micropor. Mesopor. Mat. 2008, 111:276~284
    271 T. T. Ren, L. Liu, G. P. Sheng, et al. Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity. Water Res. 2008, 42:3343~3352
    272 S. Y. Liu, G. Liu, Y. C. Tian, et al. An innovative microelectrode fabricated using photolithography for measuring dissolved oxygen distributions in aerobic granules. Environ. Sci. Technol. 2007, 41:5447~5452

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700