用户名: 密码: 验证码:
陶瓷储能层叠Blumlein线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国防和民用需求对脉冲功率系统提出了紧凑化、固态化的发展要求。层叠Blumlein线集能量储存、脉冲形成和电压增益等功能于一身,陶瓷介质具有储能密度高、介电常数稳定和环境适应能力强等优点,故陶瓷储能层叠Blumlein线是实现脉冲功率系统紧凑化、固态化发展的重要技术途径。本论文系统分析了层叠Blumlein线的相关理论,优化设计了陶瓷储能层叠Blumlein线的结构尺寸,实验研究了陶瓷储能介质的击穿特性和多路开关同步触发技术,并研制出一台3级陶瓷储能层叠Blumlein线实验装置。主要工作如下:
     1.从脉冲形成波过程和杂散阻抗影响等两方面对层叠Blumlein线进行了系统地理论分析。在波过程分析中计算出了层叠Blumlein线各节点处的入射和反射系数表达式,并采用Laplace方法求解了层叠Blumlein线产生脉冲的解析表达式。建立了分析杂散阻抗影响的电路模型,计算结果表明,要保证电压增益与级数基本相等,应尽可能降低Blumlein线阻抗与杂散阻抗的比值。
     2.为将结构与电路参数相结合,采用矩量法编程求解了平板型层叠Blumlein线的各特征参量,并利用CST Microwave Studio建立层叠Blumlein线3维电磁仿真模型,研究了各结构参数对脉冲波形的影响。研究结果表明:耦合阻抗与相邻电极板间阻抗并联降低了层叠Blumlein线匹配阻抗;介质板厚与电极板宽之比越小,越有利于提高电压增益和能量效率;较高的长宽比结构有利于近平面波在平板Blumlein线中的形成与传输,从而有利于匹配负载上获得近方波脉冲;平板型层叠Blumlein线介质宽度应大于电极板宽度,以缓解介质边缘处电场增强;仅增加介质板厚度,脉宽保持稳定,但方波特性变差,前后沿被逐渐拉长,且平顶出现振荡。
     3.分析了储能介质不连续性对平板型脉冲形成线的影响,研究结果表明其影响主要为两方面:其一是介质内部缝隙造成平板线内部电场分布不均匀,降低介质击穿场强,且截面呈锐角的缝隙危害最大;其二是介电常数差异会降低层叠Blumlein线输出脉冲平顶质量,应尽量使各单元的电长度基本相等。
     4.建立了研究储能陶瓷介质击穿特性的实验系统,实验研究了电极形状、外部介质、充电波形和重复频率等因素对介质击穿场强的影响。研究结果表明:在甘油介质中利用半球型电极对陶瓷介质μs级脉冲充电测得其击穿场强26kV/mm,为所有测试情况中的最大值;真空环境下直流电压比脉冲电压所测得的表面闪络击穿场强略高;高重复频率脉冲测试条件下的陶瓷介质内部存在严重热积累,导致在介质内部快速形成击穿通道,从而降低介质击穿强度。
     5.基于小尺寸(95×95×4mm3)陶瓷介质板,设计了一台3级陶瓷储能层叠Blumlein线实验装置,模拟了其在不同环境中所产生的脉冲波形,结果表明:该结构装置适宜工作在变压器油和真空等介电常数较低的环境。分析了开关对该结构装置性能的影响,结果表明各开关抖动会导致脉冲前后沿呈现阶梯状,同时降低陶瓷介质的耐压能力。
     6.研制了一台传输线脉冲变压器,实验证明其可将单路ns级脉冲分离为3路参数(幅值20kV、脉宽12ns、上升时间5ns)基本一致的子脉冲。利用此3路子脉冲在实验中实现了3路开关的ns级同步触发。
     7.建立并测试了一台3级陶瓷储能层叠Blumlein线实验装置,实验中对该装置直流充电至4kV,3路开关经同步触发导通,在10匹配负载上获得了幅值约11.4kV、脉宽约32ns、上升时间约为5ns的脉冲输出,其电压增益约为2.9,能量效率约为90%。分别测试了不同因素对装置工作性能的影响,结果表明:多路同步触发脉冲可有效改善多开关导通同步性能;ns级脉冲充电条件下在匹配负载上得到的脉冲电压增益约为2.7,能量效率约为79%;测试了不同介质环境对装置输出结果的影响,结果证明此类装置适合工作于低介电常数的介质环境中。
National defense and civil applications require the pulsed power system (PPS) withfeatures of compactness and solid-state. The structure of stacked Blumlein line (SBL) isbeneficial to the compact PPS due to its combination of energy storage, pulse formingand voltage multiplication. Ceramic for energy storage has wide potential for PPSapplications due to its essential characters such as high energy storage density, stabledielectric constant and excellent environmental adaptability. Therefore, SBL usingceramic for energy storage is an important technology approach to achieving compactand solid PPS. Five significant issues, i.e., the correlated theory of the SBL, thestructure optimization of the SBL; the breakdown characteristics of the ceramic,multi-switch triggered in synchronization, and the facility of a3-stage SBL usingceramic for energy storage, are studied and analyzed systematically in this dissertation.The main content involved is depicted as following.
     1. The correlated theory of the SBL is studied systematically through the analysisof its pulse forming process (PFP) and parasitic impedance. In the PFP analysis, thetransmission and reflection coefficients in each junction point of SBL are calculated,and the analytical expression of the output pulse for a lossless SBL is obtained by usingLaplace transform. A circuit model is developed for analyzing the influence of theparasitic impedance. The calculation results indicate that the voltage multiplication isbasically equal to the stage number as the ratio of the Blumlein impedance to theparasitic one decreases.
     2. For combining the SBL structure with its circuit parameters, the characteristicparameters of a parallel-plate SBL are calculated through the coding in Method ofMoment (MoM), and the effects of structural parameters on the output pulse are studiedthrough a3D SBL model developed in CST Microwave Studio. The results indicate:1)coupling impedances in parallel connection with the impedances formed betweenadjacent electrodes decrease the SBL matching impedance;2) the smaller ratio ofdielectric thickness to electrode width, the more benefit to improving the voltagemultiplication and the energy efficiency;3) the structure with a high ratio of length towidth is advantageous to a plane wave forming and transmission in a parallel plateBlumlein, so as to producing a rectangular pulse with good quality across a matchingload;4) it is beneficial to alleviating the electric-field enhancement located the electrodeedges in a parallel-plate SBL when the dielectric is wider than the electrode;5) as onlyincreasing the dielectric thickness, the output pulse duration is kept unchanged, but thepulse front and tail edges are stretched severely, and some oscillation emerges in thepulse flat-top.
     3. The influence of the ceramic dielectric discontinuity on the ceramic SBL is analyzed. The results indicate two aspects of this influence:1) the internal gap of theceramic is likely to result in the decrease of the ceramic breakdown strength (BDS) dueto the non-uniform distribution of electric field inside the parallel SBL, and the mostjeopardous gap is the one with a shape of triangle cross-view;2) the permittivitydifference of ceramic slabs deteriorates the output pulse flat-top quality of the ceramicSBL, and the best case is that each Blumlein has the same electric length by adjustingthe location of different ceramic slabs.
     4. Experimental system is built for testing the breakdown characteristics of theceramic. Four influence factors of the ceramic BDS, such as electrode configuration,dielectric surroundings, charging source and repetitive rates, are studied and analyzed.The results indicate:1) the maximum ceramic BDS among all the tests is26.01kV/mmunder conditions of semi-sphere electrode, glycerin surroundings, and single μs pulse;2)the vacuum flashover BDS tested under dc charging condition is slightly higher than theone under pulsed condition;3) the condition of pulse charging in high repetition rate cancause the thermal accumulation inside the ceramic, then ceramic melted, and fastformation of breakdown channel, thereby reducing the ceramic BDS.
     5. A SBL using ceramic for energy storage is proposed based on the small ceramicslab with dimensions of95×95×4mm3, and the output pulse waveforms are simulatedin different dielectric surroundings. The results indicate that this structural facility isappropriate to work in the surroundings with low permittivity, such as transformer oil orvacuum. The performance of the facility affected by switch working behavior isanalyzed. The results indicate that the dispersity of closure time of multi-switch resultsin ladder distortions within the front and tail edges of the output pulse, meanwhiledecreasing the ceramic BDS.
     6. A transmission line pulse transformer (TLT) is developed, and the testing resultsdemonstrate that the TLT is capable of splitting a narrow pulse into3subpulses with thesame parameters, i.e.,20kV voltage amplitude,12ns pulse width, and5ns rise time.By using the3subpulses, we have achieved3switches synchronizedly triggered in thens range.
     7. The facility of a3-stage SBL using ceramic for energy storage is developed andtested. After the3-stage SBL is dc charged up to4kV, a32ns quasi-rectangular pulseof11.4kV is measured across a10dummy load under the condition of the3switchestriggered in synchronization. The voltage multiplication is about2.9, and the energyefficiency is about90%. The effects of three factors, i.e., switching condition, chargingsource, and working surroundings, on the facility performance are experimentallystudied. The results indicate:1) multiple synchronized pulses can effectively improvethe closure time synchronicity of the multi-switch;2) the pulse with voltagemultiplication of2.7and energy efficiency of79%is achieved across the matched loadunder ns pulse charging condition;3) the effect of different working surroundings on the performance of the facility is tested, and the results demonstrate that the facility isappropriate to be operating in the surroundings with low dielectric constant.
引文
[1] Miller A R. Sub-ohm Coaxial Pulse Generators, Blackjack3,4and5[C]//Martin T H and Guenther A H (eds.). Proc.3rdIEEE Int. Pulsed Power Conf.,1981:200~205.
    [2] Cook D L. Members of PBFA II Project Team. Status of PBFA II Engineering
    [C]//Martin T H and Rose M F (eds.). Proc.4thIEEE Int. Pulsed Power Conf.,1983:11~14.
    [3] Bloomquist D D, Stinnett R W, McDaniel D H, et al. Saturn, A Large AreaX-ray Simulation Accelerator [C]//Turchi P J and Bernstein B H (eds.). Proc.6thIEEE Int. Pulsed Power Conf.,1987:310~317.
    [4] Spielman R B, Stygar W A, Seamen J F, et al. Pulsed Power Performance ofPBFA Z [C]//Cooperstein G and Vitkovitsky I (eds.). Proc.11thIEEE Int.Pulsed Power Conf.,1997:709~714.
    [5]丰树平,李洪涛,谢卫平等. Z箍缩初级实验平台模块样机[J].强激光与粒子束,2009(3):463~467.
    [6] Schamiloglu E. Compact Pulsed Power Requirements for High PowerMicrowaves [C]. Proc. IEE Pulsed Power Symposium,2001:311~314.
    [7] Gaudet J A, Barker R J, Buchenauer, et al. Research Issues in DevelopingCompact Pulsed Power for High Peak Power Applications on Mobile Platforms[J]. Proc. of the IEEE,2004:1144~1165.
    [8] Liu Z X, Zhang J D. Investigation of Helical Pulse Forming Line [J]. PlasmaScience and Technology,2006,(5):596~599.
    [9] Liu J L, Yin Y, Ge B, et al. An Electron-beam Accelerator Based on SpiralWater PFL [J]. Laser Part. Beams,2007,(4):593~599.
    [10] Yang H W, Xu J, Zhang J D, et al. Experiments of A30GW,100ns CompactE-beam Accelerator [C]. CD-ROM for IET European Pulsed Power Conf.,2009:1~4.
    [11] Burdt R, Curry R D. Novel High-frequency, High-power, Pulsed OscillatorBased on A Transmission Line Transformer [J]. Rev. Sci. Instru.,2007:074703
    [12]樊亚军.高功率亚纳秒电磁脉冲产生[D].西安:西安交通大学博士学位论文,2004.
    [13] Andreev Y A, Gubanov V P, Efremov A M, et al. High-power Ultra-wide BandRadiation Source [J]. Laser Part. Beams,2003:211~217.
    [14] Mesyats G A, Shpak V G, Yalandin M I. RADAN-EXPERT PortableHigh-current Accelerator [C]//Baker W and Cooperstein G (eds.). Proc.10thIEEE Int. Pulsed Power Conf.,1995:539~543.
    [15]李丹.基于开关振荡器的宽带电磁脉冲发生器[D].长沙:国防科学技术大学硕士学位论文,2010.
    [16] Akiyama H. Stream Discharges in Liquids and Their Applications [J]. IEEETrans. Dielectr. Electr. Insul.,2000,(5):646~653.
    [17] Buescher E S, Schoenbach K H. Effects of Submicrosecond, High IntensityPulsed Electric Fields on Living Cells-Intracellular Electromanipulation [J].IEEE Trans. Dielectr. Electr. Insul.,2003,(5):788~794.
    [18] Beebe S J, Fox P M, Rec L J, et al. Nanosecond Pulsed Electric (ns PEF) Effectson Cells and Tissues: Apoptosis Induction and Tumor Growth Inhibition [J].IEEE Trans. Plasma Sci.,2002:286~292.
    [19] Bluhm H, Schultheiss C, Frey W, et al. Industrial Scale Treatment of BiologicalCells with Pulsed Electric Fields [C]//Kirkici H (ed.). Conf. Record of the26thInt. Power Modulator Conf. and High-voltage Workshop,2004:8~14.
    [20] Sack M, Eing C, Staengle R, et al. Electric Measurement of the ElectroporationEfficiency of Mash from Wine Grapes [J]. IEEE Trans. Dielectr. Electr. Insul.,2009,(5):1329~1337.
    [21] Sack M, Sigler J, Eing C, et al. Operation of an Electroporation Device forGrape Mash [J]. IEEE Trans. Plasma Sci.,2010,(8):1928~1934.
    [22] Martin T H, Guenther A H, Kristiansen M, Eds. J.C. Martin on pulsed power
    [M]. NewYork: Plenum Press,1996:1~4.
    [23]刘锡三.高功率脉冲技术[M].北京:国防工业出版社,2005:13~18.
    [24] Blumh H, Boehnel K, Buth L, et al. Experiments on KFK’s Light-IonAccelerator KALIF [C]//Turchi P J and Rose M F (eds.). Proc.5thIEEE Int.Pulsed Power Conf.,1985:114~117.
    [25] Lee Y C, Lee W S, Shieu F S. Development of Composite Dielectrics with HighSpecific Capacitance and Stable Temperature Characteristics [J]. J. Mater. Sci.,2002:2699~2705.
    [26] Gilmore B L. Development of High Energy Density Dielectrics for PulsedPower Applications [D]. Ph.D. Dissertation, University of Missouri-Rolla, Rolla,Missouri, USA,2001.
    [27] Huebner W, Zhang S C, Gilmore B, et al., High Breakdown Strength, MultilayerCeramics for Compact Pulsed Power Application [C]. Proc.12thIEEE Int.Pulsed Power Conf.,1999:1242~1245.
    [28] Ye Y, Zhang S C, Dogan F, et al. Influence of Nanocrystalline Grain Size on theBreakdown Strength of Ceramic Dielectrics [C]. Proc.14thIEEE Int. PulsedPower Conf.,2003:719~722.
    [29] P. Castro, Buchenauer C J, Gaudet J, et al. Studies of Dielectric Breakdownunder Pulsed Power Conditions [C]. Proc.15thIEEE Int. Pulsed Power Conf.,2005:978~981.
    [30] Du J, Jones B, Lanagan M. Preparation and Characterization of DielectricGlass-Ceramics in Na2O-PbO-Nb2O5-SiO2System [J]. Mat. Lett.,2005:2821~2826.
    [31] Yang S, Zhong H H, Qian B L, et al. An All Solid-State, Rolled Strip PulseForming Line with Low Impedance and Compact Structure [J]. Rev. Sci.Instrum.,2020,(4):043303.
    [32]杨实,钟辉煌,钱宝良等.基于磁开关和带状线的长脉冲、超低阻抗脉冲发生器(英)[J].强激光与粒子束,2010,(9):2214~2218.
    [33]欧阳佳,刘永贵,刘金亮等.折叠型平板Blumlein线的理论与实验研究[J].强激光与粒子束,2007,(6):1044~1048.
    [34]欧阳佳,刘永贵,张晓萍等.折叠型平板Blumlein线高功率微波驱动源[J].强激光与粒子束,2008,(9):1516~1520.
    [35]宋法伦,甘延青,卓婷婷等.薄膜介质层绕式Blumlein线理论与实验研究[J].强激光与粒子束,2010,(3):507~510.
    [36] Joler M, Christodoulou C G, Schamiloglu E, et al. Modeling of a Compact,Portable Transmission Line for Pulsed Power Applications [C]. Proc.14thIEEEInt. Pulsed Power Conf.,2003:253~256.
    [37] Schamiloglu E. On the Road to Compact Pulsed Power: Adventures in Materials,Electromagnetic Modeling and Thermal Management [C]. Proc.14thIEEE Int.Pulsed Power Conf.,2003:3~8.
    [38] Alexander J A, Shope S, Pate R, et al. Plastic Laminate Pulsed PowerDevelopment [C]. Society of Automotive Engineers,2000, Paper00PSC~113.
    [39] Davanloo F, Collins C B, Agee F J, et al. High Power Repetitive StackedBlumlein Pulsers Commutated by a Single Switch Element [J]. IEEE Trans.plasma Sci.,1998,(5):1463~1475.
    [40] Zhang Q M, Wang L, Luo J, et al. Improved Energy Storage Density in BariumStrontium Titanate by Addition of BaO–SiO2–B2O3Glass [J]. Journal of theAmerican Ceramic Society,2009,(8):1871~1873.
    [41] Zhang Q M, Wang L, Luo J, et al. Ba0.4Sr0.6TiO3/MgO Composites withEnhanced Energy Storage Density and Low Dielectric Loss for Solid-StatePulse-Forming Line [J]. Int. J. Appl. Ceram. Technol.,2010,7(S1): E124~E128.
    [42]张庆猛,董桂霞,崔建东等. BaO-SiO2-B2O3玻璃添加剂对Ba0.4Sr0.6TiO3陶瓷致密度和介电性能的影响[J].材料导报,2008,(8):339~341.
    [43] Caballero A C, Fernandez J F, Moure C, et al. ZnO-Doped BaTiO3:Microstructure and Electric Properties [J]. Journal of the European CeramicSociety,1997,(4):513~523.
    [44] Ricketts B W, Triani G, Hilton A D. Dielectric Energy Storage Densities inBa1-xSrxTi1-yZryO3Ceramics [J]. Journal of Material Science: Materials inElectronics,2000,(6):513~517.
    [45]陈章,马寒冰,杨宁宁等. BaTiO3/环氧高介电常数复合材料[J].材料科学与工程学报,2007,(12):914~916.
    [46]刑光建,杨志民,毛昌辉等. BST/PVDF复合薄膜的制备及其介电性能[J].材料导报,2005,(5):294~297.
    [47]黄集权,杜丕一,翁文剑等.超高介电常数钛酸钡/乙炔黑复相材料的制备研究[J].无机材料学报,2005,(5):1106~1112.
    [48]党智敏,王海燕,彭勃等.高介电常数的聚合物基纳米复合电解质材料[J].中国电机工程学报,2006,(8):100~104.
    [49] Luo J, Du J, Tang Q, et al. Lead Sodium Niobate Glass-Ceramic Dielectrics andInternal Electrode Structrue for High Energy Stroage Density Capacitors [J].IEEE Trans. Electron Dev.2008,(12):3549~3554.
    [50]杜军,唐群,罗君等. Pb2Nb2O7-NaNbO3-SiO2纳米复合材料的制备及其介电性能[J].中国有色金属学报,2008,(2):301~310.
    [51]罗君,杜军,唐群等.多层高储能密度玻璃陶瓷电容器的串式内电极设计[J].科学通报,2009,(4):516~521.
    [52] Luo J, Tang Q, Zhang Q M, et al. Improved Discharge Properties of BulkNa2O-BaO-PbO-Nb2O5-SiO2Glass-Ceramic Dielectrics through ElectrodeStructure Design [J]. Matterial Letters,2011:1976~1978.
    [53] Shyu J J, Wang J R. Crystallization and Dielectric Properties ofSrO-BaO-Nb2O5-SiO2tungsten-bronze glass-ceramics [J]. J. Am. Ceram. Soc.,2000:3135~3140.
    [54] Gorzkowski E P, Pan M J, Bender B, et al. Glass-Ceramics of Barium StrontiumTitanate for High Energy Density Capacitors [J]. J. Electroceram.,2007:269~276.
    [55]李洪涛,刘金锋,袁建强等.大功率固态脉冲形成线研究进展[J].强激光与粒子束,2011,(11):2906~2910.
    [56]夏连胜,陈德彪,张篁等.固态高压脉冲形成线研究[J].强激光与粒子束,2009,(7):1111~1114.
    [57]陈德彪,刘承俊,夏连胜等.高介电常数复合介质固态Blumlein线[J].强激光与粒子束,2007,(1):174~176.
    [58]袁建强.大功率光导开关关键技术研究[D].北京:清华大学博士学位论文,2009.
    [59]李正瀛.脉冲功率技术[M].北京:水利电力出版社,1992:6~9.
    [60]王庆峰,高国强,刘庆想等.脉冲形成网络的设计与实验研究[J].强激光与粒子束,2009,(4):531~535.
    [61]王庆峰,刘庆想,高国强等.脉冲形成网络能量传递效率分析[J].强激光与粒子束,2010,(3):515~518.
    [62]白国强,刘金亮,程新兵等.结构紧凑陶瓷电容器型脉冲调制器[J].强激光与粒子束,2010,(3):503~506.
    [63]袁建强,谢卫平,刘宏伟等.高功率重复频率固态脉冲功率源研究进展[C].贵阳:第十三届高功率粒子束暨第八届全国高压加速器学术交流会论文集,2012:611~613.
    [64] Gerson R, Marshall T C. Dielectric Breakdown of Porous Ceramics [J]. J. Appl.Phys.1959,(11):1650~1653.
    [65] Yu B Y, Wei W C. Defects of Base Metal Electrode Layers in MultilayerCeramic Capacitor [J]. J. Amer. Ceram. Soc.2005,(8):2328~2331.
    [66] Wan R E, Chen S T. On the Mechanism of Dielectric Breakdown of HVCapacitors [C]. Proc.3rdICPADM Int. Conf.,1991:1061~1063.
    [67] Nunnally W C. Critical Component Requirements for Compact Pulse PowerSystem Architectures [J]. IEEE Trans. Plasma Sci.,2005,(8):1262~1267.
    [68] Nunnally W C, Allen F V, Hawkins S A, et al. Experiments with UV LaserTriggered Spark Gaps in a Stacked Blumlein System [C]. Proc.15thIEEE Int.Pulsed Power Conf.,2005:1376~1379.
    [69] Nunnally W C, Mazzola M. Opportunities for Empolying Silicon Carbide inHigh Power Photo-Switches [C]. Proc.14thIEEE Int. Pulsed Power Conf.,2003:823~826.
    [70] Korioth J L. A Computational Analysis of Stacked Blumlein Pulse Generators[D]. Ph.D. Dissertation, The Univeristy of Texas at Dalls, Dalls, USA,1998.
    [71] Domonkos M T, Turchi P J, Parker J V, et al. A Ceramic Loaded PolymerBlumlein Pulser for Compact, Rep-Rated Pulsed Power Applications [C]. Proc.15thIEEE Int. Pulsed Power Conf.,2005:1322~1325.
    [72] Domonkos M T. Switching Requirements for Stacked Blumleins Commutatedby Individual Switches [C]. Proc. IEEE Int. Power Modulator Conf.,2006:372~375.
    [73] Domonkos M T, O’Loughlin J P, Tran T C, et al. Stacked, Parallel-PlateSolid-Dielectric Blumlein Lines for Compact Pulsed Power [C]. Proc.16thIEEEInt. Pulsed Power and Plasma Science Conf.,2007:481~485.
    [74] Caporaso G J, Chen Y J, Watson J A, et al. Status of the Dielectric WallAccelerator for Proton Therapy [C]. AIP Conf. Proc. Appliction of Acceleratorsin Research and Industry,2011:369~373.
    [75] Nelson S D, Poole B R. Electromagnetic Simulations of Dielectric WallAccelerator Structures for Electron Beam Acceleration [C]. Proceedings ofParticle Accelerator Conference,2005:2550~2552.
    [76] Sampayan S, Caporaso G, Chen Y J, et al. Development of a CompactRadiography Accelerator Using Dielectric Wall Accelerator Technology [C].Proc.15thIEEE Int. Pulsed Power Conf.,2005:50~53.
    [77] Sampayan S, Caporaso G, Chen Y J, et al. Ultra-Compact AcceleratorTechnologies for Application in Nuclear Techniques [C]//Bharuth-Ram K (ed.).Proc. Int. Conf. Applications of Nuclear Techniques,2009:69~79.
    [78] Caporaso G J, Sampayan S, Chen Y J, et al. High Gradient InductionAccelerator [C]. Proceedings of Particle Accelerator Conference,2007:857~861.
    [79] Caporaso G J, Chen Y J, Sampayan S E, et al. The Dielectric Wall Accelerator
    [R]. Review of Accelerator Science and Technology, Lawrence LivermoreNational Laboratory, USA, LLNL-JRNL-416544,2009:1~12.
    [80] Rhodes M A, Watson J, Sanders D, et al. Ferrite-Free, Oil-Switched, Four-Stage,High-Gradient Module for Compact Pulsed Power Applications [C]. Proc.16thIEEE Int. Pulsed Power and Plasma Science Conf.,2007:538~541.
    [81] Rhodes M A. Ferrite-Free Stacked Blumlein Pulse Generator for CompactInduction Linacs [C]. Proc.15thIEEE Int. Pulsed Power Conf.,2005:1192~1194.
    [82] Rhodes M A, Sampayan S, Watson J, et al. Oil-Switched Planar Blumlein PulseGenerators for Dielectric Wall Accelerators [C]. Proc. IEEE Int. PowerModulator Conf.,2006:415~418.
    [83] Rhodes M A. UV Pre-Ionized Rail-Gap Switch for Stacked Blumlein PulseGenerators [C]. Proc.15thIEEE Int. Pulsed Power Conf.,2005:651~654.
    [84] Harris J R, Blackfield D, Caporaso G J, et al. Vacuum Insulator Developmentfor the Dielectric Wall Accelerator [J]. Journal of Applied Physics,2008,104,022301.
    [85] Smith A R. Present Status and Future Developments in Proton Therapy [C]//Bolton P R, Bulanov S V, and Daido H (eds.). Proc.2ndInt. Sympos.,2009:426~437.
    [86] Zografos A, Hening A. Joshkin V, et al. Engineering Prototype for a CompactMedical Dielectric Wall Accelerator [C]//AIP Conf. Proc. Applications ofNuclear Techniques,2011:71~78.
    [87] Mesyats G A. Pulsed Power [M]. New York: Springer,2004:19~22.
    [88]梁昆淼编,刘法,缪国庆修订.数学物理方法-第三版[M].北京:高等教育出版社,1998:114~126.
    [89] Smith P W. Transient Electronics: Pulse Circuit Technology [M]. Chichester:John Wiley&Sons Ltd.,2002:50~52.
    [90] Rossi J O, Ueda M, and Barroso J J. Design of a150kV,300A,100Hz,Blumlein Coaxial Pulser for Long Pulse Operation [J]. IEEE Trans. Plasma Sci.,2002,(5):1622~1626.
    [91] Lewis I A D. Some Transmission Line Transformers for Use withMill-Microsecond Pulses [J]. Electron. Eng.,1955:448~450.
    [92] Kuphaldt T R. Lessons in Electric Circuits-Fifth Edition [M]. Design ScienceLicense,2006:171~196. Available at www.openbookproject.net/electricircuits.
    [93] Chodorow A M. The Time Isolation High-Voltage Impulse Generator [J]. Pro.IEEE Lett.,1975:1082~1084.
    [94]张志涌.精通MATLAB6.5版[M].北京:北京航空航天大学出版社,2003.
    [95] Harrington R F. Field Computation by Moment Methods [M]. New York: IEEEPress,1993.
    [96] Yee K. Numerical Solution of Initial Boundary Value Problems InvolvingMaxwell’s Equations in Isotropic Media [J]. IEEE Trans. Antennas andPropagation,1966:302~307.
    [97] Chari M V K, and Sivester P P, eds. Finite Elements in Electrical and MagneticField Problems [M]. New York: John Wiley&Sons,1980:11~31.
    [98] Shih Y C. Numerical Technical for Microwave and Millimeter-Wave PassiveStructures [M]. New York: John Wiley&Sons,1989:592~621.
    [99]张同意.非线性光导开关高功率超短电脉冲产生技术的研究[D].西安:西安电子科技大学博士学位论文,2002:90.
    [100]刘国强,赵凌志,蒋继娅. Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005:104~115.
    [101] Joler M. Analysis and Optimization of Parallel-Plate Blumlein Line for CompactPulsed-Power Systems [D]. Ph.D. Dissertation, The University of New Mexico,Albuquerque, New Mexico, USA,2006:36~46.
    [102]曲远方.功能陶瓷的物理特性[M].北京:化学工业出版社,2007:101.
    [103] Love G R. Energy Storage in Ceramic Dielectrics [J]. J. Am. Ceram. Soc.,1990,(2):323.
    [104] Tan Q, Irwin P, Cao Y. Advanced Dielectrics for Capacitors [J]. IEEE Trans.Fundam. Mater.,2006,(11):1153.
    [105] Dai L, Lin F C, Zhu Z F, et al. Electrical Characteristics of High Energy DensityMultilayer Ceramic Capacitor for Pulse Power Application [J]. IEEE Trans.Magnetics,2005,(1):281~284.
    [106] Sharma S, Deb P, Shukla R, et al. Compact Pulse Forming Line Using BariumTitanate Ceramic [J]. Rev. Sci. Instrum.,2011,82,115102.
    [107] Huebner W, Zhang S C. High Energy Density Dielectrics for SymmetricBlumleins [C]//Proc. of the200012thIEEE Int. Sympos. On Applications ofFerroelectrics. New York: IEEE,2002:883.
    [108] Available athttp://202.194.4.88:8080/wulihx/data/Dielectric%20Constant%20Table.htm
    [109] West A R, Adams T B, Morrison F D, et al. Novel High Capacitance Materials:BaTiO3and CaCu3Ti4O12[J]. J. Eur. Ceram. Soc.,2004,24:1439.
    [110] Chowdary K R, Subbarao E C. Liquid Phase Sintered BaTiO3[J]. Ferroelectrics,1981,(1):689.
    [111] Huang J J, Zhang Y. Liquid Phase Sintering of Barum Titanate Ceramics forHigh Energy Storage Density Capacitors [J]. Key Eng. Mater.,2008,40:368.
    [112] Sarkar S K, Sharma M L. Liquid Phase Sintering of BaTiO3by B2O3andPbB2O4Glasses and Its Effect on Dielectric Strength and Dielectric Constant [J].Mater. Res. Bull.,1989,(7):773.
    [113] Jeon H P, Lee S K, Kim S W, et al. Effects of BaO-B2O3-SiO2Glass Additive onDensification and Dielectric Properties of BaTiO3Ceramics [J]. Mater. Chem.Phys.,2005,(3):185.
    [114] Young A, Hilmas G, Zhang S C, et al. Effect of Liquid-phase Sintering on theBreakdown Strength of Barium Titanate [J]. J. Am. Ceram. Soc.,2007,(5):1504.
    [115] Sutherland A E, Bridger K, Fiore E M, et al. High Energy Density LeadMagnesium Niobate-based Dielectric Ceramic and Poress for the PreparationThereof: US,5337209[P].1994-08-09.
    [116] Rao Y, Wong C P. Material Characterization of a High-dielectric-constantPolymer-ceramic Composite for Embedded Capacitor for RF Applications [J]. J.Appl. Polym. Sci.,2004,(92):2228.
    [117] Yin Y, Alivisatos A P. Colloidal Nanocrystal Synthesis and theOrganic-inorganic Interface [J]. Nature,2005,437:664.
    [118] Kim P, Jones S C, Hotchkiss P J, et al. Phosphonic Acid-modified BariumTitanate Polymer Nanocomposites with High Permittivity and DielectricStrength [J]. Adv. Mater.,2007,(7):1001.
    [119] Li J J, Claude J, Fraco L E N, et al. Electrical Energy Storage in FerroelectricPloymer Nanocomposites Containing Surface-Functionalized BaTiO3Nanoparticles [J]. Chem. Mater.,2008,(20):6304–6306.
    [120] Chen J C, Zhang Y, Deng C S, et al. Improvement in the Microstructures andDielectric Properties of Barium Strontium Titanate Glass-Ceramic byAlF3/MnO2Addition [J]. J. Am. Ceram. Soc.,2009,(8):1863~1866.
    [121] Kageyama K, Takahashi J. Tunable Microwave Properties of BariumTitanate-based Ferroelectric Glass-ceramics [J]. J. Am. Ceram. Soc.,2004,(8):1602.
    [122] Chen J C, Zhang Y, Deng C S, et al. Effect of the Ba/Ti Ration on theMicrostructures and Dielectric Properties of Barium Titanate-BasedGlass-Ceramics [J]. J. Am. Ceram. Soc.,2009,(6):1350~1353.
    [123]罗君,杜军,唐群等.多层高储能密度玻璃陶瓷电容器的串式内电极设计[J].科学通报,2009,(4):516~521.
    [124] Li Y Q, Liu H X, Yao Z H, et al. The Effect of ZnO-B2O3-SiO2Additive onSintering and Dielectric Properties of Ba0.3Sr0.7TiO3Ceramic [J]. Ferroelectrics,2010,(1):45.
    [125] Wu Z H, Liu H X, Cao M H, et al., Effect of BaO-Al2O3-B2O3-SiO2GlassAdditive on Densification and Dielectric Properties of Ba0.3Sr0.7TiO3Ceramics. J.Ceram. Soc. Jpn.,2008,(2):345~349.
    [126]张庆猛,崔建东,王磊等. PbO-SiO2玻璃对Ba0.4Sr0.6TiO3陶瓷致密度和介电性能的影响[J].硅酸盐学报,2009,(9):1514.
    [127] Wang X, et al. Glass Additive in Barium Titanate Ceramics and its Influences onElectrical Breakdown Strength in Relation with Energy Storage Properties [J]. J.Eur. Ceram. Soc.,2012,(3):559.
    [128]邓国平.玻璃添加(Ba, Sr)TiO3基陶瓷的制备技术与介电性能研究[D].武汉:武汉理工大学,2011.
    [129] Li Y Q, Liu H X, Yao Z H, et al. Characterization and Energy Storage Densityof BaTiO3-Ba(Mg1/3Nb2/3)O3Ceramic [J]. Mater. Sci. Forum.,2010,654-656:2045.
    [130] Yang Y, Zhang S C, Dogan F, et al. Influence of Nanocrystalline Grain Size onthe Breakdown Strength of Ceramic Dielectrics [C]//Proc.14thIEEE Int. PulsedPower Conf.,2003,719~722.
    [131] Han D F, Zhang Q M, Tang Q, et al. Testing Media Influences on the DielectricProperties of Lead Sodium Niobate Glass-ceramic [J]. Ceram. Int.,2010,36:2011.
    [132]罗君,杜军,唐群等.高储能密度玻璃陶瓷电容器内电极的研究[J].电子元件与材料,2008,(6):72.
    [133] Wang S, Shu T, Zhang J, Zhang Z, et al. Breakdown Characteristics of NiobateGlass-ceramic under Pulsed Condition [J]. IEEE Transactions on Dielectrics andElectrical Insulation,2013,20(1):275~280.
    [134] Zhao G, Joshi R P, Lakdawala V K, et al. TiO2Breakdown under PulsedConditions [J]. J. Appl. Phys.,2007,101,026110.
    [135]殷之文.电介质物理学[M].第2版.北京:科学出版社,2003:166.
    [136] Cheng C T, Lanagan M, Jones B, et al. Crystallization Kinetics and PhaseDevelopment of PbO-BaO-SrO-Nb2O5-B2O3-SiO2based Glass-Ceramics [J]. J.Am. Ceram. Soc.,2005,(1):3037~3042.
    [137] Huang J J, Zhang Y, Ma T, et al. Correlation between Dielectric BreakdownStrength and Interface Polarization in Barium Strontium Titanate GlassCeramics [J]. Appl. Phys. Lett.,96,042902,2010.
    [138]张自成.紧凑重频Tesla变压器型吉瓦脉冲发生器[D].长沙:国防科学技术大学博士学位论文,2008.
    [139] Murthy D N P, Xie M, Jiang R Y. Weibull Models [M]. Hoboken: John Wiley&Sons, Inc.,2004:301~348.
    [140] Young A L, Hilmas G E, Zhang S C, et al. Mechanical vs. Electrical FailureMechanisms in High Voltage, High Energy Density Multilayer CeramicCapacitors [J]. J. Mater. Sci.2007,42:5613~5619.
    [141] Reliasoft corporation. Training guide: Weibull++7, Version7[M]. Tucson:Reliasoft publishing,2010.
    [142] Wang S S, Shu T, Yang H W. A Modularized Pulse Forming Line UsingGlass-Ceramic Slabs [J]. Rev. Sci. Instrum.,2012,83,084703.
    [143]王松松,舒挺,杨汉武.层叠Blumlein线多开关导通时间分散性[J].强激光与粒子束,2012,(8):1995~1999.
    [144] Martin J C. Nanosecond Pulse Techniques [J]. Proceedings of IEEE,1992,(6):934~945.
    [145]曾正中.实用脉冲功率技术引论[M].陕西:陕西科学技术出版社,2003:149.
    [146] Glover S F, Alexander J A, Reed K W, et al. Laser Triggering of Spark GapSwitches with Less than100μJ’s of Energy [C]. Proc.16thIEEE Int. PulsedPower and Plasma Science Conf.,2007:240~244.
    [147] Mayes J R, Carey W J, Nunnally W C, et al. Spark Gap Triggering withPhotoconductive Switches [C]. Proc.16thIEEE Int. Pulsed Power and PlasmaScience Conf.,2007:250~253.
    [148] Swalby M E, Glover S F, Zutavern F J, et al. A Test Facility for PCSS TriggeredPulsed Power Switches [C]. Proc.16thIEEE Int. Pulsed Power and PlasmaScience Conf.,2007:101~105.
    [149] Kumar R, Mitra S, Patel A, et al. Novel Synchronization Technique for TwoParallel Connected Spark-Gap Switches [J]. Rev. Sci. Instrum.,83,084702,2012.
    [150] Kovalchuk B M, Kim A A, Kumpjak E V, et al.10Stage LTD for E-BeamDiode [J]. Pulsed Power Plasma Science, Digest of Technical Paper,2001,(2):1488~1490.
    [151] Liu J L, Fan X L, Zhang Y. Nanosecond-range multi-pulses synchronizationbased on magnetic switch and saturable pulse transformer [J]. Rev. Sci. Instrum.,83,124703,2012.
    [152]雷宇,邱剑,刘克富.基于感应变压器原理的多路开关同步触发技术[J].强激光与粒子束,2012,(7):1549~1554.
    [153]王松松.传输线脉冲变压器的研究[D].长沙:国防科学技术大学硕士论文,2008.
    [154]孟志鹏.重频模块化感应电压叠加器及其相关技术研究[D].长沙:国防科学技术大学博士学位论文,2011.
    [155]王松松,杨汉武,舒挺.传输线脉冲变压器的频率响应[J].强激光与粒子束,2009,(9):1431~1434.
    [156] Sanlin Ltd. Co. Handbook of the products in Sanlin Ltd. Co.: Ferrite magneticcores [M]. Xi’an,2011:78-80.
    [157]达道安.真空设计手册(第3版)[M].北京:国防工业出版社,2004:3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700