用户名: 密码: 验证码:
无规和间规聚苯乙烯的液液转变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无规聚苯乙烯(aPS)和间规聚苯乙烯(sPS)都属于聚苯乙烯系列,aPS是一种优良的塑料,它是非晶聚合物,而sPS是一种新型热塑性塑料,它是结晶性聚合物。由于用热释电方法研究aPS及其共混物的很多文献中所得结果不尽相同,特别是在高温区的液液转变一直存在很大的争议,而且对于sPS的热释电研究还很缺乏,所以有必要用热释电方法进一步去研究他们分子运动和局域态,特别是高温区液液转变的研究。
     本文主要通过热释电方法对aPS的液液转变和空间电荷进行了研究,改变极化场强,极化温度和升温速率对聚合物进行深层次研究,并且对比了sPS的热释电结果,而且还结合了aPS的介电松弛谱,此外还尝试将VTF方程拟合应用于液液转变的松弛过程中。
     本文工作主要包括以下三个部分:
     1.aPS驻极体在27~200℃的TSDC谱图出现对应玻璃化转变的偶极松弛α峰,空间电荷峰ρ峰,液液转变的τ峰和更深陷阱空间电荷ρ’峰,此外通过分峰处理得到的Sub-Tg链段运动松弛的β峰。随着在极化温度升高的,τ峰向高温移动,峰强也逐渐增大,这说明在高极化温度下分子链被极化的更充分;所有峰的位置不随极化场强的变化而变化,其中α峰和τ峰的峰强随极化场强增加正比例增大,这说明τ峰和α峰一样具有分子运动松弛峰的性质,而ρ峰和ρ’峰的峰强随场强增加非线性增大,说明他们具有空间电荷峰的性质;随着升温速率的升高,所有峰都往高温处移动,他们的峰强也有不同程度的增大;τ峰的活化能随温度升高而下降的;对比aPS与sPS的TSDC谱图,可以揭示aPS和sPS内部结构上差异。
     2.10K、100K和1MHz三种频率下aPS的介电温度谱图上显示,在25~160℃范围内有两个明显的松弛过程,α松弛对应玻璃化转变松弛而β松弛对应于次级转变松弛。运用WLF方程可以将α松弛的介电数据并结合了热释电数据。
     3.将VTF方程拟合运用到高聚物的玻璃化转变和液液转变的变化过程中,用VTF拟合方程并计算出相关的参数,证明在Tg和TLL之间高聚物的分子运动符合VTF方程,这个结论对比了WLF的方程的使用范围Tg~Tg+100℃。
Atactic polystyrene (aPS), which is a poor polar polymer, is one of the most important engineering materials, and Syndiotactic polystyrene (sPS), which is a crystalline polymer, is a novel thermoplastic engineering plastic.Alought many articles have been published on the study of aPS and its blends using TSDC method, the results did not agree well enough with each other, furthermore the research of sPS by the method of TSDC is not enough. Therefore, it is both theoretically and practically significant to study the molecular movement and localized state of PS, especially the liquid-liquid transition above the glass temperature.
     This paper studied the liquid-liquid transition and space charge of aPS by using TSDC method, and a further research was accomplished through changing the polarization field strength, polarization temperature and heating rate; dielectric relaxation measurement was applied as a complementary method to asistant the results of TSDC. Besides them, the VTF equation is used in the liquid-liquid transition of TSDC spectra.
     This experiment mainly includes the following sections:
     1. There are four distinct peaks showed in TSDC spectra from 27 to 200℃. Compared with the result of DSC, TSDC spectra show that peakαcorresponds to glass transition, peakτis related to liquid–liquid transition, and peakρand peakρ’belong to the space chargecurrent peak,βpeak is found by separating peaks which is related to the motion of Sub-Tg molecular chain segments. Curve fitting for theτpeak shows that theτpeak becomes stronger and higher of peak temperature with the increase of polarization temperature because of being polarized more completely. With the increase of polarization field strength, the position of peakαand peakτdoes not change and the value of them increases linear with the increase of field strength; the position of peakρand peakρ’also does not change and the value of them increases with the increase of field strength, but the relationship of them is nonlinear. As the heating rate increases, all peaks move towards higher temperature, and peak value also increases. Forτpeak, activation energy is decrease with the increase of temperature. By comparing the TSDC of sPS, the difference of the molecular structure between aPS and sPS can be illuminated.
     2. There are two obvious relaxation processesβandαobserved in the dielectric relaxation spectra of aPS (10K, 100K and 1M Hz) in the range of 25~160℃. Theαrelaxation is corresponds the glass transition andβrelaxation is corresponds the secondary relaxation. We can correlate between DRS and TSDC atαrelaxation with WLF equation.
     3. Through interpretation the spectrum of TSDC around glass transition and liquid-liquid transition using VTF equation, some important parameters can be calculated by VTF simulation. It is proved that the molecular motion of the amorphous polymers is fitting VTF formula between Tg and TLL, the result is more rational than the conclusion that amorphous polymers is fitting WLF formula between Tg and Tg + 100℃.
引文
[1] Boyer, R.F., The high temperature (T > Tg) amorphous transition in atactic polystyrene. Journal of Polymer Science Part C: Polymer Symposia, 14(1): 267-281, 1966.
    [2] Gillham, J.K., Benci, J.A. and Boyer, R.F., Polym. Eng. Sci., 16, 357, 1976.
    [3] Stadnicki, S.J., J.K. Gillham, and R.F. Boyer, The Tll (>Tg) transition of atactic polystyrene. Journal of Applied Polymer Science, 20(5): 1245-1275, 1976.
    [4] G. Goyand, C. Lacabanne, and J. P. Cotton, Solid State Commun., 32, 673, 1979.
    [5]钱保功,许观藩,余赋生,高聚物的转变与松弛,科学出版社,1986.
    [6] Van Turnhout, J. In Electtets, Topocs in Applied Physics; Sessler, G.M., Ed.; Springer-Verlag: New York, 33, 1980.
    [7] G.. TeYssèdre, A. Bernès, and C. Lacabanne,“Inverstigation of Dielectric Relaxations Association with the Glass Transition of Vinylidene Fluride and Trifluoroethylene Copolymers by Thermally Stimulated Crrrent”, Journal of Polymer Science: Part B: Polymer Physics, 33, 2419-2428, 1995.
    [8] Natália T. Correia, Joaquim J. Moura Ramos,“Dipolar Motions and Phrase Transitions in aSide-Chain Polysiloxane Liquid Crystal. A Study by Thermally Stimulated Depolarization Currnets”, Journal of Polymer Science: Part B: Polymer Physics, 37, 227-235, 1999.
    [9] Naoto Tsutsumi, Yasuyoshi Okabe,“Molecular Motion and Relaxation Studies of Aliphatic Polyureas by Thermal Windowing Thermally Stimulated Depolarizaton Current Technique”, Journal of polymer Science: Part B: Polymer Physics, 38, 84-94, 2000.
    [10] Neagu, E.R.; Neagu, R.“the determination of relaxation parameters and their distributions using thermally stimulated discharge current measurements”, J. Phys. D. Appl. Phys., 35, 2298–2303, 2002.
    [11] Tamayo, I.; Belana, J.; Canadas, J.C.; Mudarra, M.; Diego, J.A.; Sellare′s, J.“Thermally stimulated depolarization currents of crosslinked polyethylene relaxations in the fusion range of temperatures”, J. Polym. Sci. Part B: Polym. Phys., 41, 1412–1421, 2003.
    [12] A Bui, H. Carchano and J. Lacabanne,“DTC Study of very Thin Polystyrene Films at Temperatures of about Tg and above”, Thin Solid Films, 21, 313-324, 1974.
    [13] A. Gourari and Mohamed Bendaoud,“Influence of Tacticity on Tβ,Tg, and Tll in Poly(methyl methacrylate)s by the Method of Thermally Stimulated Currnet(TSC)”, Journal of Polymer Science: Polymer Physics Edition, 23, 889-916, 1985.
    [14] Veronica Lupasücu, Stephen J. Picken, and Michael Wu1bbenhorst,“Dynamics of T2G2 Helices in Atactic and Syndiotactic Polystyrene: New Evidence fromDielectric Spectroscopy and FTIR”, Macromolecules , 39, 5152-5158, 2006.
    [15] Baskaran. Natesan, Hui Xu, B. Seyhan. Ince, Peggy. Cebe,“Molecular Relaxation of Isotactic Polystyrene: Real-Time Dielectric Spectroscopy and X-ray Scattering Studies”, Journal of Polymer Science: Part B: Polymer Physics, 42, 777–789, 2004.
    [16]彭智,刘冬,胡少宏,周漪琴,张兴元.计算机与应用化学, 15, 248, 1998.
    [17] Turnhout JV. Thermally stimulated discharge of polymer electrets. Elsevier, Amsterdam, 1974
    [18] Bucci, C.; Fieschi, R.; Gurdi, G. Phys. Rev., 148, 816, 1966.
    [19] Simmons, J.G.; Taylor, G.W. Phys. Rev., 5, 1619, 1972.
    [20] Chen R, Kirsh DY. Analysis of thermally stimulated processes. Pergamen Press, Oxford, 1981.
    [21] Hoogenboom, J.E.; Vries, W.D; Dielhof, J.B., Bos, A.J. J. Appl. Phys., 64, 3193, 1988.
    [22] Boyer, Raymond R., and Turley, S. G..,“Molecular Motion in Polystyrene”, in“Molecular Basis of Transitions and Relaxations”, Merer, Dale J., ed., Gordon and Breach, New York, 1978.
    [23] McCrum, N.G.., Read, B.E., and Williams, G.,“Anelastic and Dielectric Effects in Polymeric Solids”, Wiley, New York, 1967.
    [24] Bhargara, B. and Srivastava, A.P. Indian J. Phys A, 53, 47, 1979.
    [25] Y. K. Kulshrestha and A. P. Srivastva, Polym. J., 11, 515, 1979.
    [26] Pillai, P.K.C. and Rashmi, Polymer, 20, 1245, 1979.
    [27] A.K. Sharma and D.S. Sagar, Polym. Int., 25, 43, 1991.
    [28] Jing Sheng, Feng-Kui Li, and Jing Hu,“Study on the Relaxation of Polystyrene, Ethylene–Propylene Diene Monomer, and the Blends of Polystyrene with Ethylene–Propylene Diene Monomer by Thermally Stimulated Current”, Journal of Applied Polymer Science, 67, 1199–1204, 1998.
    [29] M. Topi′c , S. Vali′c, Y. Gallot , and S. Musi′c,“Investigation of relaxations in polystyrene–polyoxyethylene copolymer by thermally stimulated current”, Thermochimica Acta, 400, 205–211, 2003.
    [30] Curtis, A. J., SPE Trans., 2, 82, 1962.
    [31] Thomas W. Smith, Martin A. Abkowitz, Greg C. Conway, and David J. Luca,“Dielectric Spectroscopy of Polystyrene/Poly(ethylene oxide) Composite”, Macromolecules, 29, 5042-5045, 1996.
    [32] Veronica. Lupasücu, Stephen J. Picken, and Michael. Wu1bbenhorst,“Dynamics of T2G2 Helices in Atactic and Syndiotactic Polystyrene: New Evidence from Dielectric Spectroscopy and FTIR”, Macromolecules, 39, 5152-5158, 2006.
    [33] Halpern, V. J. Phys D: Appl Phys, 82, 2628, 1994.
    [34] Dargent, E.; Kattan, M.: Cabot, C.; Lebaudy, P.; Ledru, L.; Grenet, J. L Appl Polym Sci, 74, 2716, 1999.
    [35] Hodhe, I. M. J Non-Crryst Solids., 169, 211,1994.
    [36] Aurora Nogales, Bryan B. Sauer,“Cooperative Motions in PVC Studies by Thermally Stimulated Currents: Comparison with A.C. Dieletric Derivative Analysis”, Journal of Polymer Science: Part B: Polymer Physics, 36, 913-918, 1998.
    [37] J. Menegotto, P. Demont, A. Bernes, C. Lacabanne,“Combined Dielectric Spectroscopy and Thermally Stimulated Currents Studies of The Secondary Relaxation Process in Amorphous Poly(ethylene terephthalate)”, Journal of Polymer Science: Part B: Polymer Physics, 37, 3494-3505, 1999.
    [38] J.Vanderschuren and J. Gassiot, in Topics in Applied Physics, Vol. 37: Thermally Stimulated Rxlaxation in Solids, P. Braunlich, Ed., Springer Verlag, Berlin, 1973.
    [39] A. Alegría, L. Goitiandia, J. Colmenemo,“Interpretation of the TSDC Fractional Polarization Experiments on theα-Relaxation of Polymers”, Journal of Polymer Science: Part B: Polymer Physics, 38, 2105-2113, 2000.
    [40] M. Grimau, E. Laredo, A. Bello, N. Suarez,“Correlation between Dipolar TSDC and AC Dielectric Spectroscopy at the PVDF Glass Transition”, Journal of Polymer Science: Part B: Polymer Physics, 35, 2483-2493, 1997.
    [41] A. Gourari and Mohamed Bendaoud,“Influence of Tacticity on Tβ,Tg, and Tll in Poly(methyl methacrylate)s by the Method of Thermally Stimulated Currnet(TSC)”, Journal of Polymer Science: Polymer Physics Edition, 23,889-916, 1985.
    [42]何平笙等,高聚物力学性能,科学出版社,2000.
    [43] Seung-Yeop Kwak; Jeongsoo Choi; Hee Jae Song. Viscoelastic Relaxation and Molecular Mobility of Hyperbranched Poly(ε-caprolactone)s in Their Melt State. Chem. Mater, 17, 1148-1156, 2005.
    [44] Lie Shen; Yihu Song; Yujian Qian. Rheological Properties of Poly(Vinylidene Fluoride) in Molten State. Chinese Journal of Polymer Science, 26, No.5, 639-644, 2008.
    [1]周贵恩,聚合物X射线衍射,中国科技大学出版社,1989。
    [2] Sessler G. M., Electrets, Springer-Verlag, Berlin, 1980.
    [3] Enns, J.B., and Boyer, R.F., Soc. Plast. Eng. Tech. Paper, 22, 570, 1976.
    [4] Jing Sheng, Feng-Kui Li, and Jing Hu,“Study on the Relaxation of Polystyrene, Ethylene–Propylene Diene Monomer, and the Blends of Polystyrene with Ethylene–Propylene Diene Monomer by Thermally Stimulated Current”, Journal of Applied Polymer Science, 67, 1199–1204, 1998.
    [5] A Bui, H. Carchano, and J. Guastavino,“DTC Study of Very Thin Polystyrene Films at Temperature of About Tg and Above”, Thin Solid Films, 21, 313-324, 1974.
    [6] Pillai, P.K.C., and Rashmi, Polymer, 20, 1245, 1979.
    [7] G. Goyand, C. Lacabanne, and J. P. Cotton, Solid State Commun., 32, 673, 1979.
    [8] Lacabunne, C., et al. Thin Solid Films, 21, 313, 1977.
    [9] Gillham, J.K.; Boyer, R.F. Soc. Plast. Eng. Tech. Paper, 22, 570, 1976
    [10] Z. Peng. TSC study of Polyvinylidene fluoride (PVDF) and its copolymers. Hefei: Ph.D.Thesis of USTC, pp.66, 2000 (in Chinese).
    [11] Y.K. Kulshrestha and A.P. Srivastva, Polym. J., 11, 515, 1979.
    [12] Moraglio, G., and Danusso, F., Polymer, 4, 445, 1953.
    [13] Wunderlich, B., and Bodily, D.M., J. Appl. Phys., 35, 103, 1964.
    [14] Yano, O., and Wada, Y., J Polym. Sci., A-2, 9, 669, 1971.
    [15] Bryan B. Sauer, and Peter Avakian,“Cooperative relaxations in amorphous polymers studied by thermally stimulated current depolarization”, Polymer, 24, 5128, 1992.
    [16] Bucci C. Fieschi R. Phys. Rev. Lett., 12, 16, 1964.
    [17]夏钟福,驻极体,科学出版社,北京,2001.
    [18] E. Neagu, P. Pissis, and L. Apekis, J Appl Phys, 87, 2914, 2000.
    [19] Veronica Lupasücu, Stephen J. Picken, and Michael Wu1bbenhorst,“Dynamics of T2G2 Helices in Atactic and Syndiotactic Polystyrene: New Evidence from Dielectric Spectroscopy and FTIR”, Macromolecules , 39, 5152-5158, 2006.
    [20] Bovey, F.A.; Hood, F.P.; Anderson, E.W.; Snyder, L.C. J. Chem. Phys. 42, 3900, 1965.
    [1] M. Grimau, E. Laredo, A. Bello, N. Suarez,“Correlation between Dipolar TSDC and AC Dielectric Spectroscopy at the PVDF Glass Transition”, Journal of Polymer Science: Part B: Polymer Physics, 35, 2483-2493, 1997.
    [2] Joseph S. Sedita, and James M. O’Reilly,“A thermally Stimulated Depolarization Current Study of Polymer in the Glass Transition Region”, Polymer Eng and Sci, 41, 1, Jan 2001.
    [3] Yano, O., and Wada, Y., J Polym. Sci., A-2, 9, 669, 1971.
    [4] Illers, K.H., and Jenkel, E., Rheol. Acta, 1, 322, 1958; J. Polym. Sci., 41, 528, 1959; Illers, K.H., Z. Electrochem., 65, 679, 1961.
    [5] Vol’kenshstein, M. V., et al., Vysokmol. Soedin, 5, 405, 1963; 6, 1871, 1964; 7, 296, 1965.
    [1] C. Bucci, R. Fieschi, Phys Rev Lett, 12, 16, 1964.
    [2] Aurora Nogales, Bryan B. Sauer,“Cooperative Motions in PVC Studies by Thermally Stimulated Currents: Comparison with A.C. Dieletric Derivative Analysis”, Journal of Polymer Science: Part B: Polymer Physics, 36, 913-918,1998.
    [3] Jing Sheng, Feng-Kui Li, Jing Hu,“Study on the Relaxation of Polystyrene, Ethylene–Propylene Diene Monomer, and the Blends of Polystyrene with Ethylene–Propylene Diene Monomer by Thermally Stimulated Current”, Journal of Applied Polymer Science, 67, 1199–1204, 1998.
    [4] J. Menegotto, P. Demont, A. Bernes, C. Lacabanne,“Combined Dielectric Spectroscopy and Thermally Stimulated Currents Studies of The Secondary Relaxation Process in Amorphous Poly(ethylene terephthalate)”, Journal of Polymer Science: Part B: Polymer Physics, 37, 3494-3505, 1999.
    [5] J. Vanderschuren and J. Gassiot, in Topics in Applied Physics, 37: Thermally Stimulated Rxlaxation in Solids, P. Braunlich, Ed., Springer Verlag, Berlin, 1973
    [6] McCrum, N. G.; Read, B. E.; Williams, G.“Anelastic and Dielectic Effects in Polymeric Solids”, Wiley: London, 1967.
    [7] A. Alegría, L. Goitiandia, J. Colmenemo,“Interpretation of the TSDC Fractional Polarization Experiments on theα-Relaxation of Polymers”, Journal of Polymer Science: Part B: Polymer Physics, 38, 2105-2113, 2000.
    [8] M. Grimau, E. Laredo, A. Bello, N. Suarez,“Correlation between Dipolar TSDC and AC Dielectric Spectroscopy at the PVDF Glass Transition”, Journal of Polymer Science: Part B: Polymer Physics, 35, 2483-2493, 1997.
    [9] A. Gourari and Mohamed Bendaoud,“Influence of Tacticity on Tβ,Tg, and Tll in Poly(methyl methacrylate)s by the Method of Thermally Stimulated Currnet(TSC)”, Journal of Polymer Science: Polymer Physics Edition, 23, 889-916, 1985.
    [10] A Bui, H. Carchano and J. Lacabanne,“DTC Study of very Thin Polystyrene Films at Temperatures of about Tg and above”, Thin Solid Films, 21, 313-324, 1974.
    [11]何平笙等,高聚物力学性能,科学出版社,2000。
    [12] Lu HB, Hefei: Ph.D.Thesis of USTC, pp.90, 2006 (in Chinese).
    [13] Lu HB, Zhang XY, He B, Zhang H. Investigation of Electrode Polarization for Nylon 1010 Using Dielectric Relaxation Spectroscopy. J. Appl. Polym Sci., 102, 3590-3596, 2006.
    [14] Pei Xu, Xingyuan Zhang, Hongbo Lu. Liquid-Liquid Transition and Detrapping of Trapped Carriers of P(MMA/BA) Copolymers by Thermally Stimulated Depolarization Current, J. Macromol. Sci. Phys., 45, 849-858, 2006.
    [15] Zhili Zhou, Xingyuan Zhang, Hongbo Lu, Pei Xu, Investigation of Pendant Group and Chain Segment Motions in P(MMA/BA) Copolymers by Thermally Stimulated Depolarization Current, J. Macromol. Sci. Phys., 46, 1013-1021, 2007.
    [16] Zhili Zhou, Hefei: Master.D.Thesis of USTC, pp.49, 2007 (in Chinese).
    [17] Boyer, R.F., J. Polym. Sci., C14, 267, 1966.
    [18] A. K. Sharma and D. S. Sagar,“Thermally stimulated discharge current studies in pure and Fe-doped polystyrene films”, Polym. Int., 25, 43, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700