用户名: 密码: 验证码:
聚酰胺610分子链段运动、局域态分布与聚集态结构的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰胺610是重要的热塑性工程塑料,通过介电和热刺激电流方法精确深入研究不同聚集态结构的聚酰胺610的分子链段运动和局域态分布。因此对聚酰胺610的电荷载流子存储输运特性与聚集态结构关系的研究具有重要的理论和实际意义。总结如下;
     1.通过介电松弛研究发现淬火聚酰胺610与退火聚酰胺610一样,在室温以上存在3个松弛行为,随着温度增大顺次为:α松弛、MWS极化、电极极化。对于玻璃化转变的α松弛,退火聚酰胺610偶极松弛时间较大,退火聚酰胺610偶极取向运动的活化能较大。MWS极化对应于聚集在中间相的载流子的松弛行为,退火聚酰胺610的MWS极化过程松弛强度较大,中间相区域增多也导致退火聚酰胺610的MWS极化过程松弛时间较大。在介电测试温度下随着测试温度增大淬火聚酰胺610结晶度增大,中间相逐渐增多,使得淬火聚酰胺610的MWS极化过程松弛强度随介电测试温度增大而增大。发现在110℃-120℃左右存在转折温度,当温度在这个转折温度以下,非晶区的分子链段运动主导中间相的空间电荷输运和存储引起的极化,而当温度在这个转折温度以上,非晶区和中间相的分子链段运动共同主导中间相的空间电荷输运和存储引起的极化。电极极化则对应于聚集在试样表面与电极界面的载流子的松弛行为,空间电荷增多导致退火聚酰胺610电极极化松弛强度较大,并且退火聚酰胺610电极极化过程松弛时间较短。
     2.在不同极化温度下对淬火聚酰胺610极化相当于在不同温度下对淬火聚酰胺610进行退火,可知淬火聚酰胺610具有3个局域能级,表现在热刺激电流谱上3个电流峰,分别对应于偶极松弛、非晶区及中间相和晶区陷阱俘获的空间电荷松弛。极化温度为80℃时淬火聚酰胺610的晶区陷阱俘获的空间电荷松弛非常小,通过研究峰电流与极化场强的关系发现,50℃左右的α峰为偶极松弛峰,110℃左右的p1峰为非晶区及中间相空间电荷峰。随着极化温度增大,晶区陷阱俘获的空间电荷松弛pz峰逐渐增大。分子链段运动受抑制导致偶极松弛强度减弱,活化能增大。极化温度增大产生更多的结构缺陷导致非晶区及中间区和晶区陷阱俘获空间电荷能力增加。极化温度增大使得非晶区及中间区被俘获空间电荷的稳定性下降和晶区被俘获空间电荷的稳定性提高。
     3.退火聚酰胺610具有3个局域能级,表现在热刺激电流谱上3个电流峰,分别对应于偶极松弛、非晶区及中间相和晶区陷阱俘获的空间电荷松弛。随着退火温度增大,晶区陷阱俘获的空间电荷松弛p2峰逐渐增大。分子链段运动受抑制导致偶极松弛强度减弱,活化能增大。退火温度增大产生更多的结构缺陷导致非晶区及中间区和晶区陷阱俘获空间电荷能力增加。退火温度增大使得非晶区及中间区被俘获空间电荷的稳定性下降和晶区被俘获空间电荷的稳定性提高。
     4.溶液成膜的未辐照和辐照聚酰胺610具有4个局域能级,表现在热刺激电流谱上4个电流峰,分别对应于偶极松弛、非晶区、非晶区与晶区之间的中间相和晶区陷阱俘获的空间电荷松弛。非晶区交联使得偶极松弛峰电流强度减弱,活化能增大。随着辐照剂量增大,非晶区交联程度比中间相交联程度增多,导致两相的陷阱能级趋于接近,非晶区和中间相陷阱俘获的空间电荷峰逐渐合并成一个峰。辐照使得晶区结晶破坏和晶相内交联对分子链段运动的作用相互抵消。γ-辐照后,随着更多的结构缺陷产生,非晶区、中间相和晶区陷阱俘获空间电荷能力增加,同时晶区被俘获空间电荷的稳定性基本不变而非晶区、中间相被俘获空间电荷的稳定性提高。
Polyamide 610, which has a molecular structure analogous to polyamide 66, is one of the most important polyamide engineering plastics. Polyamide 610 is a typical semicrystalline polymer with different microstructures under various thermal histories. The investigation of the aggregative state structure effect on chain segment motion and localized state sistributions in polyamide 610 is interesting both from the fundamental and technological point of view. Polymers acquire persistent polarization due to the alignment of dipoles and migration of space charges over macroscopic distance. Information on charge storage and transport phenomena in polymer electrets is of great interest for several industrial applications. The corresponding work is an important topic in the field of polymer electronic properties. It helps leading charge storage and transportation properties further in polymer and then has a great meaning on polymer's application in electrics, optics, acoustics, etc.
     1. The experimental dielectric data were analyzed within the formalisms of complex permittivity and electric modulus. The results were discussed in terms of ac conductivity, MWS polarization, electrode polarization, and dc conductivity. Maxwell-Wagner-Sillars (MWS) polarization in polyamide 610 arising from charge carriers accumulated at the interphase between amorphous and crystalline regions and electrode polarization arising from charge carriers accumulating at the interface between an electrode and polyamide 610 have been investigated by means of dielectric relaxation spectra. In the frequency spectra of polyamide 610, the dielectric permittivity showed high values at low frequencies originating from charge carrier movement. The maximum ofε″MWS andε″eiec of quenched polyamide 610 is smaller than that for annealed polyamide 610 because crystallinity of quenched polyamide 610 increases with increase of the temperature and crystallinity of 180℃annealed polyamide 610 doesn't change. The temperature dependence of relaxation time follows the Vogel-Tammann-Fulcher (VTF) type. The results revealed that there is a transition temperature for the MWS polarization and dc conductivity, located between 110 and 120℃, resulting in the separation of two different charge carrier movement mechanisms. Below and above this transition temperature, the charge carrier transport is governed by the motion of the polymer chains. The change of charge carrier movement mechanisms is due to the onset of polymer chain motion in the interphase. For electrode polarization the motion of the polymeric chains was one of the factors leading to charge-carrier transport at temperatures higher than the glass-transition temperature
     2. Quenched polyamide 610 polarizing at different temperatures corresponds to annealed polyamide 610 at different temperatures. There are three current peaks (namedα,ρ1 andρ2peak respectively) in TSDC spectra of quenched polyamide 610.αpeak is corresponding to the glass transition,ρ1 peak is attributed to space charge trapped in the bulk of amorphous region and inter-phase between crystalline and amorphous regions, and p2 peak is originated from space charge trapped in crystalline region. By analyzing the characteristic parameters of these peaks, it is found that the increase of polarization temperature induces the decrease of the chain segment mobility and promotes the creation of structural traps in polyamide 610. The decrease of the chain segment mobility in amorphous phase makes intensity of a peak weak and activation energy increscent. The higher of polarization temperature, the higher of degree of crystallinity, the more of charge carriers trapped in crystalline region. So the increase of polarization temperature makes intensity of the p2 peak strong and increases the stability of trapped charge in the crystalline regions, and the increase of polarization temperature makes intensity of the pi peak strong and decreases the stability of trapped charge in the amorphous region and inter-phase.
     3. There are three current peaks (namedα,ρ1 andρ2 peak respectively) in the TSDC spectra of annealed polyamide 610. The a peak is attributed to a background dipole relaxation by the motion of chain segments over space charge contribution, theρ1 peak is originated from space charge trapped in amorphous phase and the interphase between crystalline and amorphous phases, and the p2 peak is originated from space charge trapped in crystalline phase. By analyzing the characteristic parameters of these peaks, it was found that annealing induced a decrease of the chain segment mobility and promoted the creation of structural traps in polyamide 610. The decrease of the chain segment mobility in amorphous phase made the intensity of the a peak weak and activation energy increased. The higher the annealing temperature, the higher the degree of crystallinity and the more charge carriers trapped in crystalline phase. So the increase of annealing temperature made the intensity of the p2 peak strong and increased the stability of trapped charge in the crystalline phases. The increase of annealing temperature made the intensity of the pi peak strong and decreased the stability of trapped charge in the amorphous phase and interphase,
     4. There are four current peaks (namedα,ρ1,ρ2 andρ3 peak respectively) in TSDC spectra of solution-cast polyamide 610.αpeak corresponds to the glass transition,ρ1 peak is attributed to space charge trapped in the amorphous phase,ρ2 peak is originated from space charge trapped in the interphase between crystalline and amorphous regions andρ3 peak is originated from space charge trapped in crystalline phase. With the increase of irradiation dose from 1.5MGy to 2MGy,ρ1 peak andρ2 peak gradually merge into a peak. So the superiority of the crosslinking in amorphous phase over the crosslinking in interphase makes trap level of the amorphous phase and that of interphase gradually close. By analyzing the characteristic parameters of these peaks, it is found that gamma irradiation induces the decrease of chain segment mobility and increases structural defects in polyamide 610. Irradiation increases the stability of trapped charge in amorphous phase and interphase, but basically makes the stability of trapped charge in crystalline phase unchanged.
引文
Aharoni SM, Sibilia JP,1979. On the conformational behavior and solid-state extrudability of crystalline polymers[J]. Polymer Engineering & Science,19:450-455.
    Ahmad MM, Yamada K, Okuda T.2002.Frequency dependent conductivity and dielectric studies on RbSn2F5[J]. Solid State Communications,123:185-189.
    Andrew JL.1978. Crystallographic factors affecting the structure of polymeric spherulites. I. morphology of directionally solidified polamides[J]. Journal of Applied Physics,49:5003-5013.
    Androsch R, Stolp M, Radusch HJ.1996. Crystallization of amorphous polyamides from the glassy state[J]. Acta Polymerica,47:99-104.
    Asami K.2002. Characterization of heterogeneous systems by dielectric spectroscopy[J]. Progress in Polymer Science,27:1617-1659.
    Ataka M, Sasaki KJ.1982. Gravimetric analysis of membrane casting:I. Cellulose acetate-acetone binary casting solutions[J]. Journal of Membrane Science,11:11-25.
    Ateia E.1997. Study of thermal currents in irradiated LDPE/NBR conductive blends[J]. Polymer Degradation and Stability,57:95-100.
    Atkins EDT, Hill MJ, Hong SK, et al.1992. Lamellar structure and morphology of nylon 46 crystals:a new chain folding mechanism for nylons[J]. Macromolecule,25:917-924.
    Bacskai R, Pohl HA.1960. Stereospecificity and electric polarization in high polymers [J], Journal of Polymer Science,42:151-157.
    Bello A, Laredo E.1999. Distribution of relaxation times from dielectric spectroscopy using Monte Carlo simulated annealing:Application to α-PVDF[J]. Physical Review B,60: 12764-12774.
    Biangardi HJ.1990. Brill transition of polyamide 6.12[J]. Journal of Macromolecular Science, Part B Physics,29:139-153.
    Blundell DJ.Oslmrn BN.1983. The morphology of poly(aryl-ether-ether-ketone)[J]. Polymer,24:953-958.
    Boyd RH, Porter CH.1972. Effects of melting on dielectric relaxation in poly(hexamethylene sebacamide) (nylon 610) [J]. Journal of Polymer Science Part A-2:Polymer Physics,10:647-656.
    Briskman BA, Rozman SI.1982. Effect of irradiation on density of polymers [J]. Inzhenerno-Fizicheskii Zhurnal,43:288-293.
    Bucci C, Fieschi R.1964. Ionic thermoconductivity. method for the investigation of polarization in insulators[J].Physical Review Letters,12:16-19.
    Bunn CW, Garner EV.1947. The Crystal Structures of Two Polyamides[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,189A:39-68.
    Calleja RD.1994. On splitting of the conductivity contributions from the dielectric loss[J]. Journal of Non-Crystalline Solids, (172-174):1413-1418.
    Charlesby A, Pinner SH.1959. Analysis of the solubility behavior of irradiated polyethylene and other polymers[J]. Proceedings of the Royal Society A:Mathematical, Physical and engineering sciences,249:367-377.
    Charlesby A, Pinner H.1960. Atomic Radiation and Polymers[M]. Londom:Dergomon Press Oxford,360-379.
    Chen R.1981. Analysis of Thermally Stimulated Processes. Oxford:Pergamen Press 82-121.
    Cooper SJ, Atkins EDT, Hill MJ.1998. Temperature-Induced Changes in Lamellar Crystals of Monodisperse Nylon 6 and Nylon 6 6 Oligoamides[J]. Macromolecules,31:8947-8956.
    Cole KS, Cole RH.1941. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics[J]. Journal of Chemical Physics,9:341-352.
    Corezzi S, Capaccioli S, Gallone G, et al.1997. Dielectric behaviour versus temperature of a monoepoxide[J]. Journal of Physics:Condensed Matter,9:6911-6216.
    Creswell RA, Perlman MM.1970. Thermal Currents from Corona Charged Mylar[J].Journal of Applied Physics,41:2365-2376.
    Davidson DW, Cole RH.1950. Dielectric Relaxation in Glycerine[J]. Journal of Chemical Physics,18:1417.
    Davis RD, Bur AJ, McBrearty M, et al.2004. Dielectric spectroscopy during extrusion processing of polymer nanocomposites:A high throughput processing/characterization method to measure layered silicate content and exfoliation[J]. Polymer,45:6487-6493.
    Debye P. Polar Molecules[M]. New York:Chemical Catalog,129-142.
    Dixon RK.1990. Specific-heat spectroscopy and dielectric susceptibility measurements of salol at the glass transition[J]. Physical Review B,42:8179-8186.
    Dreyfuss P, Keller A.1970. Chain folding in polyamides:A study on Nylons 66,610, and 612 as crystallized from solution[J]. Journal of Macromolecular Science, Part B Physics,4:811-835.
    Dupont Co.1971. Producing method of polyamide fiber and film. USA, US19710138180 [P].
    Flory P, Yoon DY, Dill K.1984. The interphase in lamellar semicrystalline polymers[J]. Macromolecules,17:862-868.
    Flory PJ.1969. Statistical Mechanics of Chain Molecules[M]. New York:Wiley Interscience, 1969,204-227.
    Franco L, Cooper SJ, Atkins EDT, et al.1998. Nylon 6 9 can crystallize with hydrogen bonding in two and in three interchain directions[J]. Journal of Polymer Science Part B:Polymer Physics,136:1153-1165.
    Garcia DJ,1985. Hydrogen bonding in nylon 66 and model compounds[J]. Journal of Polymer Science:Polymer Physics Edition,23:537-555.
    Gil-Zambrano JL, Juhasz C.1982. Space charge polarization in nylon films[J]. Journal of Physics D:Applied Physics,15:119-128.
    Gil-Zambrano JL, Juhasz C.1989. The a relaxation in nylon terpolymer studied by TSD[J]. IEEE Transactions on Electrical Insulation,24:635-640.
    Gogolewski S. Gasiorek M, Czerniawska K.1982. Annealing of melt-crystallized nylon 6[J]. Colloid and Polymer Science,257:859-863.
    Gross B.1972. Linear Models and the Kinetics of Thermally Activated Currents and Voltages[J]. Journal of The Electrochemical Society,119:855-860.
    Havriliak S, Negami S.1967. A complex plane representation of dielectric and mechanical relaxation processes in some polymers[J]. Polymer,8:161-210.
    Howard WSJ, Robert EM.1956. Density, infrared absorption, and crystallinity in 66 and 610 nylons[J]. Journal of Polymer Science,22:363-368.
    Jones NA, Cooper SJ, Atkins EDT, et al.1997. Temperature-induced changes in chain-folded lamellar crystals of aliphatic polyamides. Investigation of nylons 26,28,210, and 212[J]. Journal of Polymer Science Part B:Polymer Physics,35:675-688.
    Himshi K, Masaru K.1994. Structural Study on X-ray Diffraction Curves Using the Crystallite Structure Factor for Polymers[J]. Macromolecules,27:5877-5876.
    Hirschinger J, Miura H, Gardner KH, et al.1990. Segmental dynamics in the crystalline phase of nylon 66:solid state deuterium NMR[J] Macromolecules,23:2153-2169.
    Hosemann R.1962. Crystallinity in high polymers, especially fibres[J]. Polymer,3:349-392.
    Howard W, Starkweather JR, Avakian P.1992. Conductivity and the electric modulus in polymers[J]. Journal of Polymer Science Part B:Polymer Physics,30:637-641.
    Ibar JP.1993. Foundamentals of thermal stimulated current and relaxation map analysis[M]. New Canaan:LSP,66-76.
    Jemkins H, Keller A.1975. Radiation-induced changes in physical properties of bulk polyethylene. I. Effect of crystallization conditions[J]. Journal of Macromolecular Science, Part B:Physics.,11: 301-323.
    Jones NA, Atkins EDT, Hill MJ, et al.1997. Chain-folded lamellar crystals of aliphatic polyamides. Investigations of nylons 4 8,4 10,4 12,6 10,6 12,6 18 and 8 12[J]. Polymer,38: 2689-2699.
    Jun,Z, Zhang XY, Lu HB.2005. Effect of annealing and polarizing temperature on the trap level distribution in nylon 11 film electrets[J]. Acta Physica Sinica,54:3414-3417.
    Kaneko F, Yamashita K, Hino T.1982. Annual report of the conference on electrical insution and dielectric phenomena[M]. IEEE Electrical Insulation Society,287-299.
    Kohan MI.1995. Nylon plastics handbook[M]. Munich:Hanser Publishers,144-167.
    Kremer F.2002. Dielectric spectroscopy-yesterday, today and tomorrow[J]. Journal of Non-Crystalline Solids,305:1-9.
    Kyritsis A, Pissis P, Grammatikakis J.1995. Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels[J]. Journal of Polymer Science Part B:Polymer Physics,33:1737-1750.
    Li B, Zhang L.1997. ESR approach to free radicals trapped in irradiated polyamide-1010[J]. Radiation Physics and Chemistry,49:575-579.
    Li BZ, Zhang LH.1997. Gamma-radiation damage to nylon 1010 containing neodymium oxide[J]. Polymer Degradation and Stability,55:17-20.
    Lindegren CR.1961. Spherulites in nylon 610 and nylon 66[J]. J. Polym. Sci,50:181-189.
    Lovinger A J.1978. Crystallographic factors affecting the structure of polymeric spherulites. I. Morphology of directionally solidified polyamides[J]. Journal of Applied Physics,49:5003-5014.
    Lu HB, Zhang XY, He B.2002. y-Irradiation Effect on the Chain Segment Motion and the Charge Storage for Nylon 6 Films[M]. Proceedings 12th International Symposium on Electrets (ISBN: 0-7803-9116-0), IEEE Incorporated,2005,258-261.
    Lu HB, Zhang XY, Zhang H.2006. Influence of the relaxation of Maxwell-Wagner-Sillars polarization and dc conductivity on the dielectric behaviors of nylon 1010[J]. Journal of Applied Physics,100:054104.
    Lyons BJ, Glover LC.1990. Radiolytic crosslinking and chain scission in alophatic and alkyl-aromatic polyamides. Part 1[J]. Radiation Physics and Chemistry,35:139-147.
    Macedo PB, Moynihan CT, Bose R.1972. The role of ionic diffusion in polarisation in vitreous ionic conductors [J]. Physics and Chemistry of Glasses,13:171-179.
    Magill JH, Girolamo M, Keller A.1981. Crystallization and morphology of nylon-6,6 crystals:1. Solution crystallization and solution annealing behaviour[J]. Polymer.,22:43-55.
    Malliaris A, Turner DT.1971. Influence of sample size on radiation damage of polyethylene[J]. Journal of Polymer Science Part A-1:Polymer Chemistry,9:1765-1767.
    Mccall DW, Anderson EW.1960. Dielectric Properties of Linear Polyamides[J]. Journal of Chemical Physics,32:237-241.
    McCrum NG, Read BE, Williams G.1967, Anelastic and dielectric effects in polymeric solids[M]. New York:Wiley,340-349.
    McKeever SWS, Rhodes JF, Mathur VK, et al.1985. Numerical solutions to the rate equations governing the simultaneous release of electrons and holes during thermoluminescence and isothermal decay[J]. Physical Review B,32:3835-3843.
    Migahed MD, Ahmed MT, Kotp AE.2005. Computation of TSDC Peak Parameters in Amorphous Polymers using Vogel-Tammann-Fulcher Relaxation Mode[J]. Journal of Macromolecular Science, Part B Physics,44:43-53.
    Miyake A.1960. Infrared spectra and crystal structures of polyamides [J]. Journal of Polymer Science,44:223-232.
    Mo Z, Meng Q, Feng J, et al.1993. Crystal structure and thermodynamic parameters of Nylon-1010[J]. Polymer International,32:53-60.
    Mo ZS, Zhang HF.1995. The degree of crystallinity in polymers by wide-angle X-ray-diffraction (WAXD)[J]. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry & Physics,35:555-580.
    Mizutani T, Ieda M.1978. TSC from corona-charged high-density polyethylene and the effects of oxidation[J]. Journal of Physics D:Applied Physics,11:185-192.
    Mudarra M, Diaz-Calleja R, Belana J, et al.2001. Study of space charge relaxation in PMMA at high temperatures by dynamic electrical analysis[J]. Polymer,42:1647-1651.
    Mudarra M, Diaz-Calleja R, Belana J, et al.2004. Sublinear dispersive conductivity in polymethyl methacrylate at temperatures above the glass transition[J]. Polymer,45:2737-2742
    Murayama S, Imada K, Takayanagi M.1973. Application of Upper Bound Theory to Solid-State Extrusion of Polymers[J]. International Journal of Polymeric Materials,2:125-136.
    Murthy NS, Aharoni SM, Szollosi AB.1985. Stability of the y form and the development of the a form in nylon 6 [J]. Journal of Polymer Science:Polymer Physics Edition,23:2549-2565.
    Murthy NS, Curran SA, Aharoni SM, et al.1994. Premelting crystalline relaxations and phase transitions in nylon 6 and 6,6[J]. Macromolecules,24:3215-3220.
    Neagu E, Pissis P, Apekis L.2000. Electrical conductivity effects in polyethylene terephthalate films[J]. Journal of Applied Physics,87:2914-2922.
    Neagu RM, Neagu E, Bonanos, N.1997. Dielectric relaxation spectroscopy of polyethylene terephthalate (PET) films[J]. Journal of Physics D:Applied Physics,30:1551-1557.
    Neagu RM, Neagu E, Bonaos N, et al.2000. Electrical conductivity studies in nylon 11[J]. Journal of Applied Physics,88:6669-6678
    Neagu RM, Neagu E, Kyritsis A.2000. Dielectric studies of dipolar relaxation processes in nylon 11[J]. Journal of Physics D:Applied Physics,33:1921-1932.
    Neto JMG, Figuelredo MT, Faria RM.1991. Thermally stimulated depolarization current of a ferroelectric phase of 60:40 VDF/TrFE copolymer[J]. Journal of Physics D:Applied Physics,21: 643-644.
    Ngai KL, Martin SW.1989. Correlation between the activation enthalpy and Kohlrausch exponent for ionic conductivity in oxide glasses[J].Physical Review B,40:10550-10556.
    Northolt MG, Tabor BJ, Aartsen JJV.1972. Polymorphism in nylon 12[J]. Journal of Polymer Science Part A-2:Polymer Physics,10:191-192.
    Paek D, Sauer JA.1968. Effects of thermal history on isotactic polypropylene[J]. Journal of Applied Polymer Science,12:1901-1919.
    Pathmanathan K, Johari GP.1993. The effect of increased crystallization on the electrical properties of nylon-12[J]. Journal of Polymer Science Part B:Polymer Physics,31:265-272.
    Pathmanathan K, Johari GP, Cavaille JY.1992. Temperature dependence of the conformational relaxation time of polymer molecules in elongational flow:Invariance of the molecular weight exponent[J]. Journal of Polymer Science Part B:Polymer Physics,30:341-348.
    Perlman MM, Creswell RA.1971. Thermal Current Study of the Effect of Humidity on Charge Storage in Mylar[J]. Journal of Applied Physics,42:531-533.
    Petel GN, Keller A.1975. Association of the reaction products in the ozone degradation of polyethylene and its relevance to the study of the fold surface structure[J]. J. Polym. Sci. Phys. Ed,13:2275-2280.
    Puiggali J, Franco L, Aleman C, et al.1998. Crystal Structures of Nylon 5,6. A Model with Two Hydrogen Bond Directions for Nylons Derived from Odd Diamine[J]. Macromolecules,31:8540-8548.
    Qian JW, Miao YM, Zhang L, et al.2002. Influence of viscosity slope coefficient of CA and its blends in dilute solutions on permeation flux of their films for MeOH/MTBE mixture[J]. Journal of Membrane Science,203:167-173.
    Radusch MJ, Stolp M, Androsch A.1994. Structure and temperature-induced structural changes of various polyamides[J]. Polymer,35:3568-3571.
    Ramesh C.1999. New Crystalline Transitions in Nylons 4,6,6,10, and 6,12 Using High Temperature X-ray Diffraction Studies[J]. Macromolecules,32:3721-3726.
    Ramesh C, Gowd EB.2001. High-Temperature X-ray Diffraction Studies on the Crystalline Transitions in the a-and y-Forms of Nylon-6[J]. Macromolecules.,34:3308-3313.
    Ramesh C, Keller A, Eltink SJEA.1994. Studies on the crystallization and melting of nylon-6,6:1. The dependence of the Brill transition on the crystallization temperature[J]. Polymer, 35:2483-2487.
    Ramesh C, Kellert A.1994. Studies on the crystallization and melting of nylon 66:2. Crystallization behaviour and spherulitic morphology by optical microscopy[J]. Polymer,35:5293-5299.
    Ramos JJM, Mano JF.2005. Dipolar relaxations in a side-chain polyacrylate liquid crystal. A study by thermally stimulated currents[J]. Thermochimica Acta,285:347-359.
    Runt JP, Fitzgerald JJ.1997. Dielectric Spectroscopy of Polymeric Materials[M]. Washington: American Chemical Society,137-156.
    Sawa G, Lee DC, Ieda M.1977. Electric Current with Temperature Variation Arising from Polymer-Metal Contacts[J]. Japanese Journal of Applied Physics,16:359-364.
    Scheinbeim JI, Lee JW, Newman BA.1992. Ferroelectric polarization mechanisms in nylon 11[J]. Macromolecules,25:3729-3732.
    Seanor DA.1982. Electrical Properties of Polymers[M]. New York:Academic Press,9-23.
    Senguptaa r., Tikkub V.K., Somanic A. K., Chakia T. K., Bhowmicka A. K. Radiat. Phys. Chem. 2005,72:625.
    Schreiber R, Veeman WS, Gabrielse W, et al.1999. NMR Investigations of Orientational and Structural Changes in Polyamide-6 Yarns by Drawing[J]. Macromolecules,32:4647.
    Schroeder LR, Cooper SL.1976. Hydrogen bonding in polyamides[J]. Journal of Applied Physics,44:4310-4317.
    Simmons JG, Taylor GW.1972. High-Field Isothermal Currents and Thermally Stimulated Currents in Insulators Having Discrete Trapping Levels[J]. Physical Review B,5:1619-1629.
    Simmons JG, Taylor GW.1972. Thermally Stimulated Currents in Semiconductors and Insulators Having Arbitrary Trap Distributions[J]. Physical Review B,6:3714-719
    Starkweather HW.1989. Deconvolution of the excess heat capacity of the Brill transition in nylon 66 [J] Macromolecules,22:2000-2007.
    Starkweather HW, Avakian P.1992. Conductivity and the electric modulus in polymers[J]. Journal of Polymer Science Part B:Polymer Physics,30:637-641.
    Starkweather HW. Jones GA.1981. Crystalline transitions in powders of nylon 66 crystallized from solution[J]. Journal of Polymer Science Part B:Polymer Physics,19:467-477.
    Steeman PAM, Maurer FHJ.1992. Dielectric properties of polyamide-4,6[J]. Polymer,33:4236-4241.
    Stickel FE, Fischer W, Richert R.1995. Dynamics of glass-forming liquids I. Temperaturederivative analysis of dielectric relaxation data[J]. Journal of Chemical Physics,102:6251-6257.
    Takase Y, Lee JW, Scheinbeim JI, et al.1991. High-temperature characteristics of nylon-11 and nylon-7 piezoelectrics[J]. Macromolecules,24:6644-6652.
    Tamayo I, Belana J, Canadas JC, et al.2003. Thermally stimulated depolarization currents of crosslinked polyethylene relaxations in the fusion range of temperatures[J]. Journal of Polymer Science Part B:Polymer Physics,41:1412-1421.
    Tanaka N, Fujii H.2003. Melting and recrystallization of nylon-6,10 thin films[J]. Journal of Macromolecular Science, Part B Physics,42:621-628.
    Thielen A, Hendrick E, Niezette J, et al.1994. Heat treatment effects on the metal-polymer interface and space-charge formation in thin metallized polyethylene terephthalate films[J]. Journal of Applied Physics,75:4069-4077.
    Thielen A, Niezette J, Feyder G, et al.1996. Thermally stimulated current study of space charge formation and contact effects in metal-polyethylene terephthalate film-metal systems. Ⅰ. Generalities and theoretical model[J]. Journal of Physics and Chemistry of Solids,57:1567-1580.
    Thielen A, Niezette J, Feyder G, et al.1996. Thermally stimulated current study of space charge formation and contact effects in metal-Polyethylene Terephthalate film-metal systems. Ⅱ. Influence of polarization conditions[J]. Journal of Physics and Chemistry of Solids,57:1581-1591.
    Thielen A, Niezette J, Vanderschueren J.1997. Thermally stimulated current study of space-charge formation and contact effects in metal-polyethylene terephthalate films-metal systems. Ⅲ. Influence of heat treatments [J]. Journal of Physics and Chemistry of Solids,58:607-622.
    Turi EA.1997. Thermal Characterization of Poymeric Materials[M]. New York:Academic Press, 37-45.
    Turnhout JV.1975. Thermally Stimulated Discharge of Polymer Electrets[M]. Amsterdam: Elsevier,168-213.
    Turnhout JV.1987. Electrets [M]. Berlin:Springer,87-123.
    Vasanthan N, Murthy NS, Bray RG.1998. Investigation of Brill Transition in Nylon 6 and Nylon 6,6 by Infrared Spectroscopy[J]. Macromolecules,31:8433-8435.
    Wintle HJ.1970. Theory of the potential probe used in static electrification measurements on insulators[J]. Journal of Physics E:Scientific Instruments,3:334.
    Wu SL, Newman BA, Scheinbeim JI.1996. The effect of melt processing conditions on the hydrogen-bonded sheet orientation and polarization of nylon 11 films[J].Journal of Polymer Science Part B:Polymer Physics,1996,34:3035-3053.
    Wunderlich B.1976. Macromolrcular Physics[M]. Boston:Academic Press,50-70.
    Xenopoulos A, Wunderlich B.1990 Thermodynamic properties of liquid and semicrystalline linear aliphatic polyamides[J]. Journal of Polymer Science Part B:Polymer Physics,28:2271-2290.
    Xenopoulos A. Wunderlich B.1991. Conformational motion and disorder in aliphatic nylons The case of nylon 6.6[J]. Colloid and Polymer Science,269:375-391.
    Yamamoto K, Namikawa H.1988. Conduction current relaxation of inhomogeneous conductor I[J]. Japanese Journal of Applied Physics,27:1845-1851.
    Yemni T, Boyd RH.1976. A dielectric study of the amorphous fraction in oriented nylon 610[J]. Journal of Polymer Science:Polymer Physics Edition,14:499-508.
    Yu JY, Li BZ, Zhang LH.1998. Effect of the fold surface of the lamellae on the behavior of the trapped radicals in irradiated Polyamide-1010[J]. Journal of Applied Polymer Science,67:1335-1339.
    Zhang LH, Zhang HF, Yu L, et al.1994. Gamma-radiation damage to polyamide-1010 crystal-structure[J]. Polymer International,35:355-359.
    Zhang QX, Mo ZS, Liu SY, et al.2000. Influence of Annealing on Structure of Nylon 11[J]. Macromolecules33:5999-6005.
    Zhou MT, Zhang LH, Liu YY.1993. Ese study of free radiation in irradiation polyamide-1010[J]. chinese journal of polymer science,11:46-53.
    Zhu J, Zhang XY, Dai JB, et al. Investigation of the trap states in quenched and annealed nylon 6 films using thermally stimulated depolarization current, Proceedings 11th International Symposium on Electrets (ISBN:0-7803-7560-2),P iscataway:IEEE Incorporated,2002,126-129
    Zhu J, Zhang XY, He B.2005. Space Charge Detrapping Behavior in Different Crystal Phase of Nylon 11[M]. Proceedings 12th International Symposium on Electrets (ISBN:0-7803-9116-0), IEEE Incorporated,2005,262-265.
    Zimmerman J.1973. The Radiation Chemistry of Macromolecules[M]. New York:Academic, 121-135.
    陈金周,韩维成,范晓强,等.1995.γ辐照PF尼龙的结晶,熔融与结晶形态[J].高分子材料科学与工程,11:80-83.
    邓如生,魏运方.2002.聚酰胺树脂及其应用[M].北京:化学工业出版社,79-99.
    彭智,刘冬,胡少宏等,等.1999.高分子材料研究中热释电仪控制系统设计与实现[J].计算机与应用化学,15:248-250.
    彭治汉,施祖培.2001.聚酰胺[M].北京:化学工业出版社,119-135.
    钱保功,许观藩,余赋生.1986.高聚物的转变与松弛[M].北京:科学出版社,193-221.
    王力衡.1988.介质的热刺激理论及应用.北京:科学出版社,38-45.
    夏钟福.2001.驻极体[M].北京:科学出版社,304-320.
    殷之文.2008.电介质物理学[M].北京:化学工业出版社.
    张宏放,杨宝泉,张利华,等.1996.尼龙-1010结晶结构[J].高分子学报,1:1.
    张利华,于力,张文德,等.1994.用WAXD和SAXS研究辐照聚酰胺1010结构[J].应用化学,11:40-44.
    朝孔双.2008.介电谱方法及应用[M].北京化学工业出版社,24-32.
    朱俊.2005.尼龙11和尼龙6局域态分布与凝聚态结构的关系[D]:[博士].合肥:中国科学技术大学,64-67.
    朱俊,张兴元.2005.晶型转变对尼龙11分子链运动的影响[J].化学物理学报,18:235-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700