用户名: 密码: 验证码:
联合应用姜黄素与神经干细胞治疗脊髓损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊髓损伤致残率高,目前仍是一治疗难题。近年来,随着对干细胞研究的不断深入,研究者们又看到了脊髓损伤治疗的曙光。虽然神经干细胞治疗脊髓损伤的研究很多,也取得了各种各样的进展,但目前神经干细胞在体内生存率低、分化为神经元较少、迁徙受限仍是难题。姜黄素具有抗炎抗氧化等作用,在神经系统损伤中可发挥神经保护作用,因此本研究联合应用姜黄素和神经干细胞治疗脊髓损伤,以期观察二者是否有协同促进神经功能恢复的作用。
     研究结果表明:联合姜黄素和神经干细胞在治疗大鼠不同程度的急性脊髓损伤中具有良好的协同作用。与对照组及单纯姜黄素治疗组、单纯神经干细胞治疗组相比较,联合姜黄素与神经干细胞治疗能够显著的提高实验大鼠BBB评分,比目鱼肌重量,能够显著减少损伤脊髓部位空泡形成面积,能够减少ED-1阳性细胞浸润,减少血浆中MDA含量,增加血浆中SOD活性,能够增加脊髓中Brd-u和MAP-2双标阳性细胞的数量,并且双标阳性细胞迁徙距离更远。姜黄素同神经干细胞共培养结果显示,姜黄素能以浓度依赖的方式促进神经干细胞增殖,与对照组相比较有显著差异。姜黄素同脊髓片共培养后,培养液中BDNF在姜黄素加入后12小时显著增加,而将这种滤液加入神经干细胞培养液中后,能够显著的提高神经干细胞分化为神经元的比例,并减少神经元的凋亡。
     结论:联合姜黄素和神经干细胞治疗不同程度的大鼠脊髓损伤,可以不同程度的促进大鼠神经功能恢复的作用。这种协同作用可能因为姜黄素能够抗炎抗氧化作用,为神经干细胞移植提供良好的脊髓内环境;姜黄素能够促进神经系统BDNF表达,以此促进神经干细胞分化迁徙;姜黄素能够促进神经干细胞增殖;
     创新点:1从改善脊髓内移植环境出发,联合使用姜黄素和神经干细胞移植治疗脊髓损伤,国内外尚无报道,本研究证实了联合应用的有效性;2从神经干细胞培养方面证实了姜黄素促神经干细胞增殖作用;3脊髓组织片与姜黄素共培养滤过液促进神经干细胞分化,进一步说明姜黄素能通过促进神经系统表达BDNF来发挥作用。
Spinal cord injuries lead to serious disability.The treatment always been hotresearch, but the research is slow progress, still, there is no effective therapeuticmethod for spinal cord injury treatment. Spinal cord injury can be divided intoprimary injury and secondary injury, the primary damage is usually caused bymechanical damage such as spinal column fracture or spinal dislocation. The degreeof spinal cord injury from crush injury to complete spinal cord transection. Secondaryinjury refers to the primary level of damage caused by the mechanical damage,including ischemic injury, ischemia-reperfusion injury, lipid peroxidation, edema,energy metabolic disorders, excitatory amino acid accumulation, etc. At later stage ofspinal cord injury, glial scar was formed which influence the recovery of spinal cordfunction seriously.
     The current treatment of spinal cord injury mainly includes decompressing thespinal cord, alleviating secondary injury, reduce the scar formation, neural stem cellstransplantation and other method. Neural stem cells can differentiate into neurons andglial cells, etc, and to build outstanding contact with the surrounding neurons. Inrecent years, it become a hotspot in research of spinal cord injury. The secondaryinjury made the spinal cord inner environment not conducive to the proliferation anddifferentiation of neural stem cells.The treatment now accepted by most of the doctorsand scholars for the secondary spinal cord damage, is pulsing methylprednisolone.But using large dose of methylprednisolone for a long time can produce manycomplications, such as infection, circulatory failure, gastrointestinal bleeding, femoralhead necrosis.Therefore, it is necessary to find a kind of drugs to reduce the level ofsecondary damage after spinal cord injury, the drugs can generate synergy effect onneural stem cells to promote nerve regeneration. Curcumin is a natural plant extract,the effect of curcumin include anti-inflammatory, antioxidation, antitumor and otherbiological activity, and after long time application almost non-toxic side effects, so inthis study, a combination of curcumin and neural stem cells to treat different degree ofspinal cord injury, to observe the therapeutic effect and to investigate its mechanism.
     【objective】 To observe the treatment effect that using curcumin combinationwith neural stem cells to treat different level spinal cord injury, and analyze the possible mechanism of the treatment.
     【methods】 Choosing SD rats as experiment animal of spinal cord injury. UseAllen’s method to made the animal model of different levels spinal cord injury, andaccording to different damage degree, the rats were divided into three group.
     The rat pregnancy for14days was executed,and fetal rats was take out.Theneural stem cells in hippocampus was cultured. Cell number was counted, andobserve the subculture, The nestin immunohistochemical staining were observed.
     Pour curcumin into nutrient solution of the culturing neural stem cells, To detectthe curcumin role on the neural stem cells vitality by MTT method, BrdU method wasused to detect the curcumin on proliferation of neural stem cells. The role of curcuminfor formation of neural stem cells spheroids was observed
     According to different degree of spinal cord injury, rats can be divided into A(injury), B (moderate) and C (completely damage) three groups. Each group isdivided into four subgroups, respectively given DMSO, curcumin, neural stem cells,curcumin combined neural stem cells for treatment. Assessed the BBB score weekly.6w after spinal cord injury, soleus weight was weigh out.1w and2w after spinal cordinjury, the content of MDA and the activity of SOD in rat plasma was detected.6wafter spinal cord injury, the spinal cord cavity area in HE staining was calculated. At2weeks end, ED-1immunohistochemical study spinal cord tissue was made to observethe positive cell number.6w after spinal cord injury, Brd-u and MAP-2doubleimmunofluorescence staining was made to observed the migration distance and thenumber of double positive staining cells
     Take2weeks of SD rat spinal cord tissue slice culture, to pour curcumin in theculture medium, and Elisa method was used to observe the concentration of BNDF,NGF NT-3at0h,6h,12h and24h after curcumin be poured, the concentrationschanges in was compared with that of control group.
     Taking curcumin with spinal cord tissue culture filtration liquid, added to themedium of neural stem cells, observe the differentiation of neural stem cells, madecomparative analysis. with FGF-2group and FGF-2combined filtration liquid group
     【results】This study using the method of Allen successfully produce differentdegree of spinal cord injury animal model. the separation and culture of neural stemcells was succeed, and the nestin immunohistochemical staining was positive incultured cells
     48hours after curcumin treated neural stem cells, we found that curcumin in therange50~800ug/ml concentration, can increase the vitality of the neural stem cells,the effect was dose dependent. And curcumin of400ug/ml concentration, the vitalityof neural stem cells is almost equivalent to positive control group, BrdU stainingresults indicate that curcumin with concentration100-400ug/ml can increase BrdUstaining positive cells number in dose dependent manner, and a significant role inpromoting neural stem cells to form cell spheroids.
     In different degree of spinal cord injury in rats, contrast with control group, onlyinjection of curcumin group,and neural stem cell transplanting group, curcumincombined neural stem cell transplantation can significantly improve the BBB score ofexperimental rats, histopathological examination showed cavity area in spinal cordsignificantly decreased. Around spinal cord injury center, ED-1positive cellssignificantly reduced.In the spinal cord, Brd-u and MAP-2double staining positivecell number was increased significantly and migration distance was farther.Significantly reduce the MDA content in plasma, SOD activity was increasedsignificantly.
     The Elisa results showed that adding curcumin could enhanced spinal cord tissueexpressing BNDF, The concentration of BDNF reach the peak at12hours, There wassignificant difference compare to control group. And the expression of NGF and NT-3were no significant difference between two groups, and each time point the BNDFexpress no significant difference.
     The filtrate from curcumin with spinal cord culture can synergy FGF-2, asignificant increase in the MAP-2and DAPI double positive cells, compared withpure filtrate or FGF-2group,there were significant differences between groupsSimply add the filtrate can also stimulate the nerve stem cells differentiate the MAP-2and DAPI double positive cells.
     【conclusion】1curcumin combination with neural stem cell transplantation,promoted neural functional recovery. in different degree of spinal cord injury2curcumin,in the certain range of concentration can promote neural stem cellproliferation in concentration dependent manner.3curcumin can promote the nervoussystem Express BNDF.4curcumin can promote the differentiation of neural stemcells into neurons by promoting the nervous system express BNDF,.5curcuminreduce inflammatory reaction in the spinal cord, reduce lipid peroxidation, increase the survival rate of neural stem cells and the differentiation to neurons.
     【Innovative】1From the opinion of improving the environment in the spinalcord transplantation, the combination of curcumin and transplantation of neural stemcells to treat spinal cord injury, have not been reported at home and abroad, this studyconfirmed the validity of the combination application2From the cultivation of neuralstem cells confirmed that curcumin promoting neural stem cell proliferation;3spinalcord tissue slices with curcumin filtration liquid promote neural stem cells, furtherclarification of curcumin can through the expression of BDNF promotes nervoussystem play a role of neuroprotetion.
引文
[1] Hou-Qing Long, Guang-Sheng Li, Er-Jian Lin, etc. Is the speed of chroniccompression an important factor for chronic spinal cord injury rat model?Neuroscience Letters, Volume545,17June2013, Pages75-80.
    [2] Daniel J. Del Gaizo, Conor M. Regan, Ronald D. Graff, etc. The effect ofmethylprednisolone intravenous infusion on the expression of ciliaryneurotrophic factor in a rat spinal cord injury model. The Spine Journal,Volume13, Issue4, April2013, Pages439-442.
    [3] Masoume Karami, S. Zahra Bathaie, Taqi Tiraihi,etc. Crocin improvedlocomotor function and mechanical behavior in the rat model of contusedspinal cord injury through decreasing calcitonin gene related peptide (CGRP).Phytomedicine, Volume21, Issue1,15December2013, Pages62-67
    [4] Luís M. Costa, José E. Pereira, Vítor M. Filipe, etc. Rolipram promotesfunctional recovery after contusive thoracic spinal cord injury in rats.Behavioural Brain Research, Volume243,15April2013, Pages66-73.
    [5] Jenn-Rong Yang, Chia-Hsin Liao, Cheng-Yoong Pang, etc. Transplantationof porcine embryonic stem cells and their derived neuronal progenitors in aspinal cord injury rat model. Cytotherapy, Volume15, Issue2, February2013,Pages201-208.
    [6] J. Marc Simard, Orest Tsymbalyuk, Kaspar Keledjian, etc. Comparativeeffects of glibenclamide and riluzole in a rat model of severe cervical spinalcord injury. Experimental Neurology, Volume233, Issue1, January2012,Pages566-574.
    [7] James W. Austin, Catherine E. Kang, M. Douglas Baumann, etc. The effectsof intrathecal injection of a hyaluronan-based hydrogel on inflammation,scarring and neurobehavioural outcomes in a rat model of severe spinal cordinjury associated with arachnoiditis. Biomaterials, Volume33, Issue18, June2012, Pages4555-4564.
    [8] Johongir M. Muradov, Eric E. Ewan, Theo Hagg. Dorsal column sensoryaxons degenerate due to impaired microvascular perfusion after spinal cordinjury in rats. Experimental Neurology, Volume249, November2013, Pages59-73.
    [9] Emine Arzu Kose, Bulent Bakar, Sebnem Kupana Ayva. Neuroprotectiveeffects of racemic ketamine and (S)-ketamine on spinal cord injury in rat.Injury, Volume43, Issue7, July2012, Pages1124-1130.
    [10] Cheong Hoon Seo, Je Hoon Jeong, Dae Hoon Lee, etc. Radiological andpathological evaluation of the spinal cord in a rat model of electricalinjury-induced myelopathy. Burns, Volume38, Issue7, November2012,Pages1066-1071.
    [11] Payam Mohammad-Gharibani, Taki Tiraihi, Alireza Delshad, etc.Improvement of contusive spinal cord injury in rats by co-transplantation ofgamma-aminobutyric acid-ergic cells and bone marrow stromal cells.Cytotherapy, Volume15, Issue9, September2013, Pages1073-1085.
    [12] Ning Ning, Xiaoqian Dang, Chuanyi Bai, etc. Panax notoginsenosideproduces neuroprotective effects in rat model of acute spinal cordischemia–reperfusion injury. Journal of Ethnopharmacology, Volume139,Issue2,31January2012, Pages504-512.
    [13] Shaoping Hou, Paul Lu, Armin Blesch. Characterization of supraspinalvasomotor pathways and autonomic dysreflexia after spinal cord injury inF344rats. Autonomic Neuroscience, Volume176, Issues1–2, June2013,Pages54-63.
    [14] Yongxing Song, Juan Liu, Feng Zhang, etc. Antioxidant effect of quercetinagainst acute spinal cord injury in rats and its correlation with thep38MAPK/iNOS signaling pathway. Life Sciences, Volume92, Issues24–26,10July2013, Pages1215-1221
    [15] Saeed Oraee Yazdani, Mirsepehr Pedram, Maryam Hafizi, etc. A comparisonbetween neurally induced bone marrow derived mesenchymal stem cells andolfactory ensheathing glial cells to repair spinal cord injuries in rat. Tissueand Cell, Volume44, Issue4, August2012, Pages205-213.
    [16] Samsani S, Calthorpe D, Geutjens G. Thoracic spinal cord injury withoutradiographic abnormality in a skeletally mature patient: a case report. Spine2003;28:E78.
    [17] Yiming Li, Jun Gu, Yuwen Liu, etc. iNOS participates in apoptosis of spinalcord neurons via p-BAD dephosphorylation following ischemia/reperfusion(I/R) injury in rat spinal cord. Neuroscience Letters, Volume545,17June2013, Pages117-122.
    [18] Hui Xue, Xiu-ying Zhang, Jia-mei Liu, etc. NDGA reduces secondarydamage after spinal cord injury in rats via anti-inflammatory effects. BrainResearch, Volume1516,21June2013, Pages83-92.
    [19] Young S. Gwak, Jonghoon Kang, Geda C. Unabia, etc. Spatial and temporalactivation of spinal glial cells: Role of gliopathy in central neuropathic painfollowing spinal cord injury in rats. Experimental Neurology, Volume234,Issue2, April2012, Pages362-372.
    [20] Hai Wen, Jianhua Cao, Xiaowei Yu ect. Spatiotemporal patterns of Gemexpression after rat spinal cord injury. Brain Research, Volume1516,21June2013, Pages11-19.
    [21] Dilek Akakin, Demir Kiran, Naziye Ozkan ect. Protective effects ofmelatonin against spinal cord injury induced oxidative damage in rat kidney:A morphological and biochemical study. Acta Histochemica, Volume115,Issue8, October2013, Pages827-834.
    [22] ehlings MG, Tator CH, The relationships among the severity of spinal cordinjury, residual neurological function, axon counts, and counts ofretrogradely labeled neurons after experimental spinal cord injury.Experimental Neurology1995;132:220-8
    [23] Agrawal S, Nashlni R, Fehlings M. Role of L-and N-type calcium channelsin the pathophysiology of traumatic spinal cord white matter injury.Neuroscience2000;99:179-88.
    [24] Araceli Diaz-Ruiz, Perla D. Maldonado, Marisela Mendez-Armenta ect.Activation of heme oxygenase recovers motor function after spinal cordinjury in rats. Neuroscience Letters, Volume556,27November2013, Pages26-31.
    [25] Gaviria M, Haton H, Sandillon F, Privat A. A mouse model of acute ischemicspinal cord injury. J Neurotrauma.2002Feb;19(2):205-21.
    [26] W. Martin Bauknight, Samit Chakrabarty, Brian Y. Hwang ect. Convectionenhanced drug delivery of BDNF through a microcannula in a rodent modelto strengthen connectivity of a peripheral motor nerve bridge model tobypass spinal cord injury. Journal of Clinical Neuroscience, Volume19, Issue4, April2012, Pages563-569.
    [27] Tarlov IM, Klinger H. Spinal cord compression studies.II.Time limits forrecovery after acute compression in daogs.Arch.Neurol.Psychiat.1954,71,271-290.
    [28] Gale K, Kerasidis H, Wrathall JR. Spinal cord injury in the rat: behavioralanalysis of functional neurologic impairment. Exp Neurol,1985,88:123-134.
    [29] Hara M, Takayasu M, Watanabe K, et al. Protein Kinase inhibition by fasudilhydrochloride promotes neurological recovery after spinal cord injury in rats.J Neurosurg,2000,93(1Suppl): S94-S101.
    [30] Basso DM, Beattie MS, Bresnahan JC. Graded histological and locomotoroutcomes after spinal cord contusion using the NYU weight-drop deviceversus transaction. Experimental Neurology1996;139:244-56.
    [31] Basso DM, Beattie MS, Bresbahan JC. A sensitive and reliable locomotorrating scale for open field testing in rats. J Neurotrauma,1995,12(1)1-21.
    [32] Little JW, Harris RM, Sohlberg RC. Locomotor recovery following subtotalspinal cord lesion in a rat model. Neurosci Lett,1988.81(1):25-34.
    [33] Basso DM, Beattie MS, Bresbahan JC. et al. MASCIS evaluation of openfield locomotor scores: effect of experience and teamwork on reliability. JNeurotrauma,1996,13(2)343-354.
    [34] Michael GF, Charles HT. The relationships among the severity of spinal cordinjury, residual neurologyical function, axon counts and counts ofretrogradely labeled neurons after experimental spinal cord injury.ExpNeurol,1995,132(2):220-228.
    [35]李英博,王莎莉,刘永刚,等.人胚胎神经干细胞分离、培养、纯化及增殖能力的特点[J].中国临床康复,2006,10(45):21-23.
    [36]冯敏,胡晶,王莎莎,等.3-18周胎龄人胚胎神经干细胞的分离、培养及增殖[J].重庆医科大学学报,2007,32(4):366-370.
    [37] Torrente Y, Belicchi M, Pisati F, et al. Alternative sources of neurons and gliafrom somatic stem cells. Cell Transplant.2002;11(1):25-34.
    [38]孙以方,白德成,张文慧.医学实验动物学教程[M].郑州:河南医科大学出版社,1998:28-33,2161
    [39]陈珊珊.流式细胞术用于临床检验中的一些问题[J].中华检验医学杂志,2000,23(4):197-1981
    [40]顾恩妍,哈福等神经干细胞分离培养方法的介绍中国比较医学杂志2008年11月第18卷第11期Chin J Comp Med, Nove mber2008,Vol.181No.11
    [41] ANYH,WANH,ZHANGZS, et al. Ef f ect of r at Schwann cell secretion onproliferation and differentiation of hum anneural stem cells[J]. BiomedEnviron Sci,2003,15:55260.
    [42] VESCOVIA L, PARATIAA, GRITTIA, etal. Isolation and cloning ofmultipotential stem cell f rom the embryonic human CNS and establishmentof transplant able hum an neural stem cell lines by epigenetic.stimulation[J].Exp Neurol,1999,156(1):71-83.
    [43] CARPENTERMK, XIAC, ZHONGYH, et al. I n vi t r o expansion ofamultipotent populiti on of hum an neural progenitor cells [J]. Exp Neurol,1999,158(2):265-278.
    [44] Gray JA, Grigoryan G. Conditionally immortalized, multipotential andmultifunctional neural stem cell lines as an approach to clinicaltransplantation. Cell Transplant,2000,9(2):153-68.
    [45]汪海慧,成扬.姜黄素药理作用的研究进展.上海中医药大学学报,2007,21(6):73-76.
    [46] Chin D, Huebbe P. Curcumin may impair iron status when fed to mice for sixmonths. Redox Biol,2014,2:563-9.
    [47] Singec I et al. Nat Methods,2006,3:801.
    [48]杨瑶斐,孙益.神经球的异质性、发生方式及神经球方法的适用性.Chinese Journal of Cell Biology2008,30:59-64
    [49]李敏,宋淑亮,吉爱国.神经球方法在神经生物学中的应用及其局限性.CHEMISTRY OF LIFE2011,31(5)
    [50] Meissner KK et al. Transplants of neurosphere cell suspensions from agedmice are functional in the mouse model of Parkinson’s.Brain Res,2005,1057:105-112
    [51] Valenzuela M et al. Neural stem cell therapy for neuropsychiatric disorders.Acta Neuropsychiatr,2007,19:11-26
    [52]程建华,刘双,韩钊等.姜黄素通过调控Notch通路促进大鼠脑缺血后神经干细胞增殖和迁移. Chinese Journal of Pathophysiology2013,29(5):878-882
    [53] Reynolds BA et al. Generation of neurons and astrocytes from isolated cellsof the adult mammalian central nervous system. Science,1992,255:1707-1710
    [54] Dong S, Zeng Q, Mitchell ES, et al. Curcumin enhances neurogenesis andcognition in aged rats: implications for transcriptional interactions related togrowth and synaptic Plasticity. PLoS One,2012,7(2): e31211.
    [55] Kim SJ, Son TG, Park HR, et al. Curcumin stimulates proliferation ofembryonic neural progenitor cells and neurogenesis in the adulthippocampus.J Biol Chem,2008,283(21):14497-14505
    [56] Xu Y, Ku B, Cui L, et al. Curcumin reverses impaired hippocampalneurogenesis and increases serotonin receptor1A mRNA and brain-derivedneurotrophic factor expression in chronically stressed rats. Brain Res,2007,11629-18.
    [57]李敏,宋淑亮.神经球方法在神经生物学中的应用及其局限性.CHEMISTRY OF LIFE,2011,31(5):740-743.
    [58] Basso DM, Beattie MS, Bresnahan JC,Graded histological and locomotor outcomesafter spinal cord contusion using the NYU weight-drop device versus transection. ExpNeurol1996,139(2):244–56.
    [59] Parr AM, Kulbatski I, Wang XH, Keating A, Tator CH,Fate of transplanted adult neuralstem/progenitor cells and bone marrow-derived mesenchymal stromal cells in theinjured adult rat spinal cord and impact on functional recovery. Surg Neurol2008,70(6):600–7.
    [60] Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG,Delayedtransplantation of adult neural precursor cells promotes remyelination and functionalneurological recovery after spinal cord injury.J Neurosci2006,26(13):3377–89.
    [61] Yan J, Welsh AM, Bora SH, Snyder EY, Koliatsos VE,Differentiation andtropic/trophic effects of exogenous neural precursors in the adult spinal cord. J CompNeurol2004,480(1):101–14.
    [62] Parr AM, Kulbatski I, Tator CH,Transplantation of adult rat spinal cord stem/progenitorcells for spinal cord injury. J Neurotrauma2007,24(5):835–45.
    [63] Temple S, Alvarez-Buylla A,Stem cells in the adult mammalian central nervous system.Curr Opin Neurobiol,1999,9(1):135–41.
    [64] Fehlings MG, Vawda R,Cellular Treatments for Spinal Cord Injury: The Time is Rightfor Clinical Trials2011,8(4):704–720.
    [65] Piao MS, Lee JK, Jang JW, Kim SH, Kim HS: A mouse model of photochemicallyinduced spinal cord injury.J Korean Neurosurg Soc2009,46:479–483
    [66] Yu SH, Cho DC, Kim KT, Nam KH, Cho HJ, Sung JK:The neuroprotective effect oftreatment of valproic Acid in acute spinal cord injury. J Korean Neurosurg Soc2012,51:191–198
    [67] Lin MS, Lee YH, Chiu WT, Hung KS: Curcumin provides neuroprotection after spinalcord injury. J Surg Res2011,166:280–289
    [68] Gorio A, Gokmen N, Erbayraktar S, Yilmaz O,Madaschi L, Cichetti C, Di Giulio AM,Vardar E,Cerami A, Brines M: Recombinant human erythropoietin counteractssecondary injury and markedly enhances neurological recovery from experimentalspinal cord trauma. Proc Natl Acad Sci USA2002,99:9450–9455
    [69] Wells JE, Hurlbert RJ, Fehlings MG, Yong VW: Neuroprotection by minocyclinefacilitates significant recovery from spinal cord injury in mice. Brain2003,126:1628–1637
    [70] Celik M, Gokmen N, Erbayraktar S, Akhisaroglu M,Konakc S, Ulukus C, Genc S, GencK, Sagiroglu E, Cerami A, Brines M: Erythropoietin prevents motor neuron apoptosisand neurologic disability in experimental spinal cord ischemic injury. Proc Natl AcadSci USA,2002,99:2258–2263
    [71] Li WW, Setzu A, Zhao C, Franklin RJ: Minocyclinemediated inhibition of microgliaactivation impairs oligodendrocyte progenitor cell responses and remyelination in anon-immune model of demyelination. J Neuroimmunol2005,158:58–66
    [72] R abchevsky AG, Patel SP, Springer JE: Pharmacological interventions for spinal cordinjury: where do we stand? How might we step forward? Pharmacol Ther2011,132:15–29
    [73] Schaal SM, Garg MS, Ghosh M, Lovera L, Lopez M,Patel M, Louro J, Patel S, Tuesta L,Chan WM, Pearse DD: The therapeutic profile of rolipram, PDE target and mechanismof action as a neuroprotectant following spinal cord injury. PLoS ONE2012,7: e43634
    [74] Stepien′K, Tomaszewski M, Czuczwar SJ: Neuroprotective properties of statins.Pharmacol Rep2005,57:561–569
    [75] Bracken MB, Collins WF, Freeman DF, Shepard MJ,Wagner FW, Silten RM,Hellenbrand KG, Ransohoff J, Hunt WE, Perot PL: Efficacy of methylprednisolone inacute spinal cord injury. JAMA1984,251:45–52
    [76] Bracken MB, Shepard MJ, Holford TR, Leo-SummersL, Aldrich EF, Fazl M, FehlingsM, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL,Piepmeier J,Sonntag VK, Wagner F, Wilberger JE,Winn HR, Young W: Administration ofmethylprednisolone for24or48hours or tirilazad mesylate for48hours in the treatmentof acute spinal cord injury.Results of the Third National Acute Spinal Cord InjuryRandomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA1997,277:1597–1604
    [77] G orio A, Gokmen N, Erbayraktar S, Yilmaz O,Madaschi L, Cichetti C, Di Giulio AM,Vardar E,Cerami A, Brines M: Recombinant human erythropoietin counteractssecondary injury and markedly enhances neurological recovery from experimentalspinal cord trauma. Proc Natl Acad Sci USA2002,99:9450–9455
    [78] Lee SM, Yune TY, Kim SJ, Park DW, Lee YK, Kim YC, Oh YJ, Markelonis GJ, OhTH: Minocycline reduces cell death and improves functional recovery after traumaticspinal cord injury in the rat. J Neurotrauma2003,20:1017–1027
    [79] Li S, Strittmatter SM: Delayed systemic Nogo-66receptor antagonist promotes recoveryfrom spinal cord injury. J Neurosci2003,23:4219–4227
    [80] N alivaeva NN, Belyaev ND, Turner AJ: Sodium valproate: an old drug with new roles.Trends Pharmacol Sci30:2009,509–514
    [81] Wells JE, Hurlbert RJ, Fehlings MG, Yong VW: Neuroprotection by minocyclinefacilitates significant recovery from spinal cord injury in mice. Brain2003,126:1628–1637
    [82] Folwarczna J, Zych M, Trzeciak HI: Effects of curcumin on the skeletal system in rats.Pharmacol Rep2010,62:900–909
    [83] Hong J,Bose M,Ju J,Ryu JH, Chen X, Sang S, Lee MJ, Yang CS: Modulation ofarachidonic acid metabolism by curcumin and related beta-diketone derivatives: effectson cytosolic phospholipase A(2),cyclooxygenases and5-lipoxygenase. Carcinogenesis2004,25:1671–1679
    [84] M oon Y, Glasgow WC, Eling TE: Curcumin suppresses interleukin1beta-mediatedmicrosomal prostaglandin E synthase1by altering early growth response gene1andother signaling pathways. J Pharmacol Exp Ther2005,315:788–795
    [85] Sahin Kavakl H, Koca C, Al c O: Antioxidant effects of curcumin in spinal cord injuryin rats.Ulus Travma Acil Cerrahi Derg2011,17:14–18
    [86] Shishodia S, Sethi G, Aggarwal BB: Curcumin:getting back to the roots. Ann N Y AcadSci2005,1056:206–217
    [87] Soetikno V, Sari FR, Veeraveedu PT, Thandavarayan RA, Harima M, Sukumaran V,Lakshmanan AP,Suzuki K, Kawachi H, Watanabe K: Curcumin amelioratesmacrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokinesin streptozotocin induced-diabetic nephropathy. Nutr Metab (Lond)2011,8:35
    [88] Somasundaram S, Edmund NA, Moore DT, Small GW, Shi YY, Orlowski RZ: Dietarycurcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer.Cancer Res2002,62:3868–3875
    [89] W u A, Ying Z, Gomez-Pinilla F: Dietary curcumin counteracts the outcome oftraumatic brain injury on oxidative stress, synaptic plasticity, and cognition.Exp Neurol2006,197:309–317
    [90] A l-Omar FA, Nagi MN, Abdulgadir MM, Al Joni KS, Al-Majed AA: Immediate anddelayed treatments with curcumin prevents forebrain ischemia-induced neuronaldamage and oxidative insult in the rat hippocampus. Neurochem Res2006,31:611–618
    [91] G honeim AI, Abdel-Naim AB, Khalifa AE, El-Denshary ES: Protective effects ofcurcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol Res2002,46:273–279
    [92] Thiyagarajan M, Sharma SS: Neuroprotective effect of curcumin in middle cerebralartery occlusion induced focal cerebral ischemia in rats. Life Sci2004,74:969–985
    [93] Kyoung TK,Myoung JK,Dae C C,et alThe Neuroprotective Effect of Treatment withCurcumin in Acute Spinal Cord Injury: Laboratory Investigation. Neurologiamedico-chirurgica Advance.2014January,28
    [94] Ahmet M S, Erhan TG, Gokhan S, Mustafa F S, Omer BL, et al. Effect of Curcumin onLipid Peroxidation, Early Ultrastructural Findings and Neurological Recovery afterExperimental Spinal Cord Contusion Injury in Rats Turkish Neurosurgery2012, Vol:22,No:2,189-195
    [95] Cemil B, Topuz K, Demircan MN, Kurt G, Tun K, Kutlay M, Ipcioglu O, Kucukodaci Z:Curcumin improves early functional results after experimental spinal cord injury. ActaNeurochir (Wien)2010,152:1583–1590; discussion1590,
    [96] H all ED, Braughler JM: Central nervous system trauma and stroke. II. Physiologicaland pharmacological evidence for involvement of oxygen radicals and lipidperoxidation. Free Radic Biol Med1989,6:303–313,
    [97] Sun Y: Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic Biol Med1990,8:583–599
    [98] Dickens BF, Mak IT, Weglicki WB: Lysosomal lipolytic enzymes, lipid peroxidation,and injury. Mol Cell Biochem1988,82:119–123
    [99] Popovich PG, Wei P, Stokes BT: Cellular inflammatory response after spinal cordinjury in Sprague-Dawley and Lewis rats. J Comp Neurol1997,377:443–464
    [100] Larsson LC,Corbascio M,Pearson TC,et al.Induction of operational tolerance todiscordant d opaminergic porcine xenografts.transplantion,2003,75(9):1448-1454
    [101] Yang M,Stull ND, Berk MA, et al.Neural stem cells spontaneous expressdompaminergic traits after transplantion in to the intact or6-hydroxydopamine-lesionedrat.Exp Neurol,2002,177(1):50-60
    [102] Modo M,Mellodew K,Rezaie P.In vitro expression of major histocompatibility class Iand class II antigens by conditionally immortalized murine neural stem cells.NeurosciLett.2003,337(2):85-88
    [103] Kim SJ, Son TG, Park HR, Park M, Kim MS, et al. Curcumin stimulates proliferation ofembryonic neural progenitor cells and neurogenesis in the adult hippocampus. J BiolChem2008,283(21):14497–505.
    [104] Ormond DR, Peng H, Zeman R, Das K, Murali R, et al. Recovery from spinal cordinjury using naturally occurring antiinflammatory compound curcumin. J NeurosurgSpine.2012,16(5):497–503.
    [105] Zeman RJ, Feng Y, Peng H, Etlinger JD Clenbuterol, a beta(2)-adrenoceptor agonist,improves locomotor and histological outcomes after spinal cord contusion in rats. ExpNeurol1999,159(1):267–73.
    [106] Zeman RJ, Feng Y, Peng H, Visintainer PF, Moorthy CR, et al. Xirradiation of thecontusion site improves locomotor and histological outcomes in spinal cord-injured rats.Exp Neurol2001,172(1):228–34.
    [107] Zeman RJ, Peng H, Feng Y, Song H, Liu X, et al. Beta2-adrenoreceptoragonist-enhanced recovery of locomotor function after spinal cord injury is glutathionedependent. J Neurotrauma2006,23(2):170–80.
    [108] Basso DM, Beattie MS, Bresnahan JC,Graded histological and locomotor outcomesafter spinal cord contusion using the NYU weight-drop device versus transection. ExpNeurol1996,139(2):244–56.
    [109] Liu M, Bose P, Walter GA, Anderson DK, Thompson FJ, et al,Changes in muscle T2relaxation properties following spinal cord injury and locomotor training. Eur J of ApplPhysiol2006,97(3):355–61.
    [110] Liu M, Stevens-Lapsley JE, Jayaraman A, Ye F, Conover C, et al. Impact oftreadmill locomotor training on skeletal muscle IGF1and myogenicregulatory factors in spinal cord injured rats. Eur J Appl Physiol2010,109(4):709–20
    [111] Ormond DR, Peng H, Zeman R, Das K, Murali R, et al,Recovery from spinalcord injury using naturally occurring antiinflammatory compound curcumin.J Neurosurg Spine.2012,16(5):497–503.
    [112] Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, et al.Identification of a neural stem cell in the adult mammalian central nervoussystem. Cell.1999,96(1):25–34.
    [113] Lee Y, Lin C, Calozzo VJ, Robertson RT, Yu J, et al. Repair of spinal cordtransection and its effects on muscle mass and myosin heavy chain isoformphenotype. J of Appl Physiol2007,103(5):1808–1814.
    [114] Dupont-Versteegden EE, Houle′JD, Gurley CM, Peterson CA,Earlychanges in muscle fiber size and gene expression in response to spinal cordtransection and exercise. Am J Physiol.1998,275(4Pt1): C1124–33.
    [115] Landry E, Frenette J, Guertin PA,Body weight, limb size, and muscularproperties of early paraplegic mice. J Neurotrauma.2004,21(8):1008–16.
    [116] Rabchevsky AG, Streit WJ,Grafting of cultured microglial cells into thelesioned spinal cord of adult rats enhances neurite outgrowth. J Neurosci Res1997,47(1):34–48.
    [117] Jakeman LB, Wei P, Guan Z, Stokes BT,Brain-derived neurotrophic factorstimulates hindlimb stepping and sprouting of cholinergic fibers after spinalcord injury. Exp Neurol.1998,154(1):170–84.
    [118] Saito T, Tsuchida M, Umehara S, Kohno T, Yamamoto H, et al,Reduction of SpinalCord Ischemia/Reperfusion Injury with Simvastatin in Rats. Neuroscience inAnesthesiology and Perioperative Medicine2011,113(3):565–71.
    [119] Morell P, Quarles RH, Myelin formation, structure and biochemistry: In: Siegel GJ,Agranoff BW, Fisher SK, Albers RW, Uhler MD, eds. Basic Neurochemistry:Molecular, Cellular and Medical Aspects.6th edition. New York:Lippincott-Raven1999,69–94.
    [120] Bernardo A, Greco A, Levi G, Minghetti L,Differential lipid peroxidation, Mnsuperoxide, and bcl-2expression contribute to the,maturation-dependent vulnerability ofoligodendrocytes to oxidative stress. J Neuropathol Exp Neurol2003,62:509–19.
    [121] Fansa I, Altug ME, Melek I, Ucar E, Kontas T, et al. Neuroprotective andAnti-inflammatory Effects of Diltiazem in Spinal Cord Ischaemia–Reperfusion Injury.The Journal of International Medical Research,2009,37:520–533.
    [122] Dolgun H, Sekerci Z, Turkoglu E, Kertmen H, Yilmaz ER, et al. Neuroprotective effectof mesna (2-mercaptoethane sulfonate) against spinal cord ischemia/reperfusion injuryin rabbits. J Clin Neurosci.2010,17(4):486–9.
    [123] Avci G, Kadioglu H, Sehirli AO, Bozkurt S, Guclu O, et al.Curcumin protects againstischemia/reperfusion injury in rat skeletal muscle. J Surg Res2012.172(1): e39–46.
    [124] Pogue AI, Percy ME, Cui JG, Li YY, Bhattacharjee S, et al.Upregulation ofNF-kB-sensitive miRNA-125b and miRNA-146a in metal sulfatestressed humanastroglial (HAG) primary cell cultures. J Inorg Biochem.2011,105(11):1434–7.
    [125] Barzegar A, Moosavi-Movahedi AA,Intracellular ROS protection efficiency and freeradical-scavenging activity of curcumin. PLoS One.2011,6(10): e26012.
    [126] Kuo CP, Lu CH, Wen LL, Cherng CH, Wong CS, et al. Neuroprotective effect ofcurcumin in an experimental rat model of subarachnoid hemorrhage. Anesthesiology.2011,115(6):1229–38.
    [127] Ammon HP, Wahl MA,Pharmacology of Curcuma longa. Planta Med1991,57:1–7.
    [128] Satoskar RR, Shah SJ, Shenoy SG,Evaluation of anti-inflammatory property ofcurcumin (diferuloyl methane) in patients with postoperative inflammation. Int J ClinPharmacol Ther Toxicol1986,24:651–654.
    [129] Shankar TN, Shantha NV, Ramesh HP, Murthy IA, Murthy VS,Toxicity studies onturmeric (Curcuma longa): acute toxicity studies in rats, guineapigs&monkeys. IndianJ Exp Biol1980,18:73–75.
    [130] Brambilla R, Hurtado A, Persaud T, Esham K, Pearse DD, et al,Transgenic inhibition ofastroglial NF-kappa B leads to increased axonal sparing and sprouting following spinalcord injury. J Neurochem2009,110:765–778.
    [131] Rafati DS, Geissler K, Johnson K, Unabia G, Hulsebosch C, et al,Nuclearfactor-kappaB decoy amelioration of spinal cord injury-induced inflammation andbehavior outcomes. J Neurosci Res2008,86(3):566–80.
    [132] Lin MS, Lee YH, Chiu WT, Hung KS,Curcumin provides neuroprotection after spinalcord injury. J Surg Res2011,166:280–289
    [133] Cemil B, Topuz K, Demircan MN, Kurt G, Tun K, et al,Curcumin improves earlyfunctional results after experimental spinal cord injury. Acta Neurochir (Wien)2010,152:1583–1590.
    [134] Pincus DW, Keyoung HM, Harrison-Restelli C, Goodman RR, Fraser RA, et al.Fibroblast growth factor-2/brain-derived neurotrophic factorassociated maturation ofnew neurons generated from adult human subependymal cells. Ann Neurol1998,43:576–585.
    [135] Zigova T, Pencea V, Wiegand SJ, Luskin MB.Intraventricular administration of BDNFincreases the number of newly generated neurons in the adult olfactory bulb. Mol CellNeurosci1998,11:234–245.
    [136] Ahmed S, Reynolds BA, Weiss S.BDNF enhances the differentiation but not thesurvival of CNS stem cell-derived neuronal precursors. J Neurosci1995.15:5765–5778.
    [137] Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, et al.A,BDNF autocrineloop in adult sensory neurons prevents cell death. Nature1995,374:450–453
    [138] Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, et al.NT-3,BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocalpatterns of expression. Neuron1990,5:501–509.
    [139] Barnabe-Heider F, Miller FD.Endogenously produced neurotrophins regulate survivaland differentiation of cortical progenitors via distinct signaling pathways. JNeurosci2003,23:5149–5160.
    [140] Acheson, A.; Conover, J. C.; Fandl, J. P.; DeChiara, T. M.; Russell, M.; Thadani, A.;Squinto, S. P.; Yancopoulos, G. D.; Lindsay, R. M. A BDNF autocrine loop in adultsensory neurons prevents cell death. Nature1995,374(6521):450-453;.
    [141] Barnabe-Heider, F.; Miller, F. D. Endogenously produced neurotrophins regulatesurvival and differentiation of cortical progenitors via distinct signaling pathways. J.Neurosci.2003,23(12):5149-5160;.
    [142] Huang, E. J.; Reichardt, L. F. Neurotrophins: roles in neuronal development andfunction. Annu. Rev. Neurosci.200124:677-736;.
    [143] Islam, O.; Loo, T. X.; Heese, K. Brain-derived neurotrophic factor (BDNF) hasproliferative effects on neural stem cells through the truncated TRK-B receptor, MAPkinase, AKT, and STAT-3signaling pathways. Curr. Neurovasc. Res.2009.6(1):42-53;
    [144] Lee, H. J.; Lim, I. J.; Lee, M. C.; Kim, S. U. Human neural stem cells geneticallymodified to overexpress brain-derived neurotrophic factor promote functional recoveryand neuroprotection in a mouse stroke model. J. Neurosci. Res.2010,88(15):3282-3294;.
    [145] Zhang, Q.; Liu, G.; Wu, Y.; Sha, H.; Zhang, P.; Jia, J. BDNF promotes EGF-inducedproliferation and migration of human fetal neural stem/progenitor cells via the PI3K/Aktpathway. Molecules2011,16(12):10146-10156;.
    [146] Zhang, Q.; Liu, G.; Wu, Y.; Sha, H.; Zhang, P.; Jia, J. BDNF promotes EGF-inducedproliferation and migration of human fetal neural stem/progenitor cells via the PI3K/Aktpathway. Molecules2011,16(12):10146-10156;.
    [147] Ma, H.; Yu, B.; Kong, L.; Zhang, Y.; Shi, Y. Neural stem cells over-expressingbrain-derived neurotrophic factor (BDNF) stimulate synaptic protein expression andpromote functional recovery following transplantation in rat model of traumatic braininjury. Neurochem. Res.2012,37(1):69-83;
    [148] Lee, H. J.; Kim, M. K.; Kim, H. J.; Kim, S. U. Human neural stem cells geneticallymodified to overexpress Akt1provide neuroprotection and functional improvement inmouse stroke model. PLoS One2009,4(5):e5586;.
    [149] Kelly CM, Zietlow R, Dunnett S, et al. The effects of various concentrations ofFGF-2on the proliferation and neuronal yield of murine embryonic neural precursorcells in vitro Cell Transplant,2003,12:215-223.
    [150] Jin-qiao S, Bin S, Wen-hao Z, et al. Basic fibroblast growth factor stimulates theproliferation and differentiation of neural stem cells in neonatal rats after ischemic braininjury Brain and Development,2009,31:331-340.
    [151] Modo M,Rezale P,Heusehling P,et al.Transplantation of neural stem cells in a ratmodel ofstroke:assessment ofshortlermgraft survival and acute host immunologicalresponse J.Brain Research2002,958(8):70.82.
    [152] Davis AA,Temple S.A self---renewing multipotential stem cells in embryonic ratcerebral cortex.Nature,1994,372(6503):263-266
    [153] Lois C,Alvarez-Buylla A.Long-distance neuronM migration in the adult mammalianbrain.Science,1994,265(5162):1145-1148
    [154]孟晋宏,UdoBartseh,MelittaSchaehne等。脊髓神经干细胞的培养和鉴定。第四军医大学学报,2000,21(8):1026-1030
    [155] Chris K.Neurogenesls in embryos and in adult neral stems cells.Neurosci,2002,22(3):639-643
    [156] Lyden D,Young A,Zagzag D,et al.Id1and Id3are required for neurogenesis,angingcnesis and vasculaxizafion of nunour xenogragts.Nalure,1999,401(6754):670-677
    [157] Rowitch DH,Lu QR,KessarisN,et a1.An oligarchy rules neural development.TrendsNeurosci,2002,25(8):417-422
    [158] Novitch BQ Chen AI,JesseU TM.Coordinate regulation ofmotor neuron subtypeidentity and pan-neuronal properties by the bHLH repressor O1i92.Nova'on,2001,31(5):773—789
    [159] Bush,diSibio GMi yamotoA,etal,Ligand-induced signaling in the absence off orinprocessing of Notchl.Dev Biol,200l,229:494·502
    [160] Tanigaki K Nogald F'Takahastfi J,et a1.Notchl and Notch3instructively restrictbFGF—responsive multipotent neural progenitor cells to an astroglial fate.Neuron,2001,29:45—55
    [1] Jackson L, Jones DR, Scotting P, et al. Adult mesenchymal stemcells:differentiaton potential and therapeutic applications[J].JPostqrad Med,2007,5(2):121-7.
    [2] Paunescu V,Deak E,Herman D,et al. In vitro differentiation ofhumanmesenchymal stem cells to epithelial lineage[J].J Cell MolMed,2007,11(3):502-8.
    [3] Woodbury D,SchwarzE J,ProckopD J,et al. Adult rat and humanmarrowstromal cells differentiate into neurons[J].J NeurosciRes,2000,61:364-70.
    [4] Tsenq PY,Chen CJ,Sheu CC,et al.Spontaneous differentiation of adult ratmarrow stromal cells ina long-term culture[J].J Vet MedSci,2007,69(2):95-102.
    [5] LeiZ,Yonqda L,JunM et al.Culture and neural differentiation of rat bonemarrow mesenchymal stem cells in vitro[J].Cell Biol Int,2007,31(9)916-23.
    [6] Ohkubo Y,Uchida AO,Shin D,et al.Fibroblast growth factor receptor1isrequired for the proliferation of hippocampal progenitor cells and forhippocampal growth in mouse[J].J Neuosci,2004,24(27):6057-69.
    [7] Yue F,Chen B,Wu D,et al. Biological properties of neural progenitor cellsisolated from the hippocampus of adult cynomolgus monkeys[J].Chin Med J,2006,119(2):110-6.
    [8] Reynolds BA,Tetzlaff W,Weiss S,et al.A multipotent EGF-responsive striatalembryomic progenitor cell produces neurons and astrocytes[J].J Neurosci,1992,12(11):4564-4574.
    [9] Mokry J,Karbanova J. Fetal mouse neural stem cells give rise to ependymalcells in vitro[J]. Folisa Biol,2006,52(5):149-55.
    [10] Terskikh AV,Bryant PJ,Schwartz PH. Mammalian stem cells. PediatrRes.2006;59(4Pt2):13-20.
    [11]李英博,王莎莉,刘永刚,等.人胚胎神经干细胞分离、培养、纯化及增殖能力的特点[J].中国临床康复,2006,10(45):21-23.
    [12]冯敏,胡晶,王莎莎,等.3-18周胎龄人胚胎神经干细胞的分离、培养及增殖[J].重庆医科大学学报,2007,32(4):366-370.
    [13] Torrente Y,Belicchi M,Pisati F,et al. Alternative sources of neurons and gliafrom somatic stem cells. Cell Transplant.2002;11(1):25-34.
    [14]孙以方,白德成,张文慧.医学实验动物学教程[M].郑州:河南医科大学出版社,1998:28-33,2161
    [15]陈珊珊.流式细胞术用于临床检验中的一些问题[J].中华检验医学杂志,2000,23(4):197-1981
    [16]马红梅,郭筠秋,张洪艳,等.胎鼠脊髓神经干细胞分离方法的比较[J].现代生物医进展,2006,6(2):29-31.
    [17] Watanabe K, Nakamura M. Comparison between fetal spinal-cord-andforebrain-derived neural stem/progenitor cells asa source of transplantation forspinal cord injury[J].Dev Neurosci,2004,26(2-4):275-87.
    [18]陈刚,秦尚振,马廉亭,等.人胚脑与脊髓神经干细胞体外生物学特性的差异[J].脑与神经疾病杂志,2006,14(3):183-186.
    [19] Zuk PA,Zhu M,Mizuno H,et al. Multilineage cells from human adiposetissue: implications for cell-based therapies. Tissue Eng.2001;7(2):211-228.
    [20] Ogawa R,Mizuno H,Watanabe A,et al. Osteogenic and chondrogenicdifferentiation by adipose-derived stem cells harvested from GFP transgenicmice. Biochem Biophys Res Commun.2004;313(4):871-877.
    [21] Rodriguez AM,Elabd C,Delteil F,et al. Adipocyte differentiation ofmultipotent cells established from human adipose tissue. Biochem BiophysRes Commun.2004;315(2):255-263.
    [22] Yang LY,Liu XM,Sun B,et al. Adipose tissue-derived stromal cells expressneuronal phenotypes. Chin Med J (Engl).2004;117(3):425-429.
    [23] Gimble JM,Guilak F. Differentiation potential of adipose derived adult stem(ADAS) cells. Curr Top Dev Biol.2003;58:137.
    [24] Rodriguez AM,Elabd C,Amri EZ,et al. The human adipose tissue is a sourceof multipotent stem cells. Biochimie.2005;87:125.
    [25] Yang L,Zheng J,Wang C. The in vitro study of the human adiposetissue-derived stromal cells differentitating into the neuron-like cells[J].Zhongguo Xiu Fu Chong Jian Wai Ke ZaZhi,2006,20(8):783-6.
    [26] Safford KM,Hicok KC,Safford SD,et al. Neurogenic differentiation ofmurine and human adipose-derived stromal cells. Biochem Biophys ResCommun.2002;294(2):371-379.
    [27] Zuk PA,Zhu M,Ashjian P,et al. Human adipose tissue is a source ofmultipotent stem cells. Mol Biol Cell.2002;13(12):4279-4295.
    [28] Ashjian PH,Elbarbary AS,Edmonds B,et al. In vitro differentiation of humanprocessed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg.2003;111(6):1922-1931.
    [29] Liu TM,Martina M,Hutmacher DW,et al.Identification of common pathwaysmediating differentiation of bone marrow-and adipose tissue-derived humanmesenchymal stem cells into three mesenchymal lineages [J].Stem Cells,2007,25(3):750-60.
    [30] Park KS,Lee YS,Kanq KS. In vitro neuronal and osteogenic differentiation ofmesenchymal stem cells from human umbilical cord blood[J].J Vet Sci,2006,7(4):343-8.
    [31] Gang EJ,Hong SH,Jeong JA,et al. In vitro mesengeic potential of humanumbilical cord blood-derived mesenchymal stem cells[J]. Biochem BiophysRes Commun,2004,321(1):102-8.
    [32] Buzan s ka L,M achaj E K,Zab l ocka B,et a. l H um an cord b l ood-derived cel l s att a i n n euron al and glial feat u res i n vitro. JC ell Sc,i2002,115(Pt10):2131~2138
    [33] Lee O K,Kuo T K,C henW M,et a. l Is o l ation ofm u lti poten t m esenchym al st e m cell s fro m um bi li cal cord b l ood. B l ood,2004,103(5):1669~1675
    [34] Kog l er G,S ensken S,A irey JA,et a. l A ne w hu m an so m aticste m cell fro m p l acental cord b l ood w i th i n tri ns i c p l u ri potentd ifferen ti at ion potent i a. l JE xpM ed,2004,200(2):123~135
    [35] TseW,LaughlinMJ.Umbilical cord blood transplantation:a new alternativeoption[J].Hematology Am Soc Hematol Educ Program,2005:377-83
    [36] Frisen J,Lothian C,Lendahl U. Central nervous s yst em stem cells in theembryo and adult [J]1C ell Mol L i f e Sci,1998,54(9):935-945.
    [37] Angelo L,Vescovi A,Eugenio A,et al. Isolat ion an d cloning of mut ipotent ial s t em cells f rom embryonic human CNS and estab-lishment oftransplantable human st em cell lines by epi gen eticst imulat ion [J]1ExpNeurology,1999,156:71-83.
    [38] Roy NS,Wang S,Jiang L,et al. In vi t ro neurogenesi s by progenit or cel lisolated f rom th e adult human hippocampus [J]1NatM ed,2000,6:271-277.
    [39] Sakurada K,Ohshim a SM,Palmer TD,et al. Nurrl,an orphannuclear receptor,is a transcript ional act ivator of endogenous t yrosine hydroxyl ase in neuralprogeni t or cells derived from the adult brain [J]1Devel,1999,126:4017-4026.
    [40] Renoncourt Y,C arroll P,Filippi O,et al. Neurons derived invitro from EScells express homeoprot eins characterist ic of motoneurons and innterneurons[J]1Mech Dec,1998,79:185-197.
    [41] Buescher M,Yeo SL,Udolph G,et al. Binary sibling neuronalcell fatedecisions in the Drosophili a embryonic central nervoussyst em are nonstochastic and require inscut eable nediat ed asymmetry of gangli on mothercells [J]1Genes Dev,1998,12:1858-1870.
    [42] Oarment i er ML,Woods D,Grei g S,et al. Rapsynoid partner of inscut eable cont rols asymmetric division of Larval neuroblasts in Drosophila [J]1JNeurosci,2000,20:1-5.
    [43] Tropepe V Sibilia M,Ciruna BG,et al. Distinct neural stem cells proliferate inresponse to EGF and FGF in the developing mouse telencephalon. Dev Biol,1999,208:166-188
    [44] Santa-()lalla J, Covarrubias L. Basic fibroblast growth factor promotesepidermal growth factor responsiveness and survival of mesencephalic neuralprecursor cells. J Neurobiol,1999,40:14-27
    [45] Qian XD,Davis AA,Goderie SK,et al. FGF2concentration regulates thegeneration of neurons and glia from nultipotent cortical stem cells. Neuron,1997,18:81-93
    [46] Wu P,Tarasenko YI,Gu Y,et al. Region specific generation of cholinergicneurons from fetal human neural stem cells grafted in adult rat. NatureNeurosci,2002,5:1271-1278
    [47] Abe K,Therapeutic potential of neurotrophic factors and neural stem cellsagainst ischemic brain injury. J Cereb Blood Flow Metab,2000,20:1393-1408.
    [48] Lachyankar MB,Condon PJ,Quesenberry PJ,et al. Embryonic precursor cellsthat express Trk receptors; induction of different cell fates by NGF,BDNF,NT-3,and CNTF. Exp Neurol.1997,144:350-360.
    [49] Caldwell MA,He X,Willkie N,et al. Growth factors regulate the survival andfate of cells derived from human neurospheres. Nature Biotech,2001,19:475-479
    [50] Sun Y,Nsdal-Vicens M,Misono S,et al. Neurogenin promotes neurogenesisand inhibits glial differentiation by independent mechanisms.Cell,2001,104:365-376
    [51] Nieto M,Schuurmans C,Britz O,et al. Neural bHLH genes control theneuronal versus glial fate decision in cortical progenitors Neuron,2001,29:401-413.
    [52] Ishibashi M,Aag SL,Shiota K,et al. Targeted disruption of mammalian hairyand Enhancer of split homolog-1(HES-1) leads to up-regulation of neuralhelix-loop-helix factors,premature neurogenesis,and severe neural tubedefects. Genes Dev,1995,9:3136-3148
    [53] Kafeyama R,Ishibashi M,Takebayashi K,et al. Bhlh transcription factors andmammalian neuronal differentiation. Int J Biochem Cell Biol,1997,29:1389-1399.
    [54] Artavanis-Tsakonas S,Rand MD,Lake RJNotch signaling: cell fate controland signal integration in development.. Science,1999,284(5415):770-776.
    [55] Tanigali K,Nogaki F,Takahashi J,et al. NotchI and Notch3instructivelyresreict Bfgf-responsive multipotent neural progenitor cells to an astroglialfate. Neuron,2001,29:45-55.
    [56] Gaiano N,Nye JS,Fishell G. Radial glial identity is promoted by Notch1signaling in the murine forebrain. Neuron,2000,26:395-404.
    [57] Morrison SJ,Perez SE,Qiao Z,et al.. Transient Notch activation initiates anirreversible switch from neurogenesis to gliogenesis by neural crest stem cells.Cell,2000,101(5):499-510
    [58] Kim M,Morshead CM.Morshead. Distinct populations of forebrain neuralstem and progenitor cells can be isolated using
    [59] side-population analysis.J Neurosci.2003;23(33):10703-10709.[59]Oksvold MP,Skarpen E,Widerberg J.Fluorescent histochemical techniquesfor analysis of intracellularsignaling.J Histochem Cytochem.2002;50:289-303.
    [60] Herzenberg LA, De Rosa SC.Monoclonal antibodies and the FACS:complementary tools for immunobiology and medicine.ImmunolToday.2000;21:383-390.
    [61] Rietze RL,Valcanis H,Brooker GF,et al.Purification of a pluripotent neuralstem cell from the adult mouse brain. Nature.2001;412(6848):736-739.
    [62] Nakamura M,Okano H,Blendy J,et al.Musashi,a neural RNA-bindingprotein required for Drosophila adult external sensory organdevelopment.Neuron.1994;13(1):67-81.
    [63] Kaneko Y,Sakakibara S,Imai T,et al.Musashi1: an evolutionally conservedmarker for CNS progenitor cells including neural stem cells.DevNeurosci.2000;22(1-2):139-153.
    [64] Okano H,Imai T,Okabe M. Musashi: a translational regulator of cell fate. JCell Sci.2002;115(Pt7):1355-1359.
    [65] Miraglia S, Godfrey W, Yin AH, et al.A novel five transmembranehematopoietic stem cell antigen: isolation,characterization,and molecularcloning. Blood.1997;90:5013-5021.
    [66] Yin AH,Miraglia S,Zanjani ED,et al.AC133,a novel marker for humanhematopoietic stem and progenitor cells. Blood.1997;90:5002-5012.
    [67] Uchida N,Buck DW,He D,et al.Direct isolation of human central nervoussystem stem cells. Proc Natl Acad Sci USA.2000;97(26):14720-14725.
    [68] Kiss JZ,Muller D.Contribution of the neural cell adhesion molecule toneuronal and synaptic plasticity. Rev Neurosci.2001;12(4):297-310.
    [69] Jacques TS,Relvas JB,Nishimura S,et al.Neural p recursor cell chainmigration and division are regulated through different beta integrins.Development.1998;125:3167-3177.
    [70] Seki T.Hippocampal adult neurogenesis occurs in amicroenvironmentprovided by PSA-NCAM expressing immature neurons1.J NeurosciRes.2002;69:772-783.
    [71] Capela A,Temple S.LeX/ssea-1is expressed by adult mouse CNS stem cells,identifying them as nonependymal.Neuron.2002;35:865-875.
    [72] Mujtaba T,Mayer Proschel M,Rao MS.A common neural progenitor for theCNS and PNS.Dev Biol.1998;200(1):1-15.
    [73] Suarez-Rodriguez R,Belkind-Gerson J.Cultured nestin-positive cells frompostnatal mouse small bowel differentiate ex vivo into neurons,glia,andsmooth muscle. Stem Cells.2004;22(7):1373-1385.
    [74] Doetsch F,Petreanu L,Caille I,et al.EGF converts transit-amplifyingneurogenic precursors in the adult brain into multipotent stemcell.Neuro.2002;36(6):1021-1034.
    [75] Hui H, Perfetti R.Pancreas duodenum homeobox21regulates pancreasdevelopment during embryogenesis and islet cell function in adulthood.Eur JEndocrinol.2002;146:129-141.
    [76] Prasher D,Eckenrode V,Ward W,et al.Primary structure of the Aequoreavictornia green2fluorescent protein.Gene.1992;111(2):229-233.
    [77] Ward WW,Bokman SH.Reversible denaturation of Aequorea victornia greenfluorescent protein:physical separation and characterization of the renaturedprotein.Biochemistry.1992;111(2):229-233.
    [78] Cubitt AB,Heim R,Adams SR,et al.Understanding,improving and usinggreen fluorescent protein. Trends Biochem SCI.1995;20(11):448-455.
    [79] Ormo M,Cubitt AB,Kallio K,et al.Crystal structure of the Aequorea Victoriagreen fluorescent protein.Science.1996;273(5280):1392-1395.
    [80]刘仕勇,杨辉,张治元,等.非病毒载体介导神经干细胞基因转染的效果观察[J].第三军医大学学报,2003,25(20):1853-1855.
    [81] Rogelius N,Ericson C,Lundberg C.In vivo labeling of neuroblasts in thesubventricular zone of rats.J Neurosci Methods.2005;142(2):285-293.
    [82]关云谦,陈彪,刘平,等.干细胞脑内移植有效标记研究:绿色荧光蛋白质粒标记的应用价值[J].中国临床康复,2004,8(13):2506-2508.
    [83] Mignone JL,Kukekov V,Chiang AS,et al.Neural stem and progenitor cellsin nestin-GFP transgenic mice.J Comp Neurol.2004;469(3):311-324.
    [84] Navarro-Galve B,Villa A,Bueno C,et al.Gene marking of human neuralstem/precursor cells using green fluorescent proteins.J Gene Med.2005;7(1):18-29.
    [85]吴佳奇,冯大雄,杨天府,等.骨髓间充质干细胞经蛛网膜下腔移植治疗大鼠脊髓损伤及其对T细胞亚群影响的研究[J].中国修复重建外科杂志,2007,21(5):492-496.
    [86]杨海城,康军,蒋传路,等.大鼠神经干细胞经枕大池移植对脑损伤的影响[J].中华实验外科杂志,2007,24(1):77-78.
    [87] Mujataba T,Mayer PM,Roa MS.Acommon neural progenit or for the CNSand PNP.Dev Biol.1998;200(1):1-15.
    [88] Shihabuddin LS,Horner PJ,Ray J,et al.Adult spinal cord stem cells generateneurons after transplantation in the adult dentategyrus.J Neurosci.2000;20(23):8727-8735.
    [89] Nonaka M,Yoshikawa M,Nishimura F,et al.Intraventricular transplantationof embryonic stem cell-derived neural stem cells in intracerebral hemorrhagerats.Neurol Res.2004;26:265-272.
    [90] Sufan WU,Suzuki Y,Noda T,et al.Immunohistochemical and electronmicroscopic study of invasion and differentiatiation in spinal cord lesion ofneural stem cells grafted through cerebrospinal fluid in rat.J NeurosciRes.2002;69:940-945.
    [91] Wu SF,Suzuki Y,Kitada M,et al.New method for transplantation ofneurosphere cells into injured spinal cord through cerebrospinal fluid inrat.Neurosci Lett.2002;318(2):81-84.
    [92] Wu SF, Suzuki Y, Noda T, et al.Immunohistochemical and electronmicroscopic study of invasion and differentiation in spinal cord esion ofneural stem cells grafted through cerebrospinal fluid in rat.J NeurosciRes.2002;69(6):940-945.
    [93]栾佐,屈素清,尹国才,等.新生鼠缺氧缺血性脑损伤后不同途经人神经干细胞移植的实验研究[J].中华小儿外科杂志,2006,27(9):497-500.
    [94]杨海城,康军,叶伟,等.大鼠脑损伤后经枕大池及立体定向脑内移植神经干细胞的对比研究[J].立体定向和功能性神经外科杂志,2005,18(4):201-203.
    [95] Jeong SW,Chu K,Jung KH,et al.Human neural stem cell transplantationpromotes functional recovery in rats with experimental intracerebralhemorrhage.Stroke.2003;34(9):2258-2263.
    [96] Mahmood A,Lu D,Wang L,et al.Treatment of traumatic brain injury infemale rats with intravenous administration of bone marrow stromalcells.Neurosurgery.2001;49:1196-1204.
    [97] Kon C,Manho K,Sang-Wuk J.Human neural stem cell can migrate,differentiate,and integrate after intravenous transplantation in adult rats withtransient forebrain ischemia. Neuroscience letters.2003;343:129-133.
    [98] Li Y,Chen JL,Zhang CL,et al.Gliosis and brain remodeling after treatmentof stroke in rats with marrow stromal cells.Glia.2005;49(3):407-417.
    [99] Chen J,Li Y,Katakowski M,et al.Intravenous bone m arrow stromal celltherapy reduces apoptosis and promotes endogenous cell pro1iferation afterstroke in fem ale rat.J Nurosci Res.2003;73(6):778-786.
    [100]景文莉,闫凤霞.经颈动脉移植骨髓间充质干细胞治疗局灶性大鼠脑缺血损伤[J].中国组织工程研究与临床康复,2007,11(24):4747-4751.
    [101]田增民,刘爽,李士月,等.人神经干细胞临床移植治疗帕金森病[J].第二军医大学学报,2003,24(9):957-959.
    [102]田增民,李志超,尹丰,等.人神经干细胞移植治疗小脑萎缩[J].第二军医大学学报,2004,25(9):933-935.
    [103]胡苏华,刘爱群,武衡.大鼠神经干细胞脑内移植治疗脑出血的实验研究[J].神经损伤与功能重建,2008,3(9):146-149.
    [104] Lindvall O, Kokaia Z. Recovery and rehabilitation in stroke:stemcells.Stroke.2004;35(6):2691-2694.
    [105] Magnus T, Rao MS.Neural stem cells in inflammatory CNSdiseases:mechanisms and therapy.CeLL MoL Med.2005;9(2):303-319.
    [106] Marutle A,Ohmitsu M,Nilbratt M,et al.Modulation of human neural stemcell differentiation in Alzheimer (APP23)transgenic mice by phenserine.ProcNatl Acad Sci USA.2007;104(30):12506-12511.
    [107] Fullwood NJ.Neural stem cells,acetylcholine and Alzheimer’s disease.NatChem Biol.2007;3:435.
    [108]贺月秋,陈惠金,钱龙华,等.经脑室神经干细胞移植对脑室周围白质软化新生大鼠的脑病理评估[J].中国当代儿科杂志,2008,10(3):362-366.
    [109] Huang HY,Wang HM,Chen L,et al.Preliminary report of clinical trial forolfactory ensheathing cell transplantation treating the chronic spinal cordinjury.Liti Dingxiang he gongnengxing Shenjing Waike Zazhi.2004;17(6):348-350.
    [110] Willing AE,Lixian J,Milliken M,et al. J Neurosci Res,2003;73(3):296-307
    [111] Karimi-Abdolrezaee S. Eftekharpour E. Wang J. et al. J Neurosci,2006;26(13):3377-3389
    [112] Song HJ,Stevens CF,Gage FH.Neural stem cells from adult hippocampusdevelop essential properties of functional CNS neurons.NatNeurosci.2002;5(5):438-445.
    [113] Nakamura M,Toyama Y,Okano H. Transplantation of neural stem cells forspinal cord injury.Rinsho Shinkeigaku.2005;45(11):874-876.
    [114] OgawaY,Sawamoto K,Miyata T,et al.Transplantation of in vitro-expandedfetal neural progenitor cells results in neurogenesis and functional recoveryafter spinal cord contusion injury in adult rats.J Neurosci Res.2002;69(6):925-933.
    [115] Carpenter MK,Winkler C,Fricker R,et al.Generation and transplantation ofEGF-responsive neural stem cells derived from GFAP-hNGF transgenicmice.Exp Neurol.1997;148(1):187-204.
    [116] Castellanos DA,Tsoulfas P,Frydel BR,et al.Over expression enhancessurvival and migration of neural stem cell transplants in the rat spinalcord.Cell Transplant.2002;11(3):297-307.
    [117] Ikegami T,Nakamura M,Yamane J,et al.Chondroitinase ABC combined withneural stem progenitor cell transplantation enhances graft cell migration andoutgrowth of growth-associated protein-43-lxsitive fibers after rat spinal cordinjury.Neurosci.2005;22(12):3036-3046.
    [118] Karimi-Abdolrezaee S,Eftekharpour E,Wang J,et al. Synergistic oftransplanted adult neural stem.progenitor cells,chondroitinase,and growthfacoors promoter functional and plasticity of the chronically injured spinalcord.J Neurosci.2010;30(5):1657-1676.
    [119] Kim SU,de Vellis J. Stem cell-based cell therapy in neurological diseases:areview. J Neurosci Res.2009;87(10):2183-2200.
    [120] Panickar KS,Nonner D,Barrett JN. Overexpression of Bcl-xL protects septalneurons from prolonged hypoglycemia and from acute ischemia-like stress.Neuroscience.2005;135(1):73–80.
    [121] Kim SU. Human neural stem cells genetically modified for brain159-174.
    [122] Chernykh ER,Stupak VV,Muradov GM,et al. Application of autologousbone marrow stem cells in the therapy of spinal cord injury patients.Bull ExpBio Med.2007;143(4):543-547.
    [123] Mackay-Sim A,Féron F,Cochrane J,et al. Autologous olfactory ensheathingcell transplantation in human paraplegia: a3-year clinical trial.Brain.2008;131(Pt9):2376-2386.
    [124] Cristane AF,Barros-Filho TE,Tatsui N,et al. Stem cells in the treatment ofchronic spinal cord injury evaluation of somatosensitive evoked potentials in39patients.spinal cord.2009;47(10):733-738.
    [125] Pal R,Venkataramana NK,Bansal A,et al. Ex vivo-expanded autologous bonemarrow-derived mesenchymal stromal cells in human spinal cordinjury/paraplegia: a pilot clinical study. Cytotherapy.2009;11(7):897-911.
    [126] Moviglia GA,Fernandez Vi a R,Brizuela JA,et al. Combined protocol of celltherapy for chronic spinal cord injury. Report on the electrical and functionalrecovery of two patients. Cytotherapy.2006;8(3):202-209.
    [127] Yoon SH,Shim YS,Park YH,et al. Complete spinal cord injury treatmentusing autologous bone marrow cell transplantation and bone marrowstimulation with granulocyte macrophage-colony stimulating factor: Phase I/IIclinical trial. Stem cells.2007;25(8):2066-2073.
    [128] Mehta T,Thakkar U,Vanikar A,et al. Subarachnoid placement of stem cellsin neurological disorders. Transplant Proc.2008;40(4):1145-1147.
    [1]郑王君,陈红.姜黄素的药理作用及临床应用.海峡药学,2011,23(3):84-87.
    [2] Bilecová-RabajdováM, BirkováA. aturally occurring substances and theirrole in chemo-protective effects. Cent Eur J Public Health,2013,21(4):213-9.
    [3]牛生洋,郝峰鸽.姜黄素的提取及应用研究进展.河南科技学院院报,2008,36(4):58-61.
    [4]王坤.姜黄素药理学研究进展.中山大学研究生学刊,2008,29(1):40-47.
    [5] Prasad S, Tyagi AK. Recent Developments in Delivery, Bioavailability,Absorption and Metabolism of Curcumin: the Golden Pigment from GoldenSpice. Cancer Res Treat,2014,46(1):2-18.
    [6]鲍华英,陈荣华.姜黄素的研究进展.国外医学儿科学分册,2003,30(5):254-256.
    [7] Naksuriya O, Okonogi S. Curcumin nanoformulations: a review ofpharmaceutical properties and preclinical studies and clinical data related tocancer treatment.Biomaterials,2014,35(10):3365-83.
    [8]王旗,王夔.姜黄素的代谢研究.中国药理学通报,2003,19(10):1097-1101.
    [9] Wang K, Qiu F. Curcuminoid metabolism and its contribution to thepharmacological effects. Curr Drug Metab,2013,14(7):791-806.
    [10]余美荣,蒋福升.姜黄素的研究进展.中草药,2009,40(5):828-831.
    [11] Helson L. Curcumin (diferuloylmethane) delivery methods: a review.Biofactors,2013,39(1):21-6.
    [12] Zhao C, Liu Z, Liang G. Promising curcumin-based drug design:mono-carbonyl analogues of curcumin (MACs). Curr Pharm Des,2013,19(11):2114-35.
    [13]汪海慧,成扬.姜黄素药理作用的研究进展.上海中医药大学学报,2007,21(6):73-76.
    [14]许东晖,王胜.姜黄素的药理作用研究进展.中草药,2005,36(11):1737-1740.
    [15] Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailableblocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol,2013,169(8):1672-92.
    [16] Shehzad A, Rehman G. Curcumin in inflammatory diseases. Biofactors,2013,39(1):69-77.
    [17] Chaudhary H, Kohli K. A novel nano-carrier transdermal gel againstinflammation. Int J Pharm,2014,73(14):16-20.
    [18] Fu Y, Gao R. Curcumin attenuates inflammatory responses by suppressingTLR4-mediated NF-κB signaling pathway in lipopolysaccharide-inducedmastitis in mice. Int Immunopharmacol,2014,20(1):54-58.
    [19]苏菁,徐宗佩.姜黄素药理作用研究进展.江西中医药,2010,41(8):78-80.
    [20] Franco-Robles E, Campos-Cervantes A. Effects of curcumin onbrain-derived neurotrophic factor levels and oxidative damage in obesity anddiabetes.Appl Physiol Nutr Metab,2014,39(2):211-8.
    [21] Carl H, Chandni A. Curcumin as a modulator of oxidative stress duringstorage: A study on plasma. Transfus Apher Sci,2014,S1473-0502(13)00375-3.
    [22] Jat D, Parihar P. Curcumin reduces oxidative damage by increasing reducedglutathione and preventing membrane permeability transition in isolatedbrain mitochondria. Cell Mol Biol (Noisy-le-grand),2013,59:OL1899-905.
    [23] Zhao WC, Zhang B. Curcumin ameliorated diabetic neuropathy partially byinhibition of NADPH oxidase mediatingoxidative stress in the spinal cord.Neurosci Lett,2014,560:81-5.
    [24] Y lmaz Savcun G, Ozkan E. Antioxidant and anti-inflammatory effects ofcurcumin against hepatorenal oxidative injury in an experimental sepsismodel in rats. Ulus Travma Acil Cerrahi Derg,2013,19(6):507-15.
    [25] Obata K, Kojima T, Curcumin prevents replication of respiratory syncytialvirus and the epithelial responses to it in human nasal epithelial cells. PLoSOne.2013,8(9): e70225.
    [26] Ou JL, Mizushina Y, Structure-activity relationship analysis of curcuminnalogues on anti-influenza virus activity. FEBS J,2013,280(22):5829-40.
    [27] Chen J, Wang FL. Modulation of apoptosis-related cell signalling pathwaysby curcumin as a strategy to inhibit tumor progression. Mol Biol Rep,2014.
    [28] Bernd A. Visible light and/or UVA offer a strong amplification of theanti-tumor effect of curcumin. Phytochem Rev,2014,13:183-189.
    [29] Shen F, Cai WS. Synergism from the combination of ulinastatin andcurcumin offers greater inhibition against colorectal cancer liver metastasesvia modulating matrix metalloproteinase-9and E-cadherin expression. OncoTargets Ther,2014,7:305-14.
    [30] Kantara C, O'Connell M, Sarkar S,et al.Curcumin Promotes AutophagicSurvival of a Sub-Set of Colon Cancer Stem Cells, which are Ablated byDCLK1-siRNA.Cancer Res.2014Mar13.
    [31] Uzarska M, Czajkowski R, Schwartz RA,et al.Chemoprevention of skinmelanoma: facts and myths. Melanoma Res.2013Dec;23(6):426-33.
    [32] Bill MA, Nicholas C, Mace TA,et al. Structurally modified curcuminanalogs inhibit STAT3phosphorylation and promote apoptosis of humanrenal cell carcinoma and melanoma cell lines. PLoS One.2012;7(8):e40724.
    [33] Singh DV, Agarwal S, Singh P, Godbole MM, Curcumin conjugatesinduce apoptosis via a mitochondrion dependent pathway in MCF-7andMDA-MB-231cell lines.Asian Pac J Cancer Prev.2013;14(10):5797-80
    [34] Farazuddin M, Dua B, Zia Q,et al.Chemotherapeutic potential ofcurcumin-bearing microcells against hepatocellular carcinoma in modelanimals. Int J Nanomedicine.2014Mar3;9:1139-52.
    [35] Mondal G, Barui S, Saha S, et al.Tumor growth inhibition throughtargeting liposomally bound curcumin to tumor vasculature. J ControlRelease.2013Dec28;172(3):832-40. doi:10.1016
    [36] Han SS1, Chung ST, Robertson DA,et al.Curcumin causes the growtharrest and apoptosis of B cell lymphoma by downregulation of egr-1, c-myc,bcl-XL, NF-kappa B, and p53.Clin Immunol.1999Nov;93(2):152-61.
    [37] Duvoix A1, Morceau F, Delhalle S, et al.Induction of apoptosis bycurcumin: mediation by glutathione S-transferase P1-1inhibition. BiochemPharmacol.2003Oct15;66(8):1475-83.
    [38] Chen HW1, Lee JY, Huang JY, et al.Curcumin inhibits lung cancer cellinvasion and metastasis through the tumor suppressor HLJ1.Cancer Res.2008Sep15;68(18):7428-38.
    [39] Fontani F, Marcucci T, Picariello L, et al.Redox regulation ofMMP-3/TIMP-1ratio in intestinal myofibroblasts: Effect of N-acetylcysteineandcurcumin.Exp Cell Res.2014Feb26. pii: S0014-4827(14)00082-2.
    [40] Chin D, Huebbe P. Curcumin may impair iron status when fed to mice forsix months. Redox Biol,2014,2:563-9.
    [41] Chen TH,Yang YC. Curcumin treatment protects against renal ischemia andreperfusion injury-induced cardiac dysfunction and myocardial injury.Transplant Proc,2013,45(10):3546-9.
    [42] Xu P, Yao Y. Curcumin protects rat heart mitochondria againstanoxia-reoxygenation induced oxidative injury. Can J Physiol Pharmacol,2013,91(9):715-23.
    [43] Pescosolido N, Giannotti R. Curcumin: therapeutical potential inophthalmology. Planta Med,2014,80(4):249-54.
    [44] Sun H, Zhu J. Curcumin-Mediated Cardiac Defects in Mouse is Associatedwith a Reduced Histone H3Acetylation and Reduced Expression of CardiacTranscription Factors. Cardiovasc Toxicol,2013, Dec10.
    [45] Pu Y, Zhang H. Dietary curcumin ameliorates aging-related cerebrovasculardysfunction through the AMPK/uncoupling protein2pathway. Cell PhysiolBiochem,2013,32(5):1167-77.
    [46] Awasthi H, Tota S. Protective effect of curcumin against intracerebralstreptozotocin induced impairment in memory and cerebral blood flow. LifeSci,2010,86(3-4):87-94.
    [47] Liu ZJ, Liu W. Curcumin Protects Neuron against CerebralIschemia-Induced Inflammation through Improving PPAR-Gamma Function.Evid Based Complement Alternat Med,2013:470975.
    [48] Li G,Chen JB. Curcumin protects against acetaminophen-induced apoptosisin hepatic injury. World J Gastroenterol,2013,19(42):7440-6.
    [49] Ha HL, Shin HJ. Oxidative stress and antioxidants in hepatic pathogenesis.World J Gastroenterol,2010,16(48):6035-43.
    [50] Gao S, Duan X. Curcumin attenuates arsenic-induced hepatic injuries andoxidative stress in experimental mice through activation of Nrf2pathway,promotion of arsenic methylation and urinary excretion. Food Chem Toxicol,2013,59:739-47.
    [51] Buyuklu M, Mehmet Kandemir F. Protective effect of curcumin againstcontrast induced nephropathy in rat kidney: what is happening to oxidativestress, inflammation, autophagy and apoptosis? Eur Rev Med PharmacolSci,2014,18(4):461-70.
    [52] Trujillo J, Chirino YI. Renoprotective effect of the antioxidant curcumin:Recent findings. Redox Biol,2013,1(1):448-456.
    [53] Correa F, Buelna-Chontal M. Curcumin maintains cardiac andmitochondrial function in chronic kidney disease. Free Radic Biol Med,2013,61C:119-129.
    [54] Shehzad A, Rehman G. Curcumin in inflammatory diseases. Biofactors,2013,39(1):69-77.
    [55] Bright JJ. Curcumin and autoimmune disease. Adv Exp Med Biol,2007,595:425-51.
    [56] Kumar S, Ahuja V. Curcumin for maintenance of remission in ulcerativecolitis. Cochrane Database Syst Rev,2012,10: CD008424.
    [57] Dulbecco P, Savarino V. Therapeutic potential of curcumin in digestivediseases. World J Gastroenterol,2013,19(48):9256-70.
    [58] Zhang DW, Fu M. Curcumin and Diabetes: A Systematic Review. EvidBased Complement Alternat Med,2013;2013:636053.
    [59] Soetikno V, Suzuki K. Molecular understanding of curcumin in diabeticnephropathy. Drug Discov Today,2013,18(15-16):756-63.
    [60] Aldebasi YH, Aly SM. Therapeutic implications of curcumin in theprevention of diabetic retinopathy via modulation of anti-oxidant activity andgenetic pathways. Int J Physiol Pathophysiol Pharmacol,2013,5(4):194-202.
    [61] Zingg JM, Hasan ST. Molecular mechanisms of hypolipidemic effects ofcurcumin. Biofactors,2013,39(1):101-21.
    [62] Aggarwal BB. Targeting inflammation-induced obesity and metabolicdiseases by curcumin and other nutraceuticals. Annu Rev Nutr,2010,30:173-99.
    [63] Siu D. A new way of targeting to treat coronary artery disease. J CardiovascMed (Hagerstown),2010,11(1):1-6.
    [64] Venkatesan N, Punithavathi D. Protection from acute and chronic lungdiseases by curcumin. Adv Exp Med Biol,2007,595:379-405.
    [65] Braga SF, Almgren MM. Complementary therapies in cystic fibrosis:nutritional supplements and herbal products. J Pharm Pract,2013,26(1):14-7.
    [66]李高文,徐英.姜黄素的中枢药理作用研究进展.神经药理学报,2011,2(1):48-58.
    [67] Lee WH, Loo CY, Curcumin and its derivatives: their application inneuropharmacology and neuroscience in the21st century. CurrNeuropharmacol,2013,11(4):338-78.
    [68]李勇,王蓬文.姜黄素神经保护作用研究概况.中国中药杂志,2009,24(34):3173-3175.
    [69] Villaflores OB, Chen YJ. Curcuminoids and resveratrol as anti-Alzheimeragents. Taiwan J Obstet Gynecol,2012,51(4):515-25.
    [70] Belkacemi A, Doggui S. Challenges associated with curcumin therapy inAlzheimer disease. Expert Rev Mol Med,2011,13: e34.
    [71] Hamaguchi T, Ono K. REVIEW: Curcumin and Alzheimer's disease. CNSNeurosci Ther,2010,16(5):285-97.
    [72] Ray B, Lahiri DK. Neuroinflammation in Alzheimer's disease: differentmolecular targets and potential therapeutic agents including curcumin. CurrOpin Pharmacol,2009,9(4):434-44.
    [73] Lazar AN, Mourtas S. Curcumin-conjugated nanoliposomes with highaffinity for Aβ deposits: possible applications toAlzheimer disease.Nanomedicine,2013,9(5):712-21.
    [74] Zhao LN, Chiu SW. The effect of curcumin on the stability of Aβ dimers. JPhys Chem B,2012,116(25):7428-35.
    [75]陈思砚,潘静.姜黄素在神经系统疾病治疗中的应用.上海交通大学学报,2010,30(6):732-741.
    [76] Mythri RB, Bharath MM. Curcumin: a potential neuroprotective agent inParkinson's disease. Curr Pharm Des,2012,18(1):91-9.
    [77] Jiang TF,Zhang YJ. Curcumin ameliorates the neurodegenerative pathologyin A53T α-synuclein cell model of Parkinson's disease through thedownregulation of mTOR/p70S6K signaling and the recovery ofmacroautophagy. J Neuroimmune Pharmacol,2013,8(1):356-69.
    [78] Mansouri Z, Sabetkasaei M. Curcumin has neuroprotection effect onhomocysteine rat model of Parkinson. J Mol Neurosci,2012,47(2):234-42.
    [79] Kurt G, Yildirim Z. Effects of curcumin on acute spinal cordischemia-reperfusion injury in rabbits. J Neurosurg Spine,2014, Jan24.
    [80]赵丽艳,余秀娟.姜黄素神经保护作用研究进展.神经药理学报,2012,2(2):58-64.
    [81] Liu ZJ, Liu W. Curcumin Protects Neuron against CerebralIschemia-Induced Inflammation through Improving PPAR-Gamma Function.Evid Based Complement Alternat Med,2013,470975.
    [82] Wu J, Li Q. Neuroprotection by curcumin in ischemic brain injury involvesthe Akt/Nrf2pathway. PLoS One,2013,8(3): e59843.
    [83] Wang YF,Gu YT. Curcumin ameliorates the permeability of the blood-brainbarrier during hypoxia by upregulating heme oxygenase-1expression in brainmicrovascular endothelial cells. J Mol Neurosci,2013,51(2):344-51.
    [84] Kakkar V, Muppu SK. Curcumin loaded solid lipid nanoparticles: anefficient formulation approach for cerebral ischemic reperfusion injury in rats.Eur J Pharm Biopharm,2013,85(3Pt A):339-45.
    [85] Kiasalari Z, Roghani M. Antiepileptogenic effect of curcumin onkainate-induced model of temporal lobe epilepsy. Pharm Biol,2013,51(12):1572-8.
    [86] Noor NA, Aboul Ezz HS. Evaluation of the antiepileptic effect of curcuminand Nigella sativa oil in the pilocarpine model ofepilepsy in comparison withvalproate. Epilepsy Behav,2012,24(2):199-206.
    [87] Ezz HS, Khadrawy YA. The neuroprotective effect of curcumin and Nigellasativa oil against oxidative stress in the pilocarpine model of epilepsy: acomparison with valproate. Neurochem Res,2011,36(11):2195-204.
    [88] Zhu X, Li Q. Curcumin Alleviates Neuropathic Pain by Inhibitingp300/CBP Histone Acetyltransferase Activity-Regulated Expression ofBDNF and Cox-2in a Rat Model. PLoS One,2014,9(3): e91303.
    [89] Jeon Y, Kim CE. Curcumin could prevent the development of chronicneuropathic pain in rats with peripheral nerve injury. Curr Ther Res Clin Exp,2013,74:1-4.
    [90] Banafshe HR, Hamidi GA. Effect of curcumin on diabetic peripheralneuropathic pain: Possible involvement of opioid system. Eur J Pharmacol,2014,723:202-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700