用户名: 密码: 验证码:
梁端翼缘扩大型连接钢框架抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢框架结构在多高层建筑钢结构设计中得到了越来越广泛的应用。已有研究表明,钢框架中梁柱节点的连接性能直接影响框架结构在荷载(尤其是动力荷载)作用下的整体行为。而传统的钢框架梁柱刚性焊接节点延性较差、残余应力较大,是其容易发生脆性破坏的重要原因。对钢框架梁柱节点进行抗震优化设计,发展新的梁柱节点类型是提高多高层钢框架抗震性能的关键。本论文通过试验研究和理论分析,系统研究了梁端翼缘扩大型钢框架的耗能能力和抗震机理,为新型延性钢框架结构的设计提供理论和试验基础。主要开展了以下研究工作:
     (1)进行了两类梁端翼缘扩大型梁柱连接试件(翼缘直接扩大加强型和翼缘外加焊侧板加强型)和普通栓焊连接试件的拟静力试验研究,获得试件在循环荷载作用下的变形规律及破坏模式,并对不同连接形式试件的滞回曲线、骨架曲线、变形能力、耗能能力、强度及刚度退化等力学性能进行了比较分析。研究结果表明,梁端翼缘扩大型连接试件均产生了明显的塑性变形,在远离梁柱连接根部区域形成塑性铰,避免了梁柱间焊缝的脆性破坏,耗能能力明显提高,延性系数均高于3.0,有利于实现“强连接弱构件”的设计思想。另外,比较分析发现圆弧形扩翼加强型连接试件应力传递更加顺畅,且塑性铰位置明确,其综合性能优于侧板加强型连接,因此工程应用中建议优先采用翼缘扩大型连接节点。
     (2)利用有限元结构分析软件ANSYS建立数值计算模型,通过施加低周循环荷载,研究分析了连接形式和参数变化对试件抗震性能的影响,从应力传递和塑性发展等方面分析了地震荷载作用下加强型梁柱连接的力学行为和耗能表现。与试验结果对比分析,发现两者的构件破坏形态一致,荷载—位移曲线、构件承载能力、屈服荷载及延性系数均接近,验证了有限元分析方法的可靠性。分析结果表明,通过梁端加强翼缘板可以明显降低梁端焊缝处的应力水平;对翼缘扩大延缓了梁端应力的增长,降低了构件屈服阶段的梁端应力水平,并使设计塑性铰区段的应力得以充分发展,达到迫使塑性铰外移的目的,并可产生较大的塑性变形,增强耗能能力。有限元分析结果也表明翼缘直接扩大型连接的综合性能优于侧板加强型连接。根据对梁端翼缘扩大型连接的加强参数(加强段长度、过渡段长度及加强段梁翼缘宽度等)的敏感性分析,给出了连接参数的合理取值范围。
     (3)在梁柱连接节点抗震性能研究的基础上,通过拟动力试验方法,研究了采用梁端翼缘扩大型连接的大比例钢框架整体在地震荷载作用下的动力反应和抗震性能,获得了钢框架在经历地震荷载时结构关键部位的应力反应水平和应变、变形发展情况。结果表明,在弹性阶段,相当于地震设防烈度9度的多遇地震作用下,结构最大层间位移小于抗震设计规范的限值,试验钢框架具有较好的抗震能力。试验模型二层和一层加速度时程曲线的反应趋势基本一致,但波峰、波谷出现时刻不尽相同;各层位移反应和峰值位置基本一致,随着地震加速度峰值的增加,位移反应峰值位置有所改变,二层加速度反应峰值相对降低。基底剪力随地震强度增加而增长,反应结构在弹性工作状态下地震响应对地震动强度的依赖性。同时,试验结果也表明基底剪力最大反应时刻并不是固定的。基底剪力—、二层位移滞回曲线稳定呈梭形,具有良好的地震反应。
     (4)通过拟静力试验,研究了梁端翼缘扩大型钢框架试验模型在反复水平荷载作用下的传力机制、耗能模式及其破坏形态。结果表明,在弹性范围内梁端翼缘扩大型连接钢框架在内力和变形方面与普通框架基本一致,进入塑性阶段后钢框架首先在梁端翼缘扩大段末端形成塑性铰,实现了塑性铰远离梁柱节点域而有效地保护梁端复杂构造区域不受破坏的目的。其耗能能力和结构延性变形能力较强,降低了基底剪力,整体结构抗震性能良好。
     (5)利用有限元分析程序ANSYS,分别通过弹塑性时程分析和循环荷载分析,研究了采用梁端翼缘扩大型连接钢框架在地震荷载作用下的力学行为。对试验钢框架的有限元计算结果表明钢框架的最大应力首先出现在一层框架梁下翼缘加强段末端的截面处,有效实现了塑性铰外移,与试验结果一致。分析表明梁端翼缘扩大型连接钢框架与普通钢框架相比承载能力和结构抗侧移刚度有所提高,但塑性变形能力明显增强。与普通框架相比,进入塑性阶段后梁梁端翼缘扩大型连接钢框架由于塑性铰的出现增加了结构自振周期从而可以降低基底剪力,对结构抗震非常有利。
     另外,通过计算比较了不同塑性铰位置对钢框架整体性能的影响,结果表明在一定范围内塑性铰均能出现在设计位置,但当塑性铰位置离开梁端距离过大时会造成节点域和柱底应力增大影响塑性铰的发展机制;塑性铰位置离开梁端越远框架水平抗剪承载力就越高,同时结构变形和延性系数则随之降低;强烈地震作用下,塑性铰外移能够降低结构侧向位移,但基底剪力随塑性铰外移距离增加而增加,综合分析建议塑性铰设计位置距柱翼缘(0.5~1.0)hf为宜。
Nowadays,more and more steel frame constructions are used in the design of multi-layeror high-rise steel buildings. Some researches have suggested that the properties ofbeam-to-column joint in a steel frame can directly influence the whole behavior of the frameunder load (especially the dynamic load). However, the conventional welded joint of beamand column of steel frame system has bad ductility and high residual stress, which areimportant reasons for the brittle break of the whole system. As a result, the optimal seismicdesign of beam-to-column joint in a steel frame and the development of new forms ofbeam-to-column joint should be the key to improve the earthquake resistance of themulti-layer or high-rise structures. In this paper, the energy dissipation capability and theearthquake resistance mechanism of the steel frame whose beam flange is strengthened at thebeam end is systematically introduced by experimental research and theoretical analysis,which can serve as the theoretical and experimental foundation of the design for the newkinds of ductile steel structures. The major sections of this paper are as follows:
     (1) Through pseudo-static experiments on two kinds of steel frame specimens withexpanded beam flange connections including direct arc strengthened beam flange connectionand welded side-plate connection and specimens with traditional bolted and weldedconnections, the deformation regulation and failure mode have been achieved under cycleload. And the hysteretic behavior, skeleton curves, deformation capacity and energydissipation of specimens with different kinds of beam-to-column connections have beenanalyzed comparatively. The results show that the specimens with reinforced beam ends haveobvious plastic deformation, and plastic hinge is far away from the end of beam-to-columnconnection, therefore, the brittle failure of beam-to-column connection near the welding seamcan be avoided. The capacity of energy dissipation has been obviously improved, and ductilityfactors are all above3.0. As a result, it is good to achieve “strong connection weakcomponent” design idea. In addition, the results obtained by analysis show that the specimenswith arc expanded flange can transfer load more smoothly, and the plastic hinge could beexactly located, which means that the performance of such kind of specimen is better than thatof specimen with welded side-plate connection. So the connections with arc expanded flangeshould be firstly recommended in practice.
     (2) Based on the large finite element analysis program ANSYS, through analysis of theelastic-plastic cycle load, the influence of connection forms and various parameters on theseismic performance of the specimens have been studied. And from the view of stresstransmission and plastic development, the mechanical behavior and energy dissipation capability of reinforced beam-to-column connection under seismic load has been analyzed.Compared with the analysis of experimental results, it can be informed that both of the twokinds of specimens have the same failure form. The load-displacement curve, componentbearing capacity, yield load and ductility coefficient are similar, which can prove thereliability of finite element analysis method. The calculation results show that the stress levelnear the welding seam in the beam end can be obviously reduced by reinforcing the flangeplate in the beam end. The widened flange can delay the growth of beam end’s stress andreduce the beam end’s stress level in component yield stage, and the stress of the plastic hingesection designed can be fully developed, which can result in the out-shift of the plastic hinge,the large plastic deformation and improvement of energy dissipation. The results obtained byfinite element analysis also show that the comprehensive performance of arc expandedconnection is better than side-plate connection. Based on the sensitivity analysis of thestrengthened parameters (strengthened length, length of the transition section andstrengthened flange width, etc) of the beam ends of reinforced connection, and connectionparameters’ reasonable value ranges have been given out.
     (3) Based on the research of the anti-seismic properties of the beam-to-columnconnection, the dynamic response and the anti-seismic properties of widened beam flangereinforced connection in big scale steel-frame has been studied by the pseudo dynamic tests,and the stress reaction level and development of the deformation of the key part in the framehave been obtained under earthquake load. The results show that, in the elastic stage,experimental steel frame has a good anti-seismic capability because its maximum horizontalrotation is less than the limit value of the seismic design code under the frequent earthquake,which is equivalent to9degrees of seismic fortification intensity. The time curve ofacceleration versus obtained from the top and bottom of the experimental model has a similartendency, yet the occasion when their wave crest and trough came out is hardly identical; eachlayer has the same displacement valve and peak position. With the increase of the peak valueof earthquake acceleration, there would be a change of displacement peak position and areduction in peak value of top layer’s acceleration. The shear in bottom would get rose withthe increase of seismic intensity, reflecting that structural seismic responses depend onseismic intensity in the elastic state. Meanwhile, the results show that the maximum responsetime of the shear in bottom is not stable. The hysteretic curve of bottom shear to topdisplacement is spindle, and the seismic response is good.
     (4) Through quasi-static tests, the force transmission mechanism, energy consumptionmodel and its failure modes of steel frame test model with the reinforced beam flangeconnection have been studied under the repeated horizontal load. The results show that, in theelastic range, reinforced connection steel frame is consistent with the general frame in theinternal force and deformation. After entering the plastic stage, the steel frame will firstlyform plastic hinges at the end of the reinforced segment of beam, which can achieve thepurpose of the plastic hinge away from the joints domain and protect the complex structureregion of the beam end from destruction effectively. It has strong energy dissipation capacityand structure deformation capacity which reduce the base shear. And the overall structureseismic performance is good.
     (5) Using the finite element analysis program ANSYS, respectively through theelastic-plastic time history analysis and cyclic load analysis, the mechanical behavior of the steel frame with reinforced beam flange connection at the beam end under seismic loads hasbeen studied. The calculation results show that the maximum stress of the steel frame firstlyappeared at the reinforced section of the bottom flange end in the first layer of frame beam,which can effectively move plastic hinge outside. It is consistent with the experimental results.Layer shear—layer displacement hysteretic curve in the second layer showed plump spindle,no "pinch" phenomenon and hysteretic performance is good. The hysteretic curve in the firstlayer is very plump, it explains that the structural plasticity to be fully developed. It is farmore than the actual test results, the main reason is that the finite element analysis ignores theinfluence of the bolt slip, weld residual stress and sliding and rotating of column foot. Theindicators of the structural bearing capacity and the equivalent viscous damping coefficient ofthe finite element model are greater than the actual test values. In addition, the impact ofdifferent design of the plastic hinge location on the overall seismic performance of steel framewas analyzed and compared. The results show that the horizontal shear capacity of the framehas been improved with the increase of distance between the plastic hinge location and beamend, however, the structural deformation and ductility factor decreases.
引文
[1.1]陈绍蕃.钢结构[M].北京:中国建筑工业出版社,2005
    [1.2]沈祖炎.钢结构学[M].北京:中国建筑工业出版社,2005
    [1.3]李国强,陆烨,何天森.钢结构在现代住宅中的应用[J].工程建设与设计,2005,(2):5-11
    [1.4]林贤根.钢结构建筑的应用与展望[J].浙江树人大学学报,2005,(1):36
    [1.5]董爱梅.谈钢结构建筑的发展前景和应用[J].山西建筑,2005,31(15):52-53
    [1.6]蔡益燕.阪神地震后日本钢结构的发展[J].中国建筑,2005,(8):23-25
    [1.7]日本钢结构建筑发展状况,福建工程学院图书馆信息中心.2004-3-29
    [1.8]刘金荣.回顾六十年建筑钢结构的发展[J].中华建筑报,2009
    [1.9]陈惠发.钢框架稳定设计,周绥平译.上海:上海世界图书出版公司,1999
    [1.10] Duane K Miller.Lessons leamed from the Northridge earthquske[J]. EngineeringStructure.1998, Vol.20.4-6.
    [1.11]]赵大伟,石永久.钢结构节点脆性破坏分析[J].工程力学,1999,增刊:32-37
    [1.12]蔡益燕.阪神地震后日本钢结构的发展[J].中国建筑金属结构:2005,8:22-23
    [1.13] N.kishi,W.F Chen.Database of steel beam-to—column connections.StructuralEngineering Report。Purdue University,1986,1(11):653-662
    [1.14] Chen W.F,Kishi N.Semi-rigid steel beam-to-column connections:data base andmodeling.Journal of structural Engineering,ASCE,1989.31(2):235-241
    [1.15]黄炳生.日本神户地震中建筑钢结构的震害及启示[J].建筑结构,2000,Vol.30,No.9:24-25
    [1.16]李杰.地震循环载荷下钢结构梁柱焊接节点耗能与损伤行为的研究[D].天津大学,2002
    [1.17]陈绍藩,钢结构设计原理[M],北京:科学技术出版社,1987
    [1.18]裘民川.日本神户地震建筑震害的分析与启示[J].建筑结构,1995,(9)
    [1.19] N.Kishi.w.F Chen and Y.Goto et a1. Design Aid of Semi-rigid Connections for FrameAnalysis.Eng. J. AISC,1993,30(3):90-107
    [1.20] A. P. Gardner, H. M. Goldsworthy.Experimental investigation of the stiffness of criticalcomponents in a moment-resisting composite connection[J],Journal of ConstructionalSteel Research,2005,97-104
    [1.21] Fu Feng, Lam Dennis,Ye Jianqiao. Parametric study of semi-rigid composite connectionswith3-D finite element approach.Engineering Structures,2007(5),29(6):888-898
    [1.22] Gil Beatriz, Bayo Eduardo. An alternative design for internal and extemalsemi-rigidcomposite joints[J]. Part I:Experimental research.Engineering Structures,2008.30(1):218-231
    [1.23] Fu F, Lam D. Experimental study on semi-rigid composite joints with steel beamsandprecast hollowcore slabs[J]. Journal of Constructional Steel Research,2006.62(8):771-782
    [1.24]王燕,彭福明.多高层钢框架梁柱半刚性连接性能[J].建筑结构,2000(9):18-20
    [1.25]王燕,厉见芬.半刚性钢框架的内力分析[J].力学与实践,2003,25(2):35-38
    [1.26]王燕,苏波.半刚接钢框架的动力分析[J].力学与实践,2005,27(4):51-55
    [1.27]郭兵,顾强,柳锋,赵考重.梁柱端板连接节点的滞回性能的试验研究[J].建筑结构,2002(3):15-19
    [1.28]刘曙,尹静,朱洪波.钢框架顶底角钢带腹板双角钢连接的试验研究[J].华中科技大学学报,2004,32(7):108-110
    [1.29]施刚,石永久,王元清等.多层钢框架半刚性端板连接的试验研究[J].清华大学学报,2004,44(3):391-394
    [1.30]石永久,施刚,王元清.钢结构半刚性端板连接弯矩一转角曲线简化计算方法[J].土木工程学报,2006,39(3):19-2
    [1.31]李少甫.钢结构的螺栓端板连接[J].建筑结构,1998,28(8):78-80
    [1.32]王新武,孙犁.钢框架半刚性连接性能研究[J].武汉理工大学学报,2002,24(11):33-35
    [1.33]王新堂.半刚性连接平面钢结构弹性分析的普遍模型[J].建筑结构,2004,32(12):42-44
    [1.34]郭成喜.半刚性钢框架的内力性态分析[J].建筑结构,2002,32(5):25-32
    [1.35] Schafer. B. W. Ojdrovic.R. P. Zarghmee. M.S.Triaxiality and Fracture of steel momentconnections[J]. Struct.Eng. ASCE.2000,126(10):1131-1139
    [1.36] Sheng Jin Chen, Y. C.Tsao, and Y. C. Chao, Enhancement of ductility of existing seismicsteel moment connections[J]. Journal of structural engineering.2011,127(5):538-545
    [1.37] FEMA-350. Recommended seismic design criteria for new steel moment-frame[J].Buildings.2000,3-173-18
    [1.38] Qi Wu-bo, Hiroaki Mimura.Streamline geometry optimization in beam-co1umnconnection[J]. Journal of Structural Engineering, June,2002:829-831
    [1.39] B.S.Taranath. Steel Concrete composite Design of tall Buildings second edition, McGraw-Hill,965-975
    [1.40]胡庆昌.1995年1月17日日本阪神大地震神户市房屋结构震害简介[J],建筑结构学报,1995,16(3):10-12
    [1.41] SAC. Interim guidelines advisory No.2FEMA-267B. Report No.SAC-99-01. SAC JointVenture. Sacramento. California,1999
    [1.42] SAC. Interim guidelines. Evaluation repair modification and design of steel momentframes. FEMA-267. Report No. SAC-95-02. SAC Joint Venture. Sacramento. California,1995:215-290
    [1.43] Reidar Bjorhovde. Andre Ceison. Jacques Brozzetti.Classification system forbeam-to-column connection[J]. Struct. Engrg. ASCE.1990,116(11):1292-1299
    [1.44]姚国春,霍立兴,张玉凤等.焊接钢结构梁柱节点地震下的断裂行为研究[J].钢结构,2000,l5(50):25-27
    [1.45]龚思礼.建筑抗震设计手册(第二版)[M].中国建筑工业出版,2003:903-929
    [1.46] Chen. S. J. Yeh.C.-H.. Chu.J.M..Ductile steel beam-to-column connections forseismicresistance[J]. Struct. Eng. ASCE.1996,122(11):1292-1299
    [1.47]王珊,王保民.焊接钢框架节点性能试验研究.结构工程与振动研究报告集[M].1999:99-106
    [1.48]李永泉,何若全.框架半刚性连接的研究概述[J].哈尔滨建筑工程学学报,1994(6):95-98
    [1.49]崔鸿超,王桂云,王一玮等.钢框架梁柱节点反复循环荷载作用下的试验研究[J].建筑结构学报,1990,11(1):52-56
    [1.50]赵大伟,石永久,陈宏.低周往复荷载下梁柱节点的试验研究[J].建筑结构,2000,30(9):32-37
    [1.51]宋振森,顾强,郭兵.刚性钢框架梁柱连接试验研究[J].建筑结构学报,2001,22(1):53-56
    [1.52] Schafer. B. W. Ojdrovic.R. P. Zarghmee. M.S.Triaxiality and Fracture of steel momentconnections[J]. Struct.Eng. ASCE.2000,126(10):1131-1139
    [1.53] Sheng Jin Chen. YC.Tsao. and YC.Chao,enhancement of ductility ofexisting seismic steelmoment connections[J]. Journal of structural engineering.2001,127(5):538-545.
    [1.54] Subhash C.Goel, Sutat Leelataviwat et al. Steel Moment Frames with Ductile Girder WebOpening[J]. Engineering Journal,1997.178-182
    [1.55] Jong Won Park,In Kyu Hwang.Experimental Investigation Section Connections of BeamSection by Use of Web Openings[J]. Engineering Journal,2003.574-579
    [1.56] M. M. K. Lee,黄耀怡译.钢板梁开孔腹板的弹性受剪屈曲[J].世界桥梁,1991(1):68-74
    [1.57] K.F.Chung, R. M. Lawson.Simplified design of composite beams with large web openingsto Eurocode4[J]. Journal of Constructional Steel Research,2001(57):135-163
    [1.58]李波,杨庆山,茹继平.腹板开孔型钢框架梁柱节点抗震性能试验[J].哈尔滨工业大学学报,2006,38(8):1303-1305
    [1.59]李亚波,吴敏哲.工字梁中心开椭圆孔腹板的屈曲性能研究[D].西安建筑科技大学硕士学位论文,2007
    [1.60] Chen S. J., Chen S. T., et al.. Fracture of steel beam-to-column connections under severeearthquake and development of ductile connections. Struct. Engrg.,1996,11(4):19-37
    [1.61] Chen, S. J.,Yeh, C. H., et al. Ductile steel beam-tocolumn connections for seismicresistance[J]. Struct. Engrg.,1996,122(11):1292-1299
    [1.62] Chen S. J., and Yeh C. H.. Enhancement of ductility of steel beam-to-columnconnections for seismic resistance.SSRC1994Tech.Session, Lehigh University,Bethlehem,327-338
    [1.63] Chen S. J., Tu C.T.. Experimental Study of Jumbo Size Reduced Beam SectionConnections Using High-Strength Steel[J]. Journal of Structural Engineering,2004,130(4):82-587
    [1.64] Brandon Chi, Chia-Ming Uang. Cyclic Response and Design Recommendations ofReduced Beam Section Moment Connections with Deep Columns[J].Struct. Eng.,2002,128(4):464-473
    [1.65] Xiaofeng Zhang, James M. Ricles. Experimental Evaluation of Reduced Beam SectionConnections to Deep Columns[J]. Journal of Structural Engineering,2006,132(3):346-357
    [1.66]杨尉彪,高小旺等.高层建筑钢结构梁柱节点试验研究[J].建筑结构,2001,31(8):3-8
    [1.67]茹继平,杨娜.翼缘削弱型钢框架梁柱节点的性能研究综述[J].工程力学,2004,2(1):61-66
    [1.68]王燕.钢框架塑性铰外移新型延性节点的研究与进展[J].青岛理工大学学报,2006,27(3):1-6
    [1.69]郁有升.钢框架梁翼缘削弱型节点的试验研究及理论分析[D].西安建筑科技大学博士学位论文,2008
    [1.70]谢晓栋,杨娜,杨庆山.钢结构翼缘削弱型节点的参数分析[J].钢结构,2004,19(4):50-52
    [1.71]吴芸,张其林,王旭峰.钢框架抗震性能试验研究和数值分析[J].西安建筑科技大学学报,2006,38(4):486-490
    [1.72]张国志,苏军.箱型柱钢框架翼缘与腹板削弱型节点有限元分析[J].科学技术与工程,2007,7(17):4369-4372
    [1.73]毛辉.钢框架梁翼缘扩翼型节点力学性能研究[D].西安建筑科技大学博士学位论文,2010
    [1.74] M.D.Engelhardt,T.A.Sabol.Reinforcing of steel moment connections with cover platesbenefits and limitations[J]. Engineering Structures,1998,20(4-6):510-520
    [1.75]王燕,郁有升,王悦,刘秀丽.钢框架翼缘削弱型和扩翼型节点受力性能研究[J].力学与实践,2010,32(1):46-54
    [1.76]毛辉,王燕.钢框架梁翼缘扩翼型节点受力性能研究[J].西安建筑科技大学学报,2010,42(1):36-41
    [1.77]王燕,冯双,王玉田.钢框架梁翼缘加强型节点低周反复荷载试验研究及数值分析[J].建筑结构学报[J].2010,31(S1):108-114
    [1.78]毛辉,王燕.钢框架扩翼型节点抗震性能研究[J].世界地震工程,2011,27(4):102-108
    [1.79]张海军,陈爱国,杨庆山.梁柱盖板连接节点强度和刚度的有限元分析[J].科学技术与工程,2007(22):5954-5958
    [1.80] T. Kim, A. S. Whittaker, et al., Cover-plate and flange-plate reinforced steelmomentresisting connections.Rep.No.PEER2000/07, Pacific Earthquake EngineeringResearch Center, Univ. of California at Berkeley, Berkeley, Calif.,2000
    [1.81] T. Kim, A. S. Whittaker, et al.. Experimental Evaluation of Plate-Reinforced SteelMoment-Resisting Connections[J]. Jounral of Stureture Engineering,2002,128(4):483-491
    [1.82] T.Kim, A. S. Whittaker et al. Cover-Plate and Flange-Plate Steel Moment-ResistingConnections[J], Jounral of Structural Engineering,2002,128(4):474-482
    [1.83]陈杰,苏明周,申林等.钢结构焊接翼缘板加强式梁柱刚性连接滞回性能试验研究[J].建筑结构学报,2007,28(3):1-7
    [1.84]刘占科,苏明周,申林等.钢结构梁端翼缘腋形扩大式刚性梁柱连接试验研究[J].建筑结构学报,2007,28(3):8-14
    [1.85]日本建筑学会.钢构造结合部设计指针(Reeommendation for Designof Conneetions inSteel Sturclures).2001
    [1.86] Chen. C. C., Lu, C. A., and Lin,C.C.Parametric study and design of rib-reinforced steelmoment connection [J]. Engineering Structures,2005,27(5):699-708
    [1.87]梁军,黎永,曾常阳.钢框架加腋梁-柱刚性节点的非线性分析[J].广东土木与建筑,2003,12(12):14-16
    [1.88] Chen. C. C., Lin, C. C., and Lin,C.H.Ductile moment connections used in steelcolumn-tree moment-resisting frames[J]. Journal of Constructional Steel Research,2006,62(8):793-801
    [1.89]陈诚直,李智民.钢构造梁扩翼接头之耐震行为[J].建筑钢结构进展,2007,9(5):35-41
    [1.90]张文元,朱福军.梁端翼缘扩大型钢框架梁柱节点的受力性能分析[J],建筑钢结构进展,2007,9(6):33-38
    [1.91]王燕,冯双,王玉田.钢框架梁翼缘加强型节点低周反复荷载试验研究及数值分析[J].建筑结构学报,2010,31(增刊):108-114
    [1.92]王玉田,王燕.钢框架加强型梁柱连接的抗震机理研究[J].西安建筑科技大学学报(自然科学版),2011,43(1):31-35
    [1.93]王燕,郁有升,王鹏.钢框架梁端翼缘板式加强型节点力学性能试验研究[J].工程力学,2011,28(3):177-184
    [1.94]王燕,刘芸,王鹏,高鹏.梁柱刚性连接加强型节点的研究进展[J].建筑钢结构进展,2011,13(2):1-7
    [1.95]王燕,冯双,王玉田.钢框架刚性连接加强型节点滞回性能试验研究[J].土木工程学报,2011,44(5):57-68
    [1.96]高鹏.钢框架梁端翼缘侧板加强式和扩翼式节点受力性能的试验研究[D].青岛理工大学硕士学位论文,2009
    [1.97] Alffedo R. S., Achintya H. Nonlinear seismic response of steel structures with semi2rigidand composite connections[J]. Journal of Constructional Research,1999.51(1):37-59
    [1.98] Miodrag Sekulovic,Ratko Salatic,Marija Nefovska.Dynamic analysis of steel frames withflexible connections[J].Computers&Structures,2002.80(11):935-955
    [1.99] Daniel Grecea, Florea Dinu, Dan Dubin. Performance criteria for MR steel frames inseismic zones[J]. Journal of Constructional Steel Research,2004.60(3-5):739-749
    [1.100] Peter Pui Tak Chui,Siu Lai Chan. Vibration and deflection characteristics of semi-rigidjointed frames[J]. Engineering Structures,1997.19(12):1001-1010
    [1.101] Peter Pui Tak Chui,Siu Lai Chan. Vibration and deflection characteristics of semi-rigidjointed frames[J]. Engineering Structures,1997.19(12):1001-1010
    [1.102] Lui, E. M., Chen W. F. Analysis andbehavior offlexibly-jointed frames[J]. EngineeringStructures,1986.8:107-1l8
    [1.103] Robeno T. Leon. Analysis and design problems for PR composite frames subjected toseismic loads[J]. Engineering Structures,1998.20(4-6):364-371
    [1.104]李国强,沈祖炎.半刚性连接钢框架弹塑性地震反应分析[J].同济大学学报,1992.20(6):123-128
    [1.105]谢小松,周瑞忠.半刚性连接钢框架结构抗震的时程计算及实例分析们[J].福州大学学报(自然科学版),2004(02):158-168
    [1.106]孙犁,李凤霞.半刚性连接钢框架抗震性能的模型试验研究[J].世界地震工程,2005,21(4):143-147
    [1.107]李欣.翼缘削弱式钢框架动力性能分析[D].青岛理工大学硕士学位论文,2009
    [1.108]完海鹰,阎红伟,程晓艳,等.高层钢结构双腹板、顶底角钢半刚性连接的研究[J].合肥工业大学学报,2003,26(3):359-362
    [1.109]完海鹰,张永生.双腹板、顶底角钢半刚性节点试验应力应变分析[J].钢结构,2004.19(5):38-40
    [1.110]完海鹰.双腹板、项底角钢半刚性节点在周期荷载作用下的实验研究[J],工业建筑,2004,7(4):17-19
    [1.111] S. J. Chen. Dynamic behavior of frames with beam flanges shaved around connections[J].Construct.Steel Res,1997,42(1):49-70
    [1.112] J Shen. Seismic performance of steel moment frames with reduced beam sections[J].Engineering Structures,2000,22(8):968-983
    [1.113]茹继平,杨娜,杨庆山.翼缘削弱型钢框架梁柱节点的性能研究综述[J].工程力学,2004,21(1):61-66
    [1.114]吴芸,吴华英,张溶,等.狗骨式刚性连接钢框架结构抗震性能试验研究[J].武汉理工大学学报,2003,25(5):38-40
    [1.115]吴芸,张其林,王旭峰.钢框架抗震性能试验研究和数值分析[J].西安建筑科技大学学报,2006,38(4):486-490
    [1.116]刘曙.钢框架滞回性能试验研究[J].华中科技大学学报,2004,32(10):43-45
    [1.117]黄炳生,黄顾忠,舒赣平,等.梁端楔形翼缘连接钢框架抗震性能和抗震设计研究[J].世界地震工程,2008,24(3):820-823
    [1.118]刘其祥,陈幼璠,陈青来.多高层钢结构梁柱刚性连接耐震型节点形式及计算方法[J].建筑结构,2010,40(6):7-12
    [2.1]顾强.钢结构滞回性能及抗震设计[M].中国建筑工业出版社,2009
    [2.2]邱法维,钱稼茹等.结构抗震实验方法[M].科学出版社,2000
    [2.3]姚谦峰,陈平编,土木工程结构实验[M].中国建筑工业出版社,2001
    [2.4]蔡益燕.考虑塑性铰外移的钢框架梁柱连接设计[J].建筑结构,2004,34(2):3-9
    [2.5] FEMA-350.Recommended Seismic design Criteria for New Steel Moment-frame Buildings.2000, Washington, D.C.
    [2.6]中华人民共和国行业标准.高层民用建筑钢结构技术规程(JGJ99-98)[S].北京:中国建筑工业出版社,1999
    [2.7]日本建筑学会.钢结构结合部指针(Recommendation for Design of Connection in SteelStructures)[S],2001
    [2.8]高鹏.钢框架梁端翼缘侧板加强式和扩翼式节点受力性能的试验研究[D],青岛理工大学,2009.6
    [2.9] AISC, Seismic Provisions for Structural Steel Buildings. American Institute of SteelConstruction, INC, March9,2005
    [2.10]沈祖炎,陈杨骥,陈以一.钢结构基本原理[M].北京:中国建筑工业出版社,2002
    [2.11]李忠献.工程结构试验理论与技术[M].天津:天津大学出版社,2004
    [2.12]郭健等,基于刚度退化的框架结构受力性能研究[J].湖南大学学报(自然科学版),2007,34(5):20-23
    [2.13]中华人民共和国行业标准.建筑抗震试验方法规程(JGJ101-96)[S].北京:中国建筑工业出版社,1997
    [3.1]王勖成,邵敏.有限单元法基本原理和数值分析[M].北京:清华大学出版社,1997.
    [3.2]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007
    [3.3]钢结构设计手册编辑委员会.钢结构设计手册(第三版)[M].北京:中国建筑工业出版社,2005
    [3.4] El-Tawil, S., et al. Strength and Ductility of FR Weld-Bolted Connections. Rep. No.SACBD/98/01, SAC Joint Venture, Sacramento, Cal,1998
    [3.5]谭建国.使用ANSYS6.0进行有限元分析[M].北京:北京大学出版社,2002
    [3.6]李超,白国良,朱佳宁,李红星.型钢混凝土翼缘剪力墙异型节点拟静力试验研究[J].华北水利水电学院学报,2010,31(2):34-37
    [3.7]高鹏.钢框架梁端翼缘侧板加强式和扩翼式节点受力性能的试验研究[D].青岛理工大学,2009
    [3.8]毛辉.钢框架梁翼缘扩翼型节点力学性能研究[D].西安建筑科技大学,2010.5
    [3.9] Brandon Chi, Chia-Ming Uang. Cyclic Response and Design Recommendations ofReduced Beam Section Moment Connections with Deep Columns. J. Struct. Eng.,2002,128(4):464–473
    [3.10] Xiaofeng Zhang, Ricels J.. Experiment Evaluation of Reduced Beam Section Connectionto Deep Column. J. Struct. Eng.,2006,132(3):346–357
    [3.11] ANSYS中国.ANSYS结构分析指南——非线性[M].2006
    [3.12]邓凡平.ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2007
    [4.1]邱法维,钱稼茹等.结构抗震试验方法[M].科学出版社,2000.
    [4.2]朱伯龙.结构抗震试验[M].地震出版社,1989
    [4.3]侯杰,刘钧等.框架结构拟动力试验方法研究工程抗震与加固改造[J].2006.12,28(6):66-70
    [4.4]完海鹰.钢结构半刚性连接体系理论分析及实验研究[D].中国科技大学博士论文,2009
    [4.5]何益斌,沈蒲生.子结构法在结构拟动力试验中的应用[J].工程力学,1996,增刊,341-348
    [4.6]克拉夫.结构动力学[M].北京:科学出版社,1981
    [4.7] M.Hakuno,M.Shidowara and T.Hara,Dynamic Destructive Test of a Cantilevers BeamControlled by an Analog-Computer[J],Transactions of the Japan Society of CivilEngineering, No.171,1969
    [4.8]邱法维,吕西林,卢文生.结构拟动力试验方法及应用研究[J].土木工程防震减灾国家重点实验室课题总结报告,1996
    [4.9]建筑抗震试验方法规程(JG101-96)[S].中国建筑工业出版社,1997
    [4.10] M.Nakashima,H.Kato.Experimental error growth behavior and error Growth control inon-line computer test control method.BRI Research Paper,1987
    [4.11]杜芳.拟动力试验中设备误差修正的人工神经网络方法[J].振动与冲击,1998,17(3):42-46
    [4.12]邱法维等.结构拟动力试验软件TUT使用手册[M].清华大学土木工程系,2004
    [4.13]国家质量技术监督局.钢及钢产品-力学性能试验的取样位置及试样制备(GB/T2975-1998)[S].北京:中国标准出版社,1998
    [4.14]国家质量技术监督局.金属材料室温拉伸试验方法(GB/T228-2002)[S].北京:中国标准出版社,2002
    [4.15]范力,赵斌,吕西林.拟动力试验中几个问题的讨论[J].结构工程师,2006.10,22(5):50-53
    [4.16]范力,张宁.抗震试验中多自由度结构的滞回曲线分析[J].工业建筑,2007(37)增刊:26-29
    [5.1]邱法维,钱稼茹等.结构抗震实验方法[M].北京:科学出版社,2000
    [5.2]李忠献.工程结构试验理论与技术[M].天津:天津大学出版社,2004
    [5.3]姚谦峰等.土木工程结构试验[M].中国建筑工业出版社,2008
    [5.4]顾强.钢结构滞回性能及抗震设计[M].中国建筑工业出版社,2009.
    [5.5]范力,张宁.抗震试验中多自由度结构的滞回曲线分析[J].工业建筑,2007(37)增刊:283-286
    [5.6]曹均峰.钢框架体系拟动力试验及两种实现方法的对比研究[D].合肥工业大学,2007
    [5.7]李超,白国良,朱佳宁,李红星.型钢混凝土翼缘剪力墙异型节点拟静力试验研究[J].华北水利水电学院学报,2010,31(2):34-37
    [5.8]王瑞,翟厚勤,王禹达.结构拟动力试验技术的试验研究[J].江苏建筑,2001.4:18-22
    [5.9]中华人民共和国行业标准.建筑抗震试验方法规程(JGJ101-96)[S].北京:中国建筑工业出版社,1997
    [6.1]韩林海,杨有福.现代钢管混凝土结构技术[M].北京:中国建筑工业出版社出版,2004
    [6.2]陈惠发,A.F.萨里普.弹性与塑性力学[M].北京:中国建筑工业出版社出版,2006
    [6.3]王新敏.ANSYS工程结构数值分析[M].人民交通出版社,2007
    [6.4]邓凡平.ANSYS10.0有限元分析自学手册[M].人民邮电出版社,2007
    [6.5]李爱群,丁友亮.工程结构抗震分析[M].高等教育出版社,2010
    [6.6]完海鹰.钢结构半刚性连接体系理论分析及实验研究[D].中国科技大学,2009
    [6.7]建筑抗震设计规范(GB50011-2010)[S].中国建筑工业出版社,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700