用户名: 密码: 验证码:
淬火介质对2519A铝合金组织与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以2519A铝合金板材为研究对象,采用力学性能测试、显微硬度测试、电导率测试、光学显微镜、扫描电镜及透射电镜分析等手段,研究了淬火介质对2519A铝合金板材的组织和力学性能以及腐蚀性能的影响。结果表明:
     (1)经过不同介质淬火后的合金在人工时效过程中,表现出三阶段时效特性:欠时效、峰值时效及过时效的过程。随着介质冷却能力降低,合金在人工时效过程中达到峰值时效的时间缩短,并且峰值时效硬度降低。时效前经过预变形的合金硬度在人工时效过程中显著高于未经过变形的合金。经过20℃水淬火合金的峰值硬度值最高。
     (2)经过不同介质淬火的合金在时效过程中,随着时效时间的延长,各个合金的电导率逐渐升高。经预变形处理的合金在时效过程中电导率变化比未经过预变形处理后的合金明显。空气淬火的合金电导率最高,可达21.3IACS%。
     (3)经不同介质淬火并经预变形的合金强度高于无变形合金的强度。T8状态下经20℃水淬火时抗拉强度最高;经空气淬火时抗拉强度最低。
     (4)经不同介质淬火的合金经预变形后的抗晶间腐蚀性能和抗剥落腐蚀性能要好于无变形的合金。经过20℃水淬火的合金抗晶间腐蚀和剥落腐蚀性能最好,而空气淬火的合金抗晶间腐蚀和剥落腐蚀性能最差。
By means of mechanical property testing, microhardness tests, conductivity testing, optical microscopy, SEM and transmission electron microscopy (TEM) effect of quenching agent on mechanical properties, exfoliation corrosion, intergranular corrosion and microscopic structure resistance of 2519A alloy was investigated in this paper. The results show that:
     (1)Artificial aging process of alloy which is processed by different quenching agents can be divided into three stages, under-aging; peak-aging; over-aging. Along with the reduction of the agents quenching ability, the time which is spent to reaching ageing-peak during artificial ageing process is reduced, while the peak hardness reduced. Alloy with pre-deformation has higher hardness than that without pre-deformation. Quenched in pre-deformation state in 20℃water,the peak-hardness was highest.
     (2) During aging process, as increasing of aging time, the electrical conductivity of the alloy increases gradually. The conductivity of alloy with pre-deformation treatment changes obviously than that without pre-deformation treatment. The alloy quenched in air has the highest conductivity. It is up to 21.3IACS%.
     (3) In different quenching agents, the alloy which is processed in T8 state has higher intensity than that which is processed in T6 state. Quenched in 20℃water in T8 state , the tensile strength is maximum; quenched in air is minimum.
     (4) In different quenching agents, the alloy with pre-deformation treatment has better resistance intergranular corrosion and exfoliation corrosion than that without pre-deformation treatment. Resistance intergranular and exfoliation corrosion of alloys which quenched in 20℃water are best and quenched in air are worst.
引文
[1]刘静安,谢永生编著.铝合金材料的应用与技术开发[M].北京:冶金工业出版社,2004.
    [2]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南大学出版社,2002.
    [3]武恭等主编.铝及铝合金材料手册[M].科学出版社,1997年.
    [4]田景来,吕爽,王快社,等.累积叠轧1060纯铝微观组织和力学性能的研究[J].铸造技术,2008,29(5):667-669.
    [5]白德新,彭德全,贺非,等.反应堆A0纯铝的点蚀模拟[J].稀有金属材料于工程,2004,33(5):494-497.
    [6]屈敏,刘林,唐锦涛,等.试样直径对Al-Cu合金定向凝固温度梯度和一次枝晶间距的影响.中国有色金属学报,2008,18(2):282-287.
    [7]李云涛,刘志义,马飞跃,等.Al-Cu-Mg-Er合金晶界相组成及生长方式[J].稀有金属材料与工程,2008,37(6):827-830.
    [8]李慧中,梁霄鹏,陈明安,张新明.冷轧变形量对2519铝合金组织与力学性能的影响.材料热处理学报,2008,29(2):86-89.
    [9]林光磊.7A04-T6铝合金棒材生产工艺研究.轻合金加工技术,2007,35(1):33-57.
    [10]钟掘,何振波.航空航天用铝合金的研究及发展方向.中国新材料产业发展报告(材料专辑),2006,2-13.
    [11]James J F,Lawrence S K,Joseph R P.Aluminum alloy 2519 in military vehicles[J].Advanced Materials and Processes,2002,160(9):43-46.
    [12]Devincent S M,Devletian J H,Gedeon S A.Weld properties of the newly developed 2519-T87 aluminum armor alloy[J].Welding Journal 1988,67(7):33-43.
    [13]李慧中,郭菲菲,梁霄鹏,李洲.焊丝成分对2519铝合金焊缝组织与性能的影响[J].焊接学报,2008,29(4):77-81.
    [14]许良红,田志凌,张晓牧,彭云.保护气体对高强铝合金的焊缝组织及气孔敏感性的影响[J].焊接学报,2006,27(12):69-73.
    [15]范成磊,梁迎春,杨春利,程士军.2519高强铝合金双丝GMAW焊接工艺[J].焊接学报,2006,27(10):24-27.
    [16]周鹏展,钟掘,贺地求,舒霞云.2519厚板搅拌摩擦焊缝组织性能及断裂分析[J].焊接学报,2006,27(4):33-36.
    [17]黄佩武,刘友良.180℃形变热处理对2519A铝合金性能的影响[J].湖南冶金, 2006,34(4):12-15.
    [18]李慧中,梁霄鹏,张新明,黄伯云,张传福.2519铝合金热变形组织演化[J].中国有色金属学报,2008,18(2):226-230.
    [19]李慧中,张新明,陈明安,龚敏如,周卓平.Zr含量对2519铝合金组织与力学性能的影响[J].金属热处理,2004.29(11):11-14.
    [20]李慧中,张新明,陈明安,周卓平,龚敏如.稀土钇对2519合金组织及耐热性能的影响[J].材料科学与工程学报,2005,23(1):38-41.
    [21]李慧中,张新明,陈明安,等.钇对2519铝合金的组织与性能的影响[J].稀土,2005,26(2):37-40.
    [22]林启权,彭大暑,张辉,林高用.2519铝合金热压缩变形过程的动态与静态软化行为[J].中南大学学报(自然科学版),2005,36(2):3-5.
    [23]李慧中,张新明,陈明安,周卓平.热处理制度对2519铝合金晶间腐蚀性能的影响[J].材料热处理学报,2005,26(1):20-23.
    [24]刘瑛,张新明,等.预变形量对2519铝合金抗剥落腐蚀性能的影响[J].材料热处理学报,2006,27(6):61-65.
    [25]李慧中,张新明,陈明安,周卓平.时效过程对2519铝合金抗晶间腐蚀性能的影响[J].金属热处理,2005,30(5):58-60.
    [26]陈险峰,彭大暑,张辉.热处理制度对2519铝合金板材力学性能和应力腐蚀敏感性的影响[J].中国有色金属学报,2003,13(4)934-938.
    [27]陈险峰,林启权,林高用,彭大暑.2519铝合金热轧板材晶间腐蚀的研究[J].腐蚀科学与防护技术,2004,16(1):13-16.
    [28]郑子樵.材料科学基础[M].长沙:中南大学出版社,2005.
    [29]Conserva M,Fiorini P.lnterpretation of quench sensitivity in Al_2Zn_2Mg_2Cu alloys[J].Metallurgical Transactions,1973,4:857-862.
    [30]Robinson J S,Cudd R L,Tanner D A,et al.Quench sensitivity and tensile property inhomogeneity in 7010 forgings[J].Journal of Materials Processing Technology,2001,119:261-267.
    [31]Deschamps A,Br(?)chet C.Nature and distribution of quench induced precipitation in an Al_2Zn_2Mg_2Cu alloy[J].Scripta Materialia,1998,39(11):1517-1522.
    [32]Robinson J S,Cudd R L,Tanner D A.Quench sensitivity and tensile property inhomogeneity in 7010 forgings[J].Journal of Materials Processing Technology,2001,119(1/3):261-267.
    [33]Lim S T,Yun S J,Nam S W.Improved quench sensitivity in modified aluminum alloy 7175 for thick forging applications[J].Mater Sci Eng A,2004,A371(1/2):82-90.
    [34]Dumont D,Deschamps A.Characterization of precipitation microstructures in aluminium alloys 7040 and 7050 and their relationship to mechanical behavior[J].Mater Sci Technol,2004,20(5):567-576.
    [35]Bates C E,Totten G E.Procedure for quenching mediaselection to maximize tensile properties and minimizedistortion in aluminium alloy parts[J].Heat Treatment of Metals,1988,4:89-97.
    [36]Bates C E.Selecting quenchers to maximize tensile properties and minimize distortion in aluminum parts[J].Journal of Heat Treating,1987,5(1):27-40.
    [37]Davydov V G,Ber L B,Kaputkin E Y,et al.TTP and TTT diagrams for quench sensitivity and ageing of 1424 alloy[J].Materials Science and Engineering,2000,A280:76-82.
    [38]Davydov V G,Ber L B.TTT and TTP ageing diagrams of commercial aluminium alloys and their use for ageing acceleration and properties improvement [J].Materials Science and Forum,2002,396(402):1169-1174.
    [39]刘胜胆,张新明,游江海,等.7055铝合金的TTP曲线及其应用[J].中国有色金属学报,2006,16(12):2034-2038.
    [40]Evancho J W,Staley J T.Kinetics of precipitation in aluminum alloys during continuous cooling[J].Metal lurgical Transactions A,1974,5A:43-47.
    [41]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社,2003.
    [42]张锡鹏.淬火的冷却技术[J].热处理实践,1994,(4):36-41.
    [43]陈乃录,潘健生,廖波.淬火冷却技术的研究进展[J].热处理,2004,29(3):17-21.
    [44]牛万斌,陈乃录.冷却介质的冷却[J].金属热处理,1996,(5):47-49.
    [45]刘胜胆,张新明,黄振宝,等.7055铝合金的淬火敏感性研究[J].中南大学学报,2006,37(5):846-849.
    [46]刘胜胆,张新明,游江海,等.淬火介质对7055铝合金晶界析出行为的影响[J].特种铸造及有色合金,2006,26(11):696-699.
    [47]张新明,刘胜胆,刘瑛,等.淬火速率和锆含量对7055型铝合金晶间腐蚀的影响[J].中南大学学报,2007,38(2):181-185.
    [48]张涛,吉泽升.淬火介质对1420铝锂合金组织及性能的影响[J].哈尔滨理工大学学报,2002,7(1):47-49.
    [49]杨志坤,王邦龙,刘恩锦.2A12铝合金薄板的等温淬火[J].热加工工艺,2004,(6):29-31.
    [50]张克俭.淬火冷却技术及其应用技术漫谈[J].热处理,2004,29(3):52-58.
    [51]秦勇.热处理淬火介质的发展[J].煤矿机械,2001,(3):3-4.
    [52]中国机械工程学会热处理专业学会.热处理手册.第2版第1卷[M].北京:机械工业出版社,1992.
    [53]陈志宏.冷却介质性能评定方法进展—冷却曲线法的发展和应用[J].金属热处理,1998,(6):5-8.
    [54]王运迪.淬火介质[M].上海:上海科学技术出版社,1981.
    [55]胡邵文,刘麦秋,李卫民.水基淬火介质PAG的使用[J].热加工工艺,2006,35(22):76-77.
    [56]胡邵文,李卫民,刘麦秋.水溶性淬火介质[J].热加工工艺,2006,35(16):75-77.
    [57]威正风.金属热处理原理[M].北京:机械工业出版社,1987.
    [58]H.H诺维柯夫.金属热处理理论[M].北京:机械工业出版社,1978.
    [59]邓至谦,周善初.金属材料及热处理[M].长沙:中南大学出版社,1994.
    [60]夏立芳.金属热处理工艺学[M].哈尔滨:哈尔滨工业出版社,1986.
    [61]吕利太编.淬火介质[M].中国农业机械出版社,1982.
    [62]卢光煦,侯增寿.金属学教程[M].上海:上海科技出版社,1983.
    [63]胡志东,李光银,范宏利.淬火介质冷却机理的试验研究[J].武汉汽车工业大学学报,1984,20(2):38-40.
    [64]金相图谱编写组,变形铝合金金相图谱[M].北京:冶金工业出版社,1975.
    [65]李慧中,张新明,陈明安,周卓平,龚敏如.2519铝合金时效过程的组织特征[J].特种铸造及有色合金,2005,5(05):273-275.
    [66]李慧中,张新明,陈明安,周卓平,龚敏如.预变形对2519铝合金组织与力学性能的影响[J].中国有色金属学报,2004,14(12):1990-1994.
    [67]王桂青,孙清洲,等.铸造Al-Si基合金中Mg和Cu的硬化作用分析[J].特种铸造及有色合金,2005(1):35-37.
    [68]伊琳娜,汝继刚,张禄山.Д19Ч铝合金铸锭均匀化及棒材固溶处理温度的研究[J].稀有金属,2000,24(1):71-73.
    [69]李春梅,陈志谦,等.7055超高强、超高韧铝合金力学性能分析.金属热处理,2008,33(1):100-104.
    [70]Kelly A,Nicholson R B.Strengthening Methods in Crystals[M].Elsevier,Amsterdam,1971.
    [71]Maritin J W.Micromechanisms in Particle-hardened Alloys[M].Cambridge University Press,1980.
    [72]曹楚南,腐蚀电化学,北京:化学工业出版社,1994.
    [73]Z.Szklarska-Smialowska,NACE,1986,282.
    [74]苏景新,张昭,曹发和,张鉴清,曹楚南.T6态2090 Al-Li合金在EXCO溶液中的剥蚀行为和剥蚀发展过程中的电化学阻抗谱[J].金属学报,2005,41(9):974-978.
    [75]曹发和.高强度航空铝合金局部腐蚀的电化学研究.浙江大学博士论文,2005.
    [76]G.S Chen,C.M Liao,K.C Wan,M.Gao,R.P Wei,"Pitting Corrosion and Fatigue Crack Nucleation," in Effects of the environment on initiation of Crack Growth,ASTM STP 1298,eds.W.A.Van.Der Sluys,R.S Piascik,R.Zawierucha(West Conshohocken,P A:ASTM,1997.)
    [77]何跃,郑玉贵,国旭明.高强Al-Cu合金2219及其熔敷金属的点蚀行为研究[J].腐蚀科学与防腐技术,2005,17(6):387-391.
    [78]《有色金属及其热处理》编写组.有色金属及其热处理[M].北京:国防工业出版社.1981.
    [79]钱建刚,李狄,郭宝兰,李强.L4高强铝合金的腐蚀性能研究[J].腐蚀与防腐,2002,23(8):340-343.
    [80]刘宝俊.材料的腐蚀及控制[M],北京:北京航空航天大学出版社,1989.
    [81]张新明,龚敏如,李慧中,陈明安,周卓平.2519铝合金薄板在不同时效状态的抗晶间腐蚀能力[J].中南大学学报(自然科学版),2004,35(3):349-352.
    [82]Maitra S,English G C.Mechanism of localized corrosion of 7075 alloy plate[J].Metal.Trans.A,1981,12A:535-541.
    [83]Cabot P L,Centellas F,Garrido J A,Rogriguez R M,Brillas E,Perez E.Influence of the heat treatment in the electrochemical corrosion of Al-Zn-Mg alloys[J].J.App.Electrochem.,1992,22:541-552.
    [84]Ramgopal T,Gouma P I,Frankel G S.Pole of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150[J].Corrosion,2002,58(8):687-697.
    [85]杨胜,易丹青,等.航空Al-Cu-Mg合金剥落腐蚀行为[J].北京科学技术大学学报,2007,29(2):216-219.
    [86]黄兰萍,陈康华,李松,等.高温预析出后7055铝合金局部腐蚀性能和时效硬化[J].稀有金属材料工程,2007,36(9):1628-1632.
    [87]尹志民,方家芳,黄继武,等.时效工艺对7A52铝合金晶间腐蚀和剥蚀行为的影响[J].中南大学学报(自然科学版),2007,38(4):617-622.
    [88]Robinson M J,Jackson N C.Exfoliation corrosion of high strength Al-Cu-Mg alloys:effect of grain structure[J].Br.Corros.J.1999,34(1):45-49.
    [89]Kelly D J,Robinson M J.lnfluence of heat treatment and grain shape on exfoliation corrosion of Al-Li alloy 8090[J].Corrosion,1993,49(10):787-795.
    [90]Singarkii VS,Kalinin V D,Dorokhina V E.Aluminium Alloy,s Inter.Conf.Aluminium Alloys.1990.
    [91]Shaffer I S.ASTM STP,1972,516.
    [92]郭宝兰,刘晓松,李荻,等.LC4铝合金板材在EXCO溶液中的腐蚀行为[J].材料保护,1995,28(6):5-7.
    [93]Habashi M,Bonte E,Galland J,et al.Quantitative measurements of the degree of exfoliation on aluminum alloys[J].Corrosion Science,1993,35(4):168-183.
    [94]Exfoliation corrosion susceptibility in 2XXX and 7XXX series aluminum alloys (EXCO test)[s].ASTM G34-79.
    [95]鲁效梅.铝合金挤压型材剥层腐蚀的研究[J].西飞科技,1995,(2):12-16.
    [96]李荻,左尚志,郭宝兰.LY12铝合金剥蚀行为的研究[J].中国腐蚀与防护学报,1995,15(3):203-208.
    [97]李劲松,张昭,曹发和,等.LC4铝合金剥蚀及其电化学阻抗行为[J].中国有色金属学报,2002,12(6):1190-1193.
    [98]邵敏华.扫描微电极法研究2024 Al合金局部腐蚀及Ce盐局部成膜机理.厦门大学理学硕士学位论文,2005.
    [99]刘瑛,张新明,等.预变形量对2519铝合金抗晶间腐蚀性能的影响[J].中国有色金属学报,2006,16(9):1545-1550.
    [100]王国军,熊柏青,张永安,等.铝合金的淬透性及其研究方法[J].轻合金加工技术,2008,36(6):5-9.
    [101]刘胜胆,张新明,黄振宝,等.7055铝合金的淬火敏感性研究[J].中南大学学报(自然科学版),2006,37(5):846-849.
    [102]Haas M D E.Grain boundary phenomena and failure of aluminum alloys:[PhD].Groningen University of Groningen,2002.
    [103]曹明盛.物理冶金基础[M].北京:冶金工业出版社,1985.
    [104]张茁,陈康华.固溶处理对Al-Zn-Mg-Cu率合金电导率的影响[J].粉末冶金材料科学与工程,2004,9(1):79-83.
    [105]谢庭翠,师雪飞,齐国栋.热处理制度对2Al2铝合金电导率的影响[J].轻合金加工技术,2003,31(11):44-45.
    [106]樊喜刚,蒋大鸣.时效制度对7150铝合金组织和性能的影响[J].材料热处理,2006,35(16):22-25.
    [107]顾景诚.铝合金的时效过程[J].轻合金加工技术,1985,15(3):12-16.
    [108]张承忠.金属的腐蚀与防护[M].北京:冶金工业出版社,2000.
    [109]Bondan T.Sofyan,lan J.Polmear,Simon P.Ringer.Precipitation processes in Al-4Cu-(Mg,Cd)(wt%)alloys[J].Materials Science Forum,2002:613-618.
    [110]Porter D A,Easterling K E.Phase transformation in metals and alloys[M].Oxford:Alden Press,1981.
    [111]Hirosawa S,Oguri Y,Sato T.Formation mechanism of precipitate free zones in age-hardenable Al alloys materials forum,2004,28:666-671.
    [112]Sinyavskii V S,Ulanova V V,Kalinin V D.On the mechanism of intergranualr corrosion of aluminum alloys[J].Protection of Metals,2004,40(5):537-546.
    [113]张琦,李荻,丁学谊.LC4铝合金晶间腐蚀电化学机理[J].材料保护,1996,29(8):6-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700