用户名: 密码: 验证码:
时效处理对2024-T3搅拌摩擦焊接头组织及性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,搅拌摩擦焊已经被广泛的应用于航空航天、船舶、铁路、汽车等领域。国内外评定铝合金FSW接头时,主要考察焊态条件下接头区域微观组织结构、力学性能和疲劳性能,很少考虑焊后时效热处理对FSW接头使用性能的影响。铝合金的特点是具有时效强化效应,即使在自然放置状态下其性能也会随时间而变化。因此,研究时效工艺对FSW接头性能的影响具有重要工程意义。
     本文研究的是时效处理对2024-T3的FSW接头的组织及性能的影响,主要考察三种时效规范—自然时效、180℃/10h、45℃/12h—对FSW接头的影响,以便在工程应用中为确定2024-T3铝合金FSW接头时效热处理规范提供参考依据。
     本文利用金相、硬度、拉伸、弯曲等试验手段来评定接头性能。研究结果表明,自然时效各个周期接头相应区域的金相组织无明显的变化;对比三种时效制度接头,其各区域的组织微观上也未能发现明显的区别,但是经过XRD物相分析,发现45℃/12h的焊缝析出的S相比其它两种的多。从接头整体硬度分布来看,自然时效与45℃/12h的分布趋势一样,只是后者整体比前者高;180℃/10h的接头硬度分布毫无规律,但热机影响区的硬度升高并大于焊缝硬度。从局部来看,自然时效的第一、二周期接头焊缝的硬度波动较大,从第三周期开始,硬度趋于稳定。经过45℃/12h的接头焊缝硬度波动最大,180℃/10h的次之,第五自然时效周期的最小。由于接头存在缺陷,导致三种时效规范的接头抗拉强度、延伸率下降。但剔除缺陷影响,时效后的接头的性能优于焊态的,而且自然时效优于人工时效
At present, FSW has been widely used at aerospace, ship-building, railways, automobiles and other fields. at home and abroad, people evaluate the joint of FSW of aluminum alloy by microstructure, mechanical properties and fatigue properties, but largely overlook an important feature of aluminum–ageing strengthening. Therefore, the study of the effluence of the aging process on FSW joint is with important significance.
     The objective of this paper is to find the impact of aging on the joints of FSW of 2024-T3 aluminum alloy under the three systems–the natural aging, 180℃/10h, 45℃/12h, in order to provide reference for the aging system when ascertain ageing condition of aluminum FSW joints .
     By using microstructure, hardness, stretching, bending, and other means people test the joint. The results show that the microstructure of the natural aging joints at the corresponding regions in various period has no significant change; Comparison of three aging joints, its microstructure has also failed to find a clear distinction, but after XRD diffraction, finds that the Weld Nugget of 45℃/12h has more S precipitation than the other two, which leads to its hardness higher than the other two. From the distribution of the hardness of the cross area of the joint, natural aging and 45℃/12h have the same trend, but the latter is high than the former; 180℃/ 10h has no regular distribution, but the hardness of the Thermal Mechanical Affected Zone is higher than the Nugget. From the local area, weld joints hardness fluctuates in the first and second cycle of the natural aging, and from the third cycle, the hardness of stabilizes. After 45℃/12h the fluctuations in the hardness is the largest, and 180℃/10h is the second, then the fifth period of natural ageing is the lowest. Because there are shortcomings, which lead to the decline of tensile strength, elongation of the joint aged by three ageing system respectively. However, excluding impact of defects, the aging joints is better than welded, and the natural aging is better than artificial aging.
引文
[1]焦馥杰.焊接结构分析基础[M].上海:上海科学技术文献出版社,1991,13~24.
    [2]田锡唐.焊接结构[M].北京:机械工业出版社,1982,7~13.
    [3] Ohata M. Control of welding distortion in fillet welds of aluminum alloy [J]. Welding Research Abroad, 2000,46(2):23~31.
    [4] Lequeu P, Lassince P ,Warner T ,and Raynaud G M. Engineering for the future: weight savingand cost reduction initiative[J]. Aircraft Engr Aerospace Tech. 2001, Vol. 73 , pp 147~158.
    [5]陈亚莉.波音777及其侯选动力装置的选材(一) [J].航空制造工程,1995:25 (1):32~34.
    [6]周振丰.焊接冶金学[M].北京:机械工业出版社,1993,125.
    [7]石崇刚,王蕾,朱仁达,马广明,周国兴.铝合金氩弧焊与激光焊研究[J].南京航空航天大学学报,1996,28(4):205~210.
    [8]邢丽,柯黎明,周细应,刘鸽平. LF6铝合金薄板的搅拌摩擦焊焊缝成型及性能[J].南昌航空工业学院学报,2001,15(2):1~4.
    [9]张田仓,郭德伦,陈沁刚,栾国红.铝合金搅拌摩擦焊技术研究.机械工程学报,2002,38 (2):127~130.
    [10] S Esmaeilia, D J Lloyd, W J Poole. Effect of natural aging on the resistivity evolution during artificial aging of the aluminum alloy AA6111[J]. Materials Letters 576 59 (2005):575~577.
    [11] W J Poole , D J Lloyd , J D Embury. The effect of natural ageing on the evolution of yield strength during artificial ageing for Al-Mg-Si-Cu alloys[J]. Materials Science and Engineering A 234~236 (1997):306~309.
    [12] R A Siddiqui, S A Abdul-Wahab , T Pervez. Effect of aging time and aging temperature on fatigue and fracture behavior of 6063 aluminum alloy under seawater influence[J]. Materials and Design 29 (2008): 70~79.
    [13] Ashish Thakur , R Raman, S N Malhotra. Effect of natural aging on the resistivity evolution during artificial aging of the Al-Zn-Mg-Zr alloy[J]. Journal of Materials Processing Technology 194 (2007):184~186.
    [14] Sharmilee Pal , R. Mitra , V V Bhanuprasad. Aging behaviour of Al-Cu-Mg alloy-SiC composites[J]. Materials Science and Engineering A xxx (2007): xxx~xxx.
    [15] U S Mallik, V Sampath. Effect of composition and ageing on damping characteristics of Cu-Al-Mn shape memory alloys[J]. Materials Science and Engineering A xxx (2007):xxx~xxx.
    [16] Mohammed Noor Desmukh, R K Pandey , A K Mukhopadhyayb. Effect of aging treatments on the kinetics of fatigue crack growth in 7010 aluminum alloy[J]. Materials Science and Engineering A 435~436 (2006):318~326.
    [17] Y J Ro, M R. Begley, R P Gangloff, S R Agnew. Effect of aging on scale-dependent plasticity in aluminum alloy 2024[J]. Materials Science and Engineering A 435~436 (2006):333~342.
    [18] Gaute Svenningsen , Magnus Hurlen Larsen,John Charles Walmsley , Jan Halvor Nordlien ,Kemal Nisancioglu[J]. Effect of artificial aging on intergranular corrosion of extruded Al-Mg-Si alloywith small Cu content Corrosion Science 48 (2006):1528~1543.
    [19] G H Bray , M. Glazov , RJ Rioja , D Li , R P Gangloff. Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys[J]. International Journal of Fatigue 23 (2001) S265~S276.
    [20] S M Hirth , G J Marshall , S A Court , D J Lloyd. Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016[J]. Materials Science and Engineering A 319~321(2001):452~456.
    [21]中国搅拌摩擦焊中心.中国搅拌摩擦焊中心简报(Z).北京航空制造工程研究所,2002.
    [22]景诚.铝合金时效过程(上) [J].轻合金加工技术,1985(3):25~28.
    [23] AN OUTSIDER LOOKS AT FRICTION STIR WELDING[R]. REPORT #: ANM-112N-05-06 JULY 2005 Terry Khaled, Ph.D.
    [24] E Litwinski: Third International Symposium on Friction Stir Welding (Session 4)[C], Kobe, Japan, 27~28 September 2001.
    [25] A N Abdel-Azim , Y Shash , S F Mostafa , A Younan Ageing behaviour of 2024-Al alloy reinforced with Al2O3 particles[J]. Journal of Materials Processing Technology 55 (1995):140~145.
    [26] Lucasak D A,Hart R M Aluminum alloy development efforts for compression dominated structure of aircraft [J]. Light Metal Age,1991,2(9):11~19.
    [27]周鸿章,李念奎.超高强铝合金的发展历程及趋势[A].《铝—21世纪基础研究和技术研究论文集》[C],张家界,2003年:56~67.
    [28]戴晓元等.固溶处理及时效对7xxx铝合金组织与性能的影响[J].材料热处理学报,第4期.
    [29]李慧中,张新明,陈明安,周卓平,龚敏如. 2519铝合金时效过程的组织特征[J].特种铸造及有色合金,2005年,第25卷第5期.
    [30] CAHN J W, HILLIARD J. Free energy of a non-uniform system [J]. J Chem Phys, 1958, 28(2):258~263.
    [31] CAHN J W. Spinodal decomposition in cubic crystals[J]. Acta Metal, 1962, 10(2): 179~191.
    [32] MYHR O R, GRONG O, ANDPRSON J S. Modeling of the age hardening behavior of Al-Mg-Si alloys[J]. Acta Mater, 2001,49(1):65~75.
    [33] WPAKLPY-BOLLIN S C, DONLON W, WOLVPRTON C, et al Modeling the aging-hardening behavior of AI-Si-Cu alloys[J] Metal Mater Trans A, 2004, 35(8): 2407~2418.
    [34] HAM F' S. Diffusion-limited growth of precipitate particles[J]. J Appl Phys, 1959, 17(1): 137~145.
    [35] PSHPLBY J D. The determination of the elastic field of an ellipsoidal inclusion and rated problems [J]. Proc R Soc A,1957,241: 376~389.
    [35] ABBOTT K, HAWORTH C W. Dissolution of gamma-phase in Al-Ag alloys[J]. Acta Metal, 1973, 21(5): 951~962.
    [37] WPNDTH, HAASPN P. Nucleation and growth of gamma-precipitates in Ni-14%Al[J]. Acta Metal, 1983, 31(9):1948~1957.
    [38] CHPN Y H, DOHPRTY R D. On the growth kinetics of plate-shaped precipitates in AI-Cu and AI-Ag alloys[J]. Scripta Metal, 1977, 11(6): 725~731.
    [39] LANGPR J S, SCHWARZ A J. Kinetics of nucleation in near critical fluids[J]. Phys RcvA, 1980, 21(5): 948-953.
    [40] SHERCLIFF H R, ASHBY M F. A process model for age hardening of aluminum alloys. 1. The model[J]. Acta Metall Mater, 1990, 38(10): 1789~1902.
    [41] SHWERCLIPP H R, ASHBY M P. A process model for agehardening of aluminum alloys. 2. Application of the model[J]Acta Metall Mater, 1990, 38(10): 1803~1812.
    [42] DESCHAMPS A, BRECHET Y. Influence of predeformation and aging of an Al-Zn-Mg alloy. 1. Microstructure evolution and mechanical properties[J]. Acta Mater, 1999, 47(1): 281~292.
    [43] DESCHAMPS A, BR,ECHET Y. Influence of predeformation and aging of an Al-Zn-Mg alloy. 2. Modeling of precipitation kineties and yield strength[J]. Acta Mater, 1999, 47(1): 293~305.
    [44] LIU G, ZHANG G J, DING X D, et al. Modeling the strengthening response to aging process of heat-treatable aluminum alloy containing plate/disc- or rod/needle-shaped precipitates [J]. Mater Sci Eng A, 2003, 344(1): 113~124.
    [45]宋皎,肖代红,陈康华.铝合金时效硬化模型的研究进展粉末冶金[J].材料科学与工程,2007年10月,第12卷第5期.
    [46]张国君,刘刚,丁向东,孙军.陈康华铝合金时效—屈服强度的实验与模型化研究[J].金属学报,2003年8月,第39卷第8期:803~808.
    [47]天津大学范雄主编. X射线金属学[M].北京:机械工业出版社,1980:98~119.
    [48]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社,2003,9:238~266
    [49]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006.1.
    [50]《铝合金热处理》编写组.铝合金热处理[M].北京:冶金工业出版社1972.3.
    [51]崔忠圻.金属学与热处理[M].北京:机械工业出版社,2000:408~419.
    [52] N.N.诺维柯夫[苏].金属热处理理论(王子佑译)[M].北京:机械工业出版社,1987年2月第1版:274~332.
    [53]戚正风主编.金属热处理原理[M]. 1987年6月第1版:187~203.
    [54]赵连诚主编.金属热处理原理[M]. 1987年2月第1版:215~233.
    [55]厚健.长征系列运载火箭介绍[J].中国航天学报,1998,12:17~21.
    [56]王饪.铝合金在造船中的应用与发展[J].轻金属,1994,4:49~54.
    [57]潘金生等.材料科学基础[M].北京:清华大学出版社,1998:78~88.
    [58]陈惠民.热处理温度和时间对LC4和LY12变形铝合金机械性能的影响[J].金属热处理,1981(6):22~28.
    [59] Shih H C , Ho N J and Huang J C . Precipitation behaviors in Al-Cu-Mg and 2024 aluminum alloys[J]. Metallurgical and Materials Transactions A 1996(27A):2479~2493.
    [60]朱玉.LY1铝合金在普通炉井式电阻炉中进行淬火加热试验[J].金属热处理,1987(7):54~55.
    [61]景诚.铝合金时效过程(下) [J].轻合金加工技术,1985(4):14~18.
    [62]田秀云,刘艳红,高立. 2024铝合金新人工时效制度的探讨[J].航空材料学报,2000,6,20(2):35~39.
    [63]刑淑仪,王世洪.铝合金和钦合金[M].北京:机械工业出版社,1987:40~45.
    [64]陈康华,刘允中,刘红卫. 7075和2024铝合金的固溶组织与力学性能[J].中国有色金属学报,2000,10(6):819~822.
    [65] G Biallas. Characterisation of friction stir welded joints of the aluminium alloy AA 2024-T3 by laser extensometry[J]. Material prufung,2000,42(6):236~239.
    [66]彭成章,周鹏展,黄明辉.铝合金的搅拌摩擦焊接工艺及显微组织[J].湘潭矿业学院学报,2002年6月,第17卷第2期.
    [67]傅志红,贺地求,周鹏展,胡爱武. 7A52铝合金搅拌摩擦焊焊缝的组织分[J].焊接学报,2006年5月,第27卷第5期.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700