用户名: 密码: 验证码:
宏微观交通运输系统的复杂性测度及其管控应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学正确地认识管理和控制对象是实现有效管理和控制的前提。把交通运输系统视为一个线性、定常系统的假设已经被近年的研究所颠覆,“复杂的、非线性系统”的认识已在学术界形成共识。对交通运输系统复杂性、非线性的定量刻画研究也逐渐成为热点问题。目前这些研究存在一些难点:刻画理论缺少系统的基础理论和完整的刻画程序;刻画对象需要的数据量较大;刻画方法不能实现可比化度量;对交通运输系统的复杂性认识还停留在浅层次的阶段,如何针对系统的复杂特性进行管理和控制尚处空白。基于此,选择和改进短序列条件下的可比化测度方法,定量研究和分析交通运输系统的复杂性,并把复杂性测度与交通运输系统的管理和控制结合起来,是交通运输系统复杂性刻画研究的深化,其理论和现实意义显而易见。
     本文的主要内容和创新之处可概述如下:
     1、引入Lempel-Ziv算法、近似熵、统计复杂度等非线性动力学的复杂性测度方法。通过对16个实测城市交通流序列(或数组)和6个实测高速公路交通流序列的分析,实现了复杂性测度方法的检验、选择、改进和交通流系统的复杂性测度,并考察了复杂度与混沌、分形的关系,解决了传统刻画方法的“短序列、可比较”难题,得到了一些有用的结论。
     2、以ARIMA模型、RBF神经网络、非参数估计的混沌局部预测等预测方法为基础,讨论交通流的复杂度与可预测性的相关关系、交通流预测方法的复杂度适用条件。另外,通过仿真实验来研究复杂度在交通控制中的应用,提出了复杂度在交通控制中的简单应用方案。
     3、根据宏观交通运输系统的特点,提出了能够对超短序列进行复杂性测度的改进Lempel-Ziv算法,实现了中、日两国宏观交通运输系统的测度,得出了宏观交通运输系统大致是线性系统等结论。
     4、研究了宏观交通运输系统的复杂度与可预测性、宏观交通运输系统复杂度与GDP复杂度的相关关系。
     5、完成了系统复杂性测度的理论架构。从现象学和意向性科学入手,提出意向性结构模型,明确系统复杂性测度是一个二步意向性解释过程;根据测度论来明确复杂性测度的数学基础和条件;提出复杂性测度的一般程序。
The precondition realizing efficient management and control is to get to know the object of management and control, scientifically, correctly. The assumption that the traffic transportation system is a linear, constant system has been overthrown by recent research and the facts that the traffic transport system is complex, nonlinear system are extensively accepted by academe. The quantitative depiction research on complexity, non-linearity of transportation system gradually becomes hotspot research field. Presently, the difficulties in researches are following listed: depicting theory is shortage of systemic basic theory and rounded depicting procedure. Depicting objects need a mass of data. Depicting methods could not realize comparable measurement. The cognition of complexity of traffic transportation system still rests on lower level and how to manage and control traffic transportation system against complexity characteristics is still blank. On basis of these facts, the following researches deepen depicting research of traffic transportation system complexity: choosing and mending comparable measurement under condition of short series, quantitatively researching and analyzing complexity of traffic transportation system, combining complexity measurement with management and control of traffic transportation system. Academic and realistic meaning is obvious for these studies.
     The key points and main achievements in paper are listed as follows:
     1.By virtue of analyzing sixteen series (or arrays) of traffic flow in city and six series of traffic flow in highway, the test, choice, improvement of complexity measurement methods and the complexity measurement of traffic flow system are realized. Moreover, the difficulties in short series, compares of traditional depiction methods are solved through reviewing the relations among complexity, chaos, fractal. Finally, some useful conclusions are drawn.
     2. Based on predicting methods, such as, ARIMA model, RBF neural networks, chaos local prediction of nonparametric estimation, the correlativity between traffic flow complexity and predictability and the complexity applying condition of different prediction methods are discussed. Moreover, the simple applying project of complexity in traffic control are put forward by emulate test to study complexity appliance in traffic control.
     3. Improved Lempel-Ziv algorithm, which could measure the complexity of super-short series, is put forward. The measures of macro-traffic transportation systems in China and Japan are realized. The conclusions that macro-traffic transportation system approximately is linear system, etc. are drawn.
     4. The following researches are carried out, i.e. complexity and predictability of macro-traffic transportation system, correlativity between complexity of macro-traffic transportation system and complexity of GDP.
     5. The construction of theory frame of system complexity measure has been finished. Starting with phenomenology and intentional science, intentional structure model is put forward and it is clear that system complexity measure is a two-step intention explanation process. The mathematics basis and condition of complexity measure are confirmed according to measure theory. General procedure of complexity measure is brought forward.
引文
[1] 胡思继. 交通运输学[M].北京:人民交通出版社, 2001:2.
    [2] 刘小丽. 交通运输业在江西社会经济发展中的作用与面临的挑战[J]. 江西社会科学,2004(10):249-252.
    [3] 郝柏林. 复杂性的刻画与复杂性科学[J]. 物理, 2001(8):466-471.
    [4] 霍根,孙雍君等译. 科学的终结[M]. 呼和浩特:远方出版社, 1997:329.
    [5] 黄欣荣.复杂性究竟有多复杂?[J]. 系统辩证学报, 2005(4):49-55.
    [6] Rescher N. Complexity: A Philosophical Overview [M]. Transaction Publishers, New Brunswick and London ,1998:9.
    [7] 吴彤. 复杂性概念研究及其意义[J].中国人民大学学报, 2004, (5):2-9.
    [8] Kolmogorov AN. Three approaches to the quantitative definition of information. Problems of Information Transmission[J]. 1965,1(1):1-7.
    [9] Solomonoff R J. A formal theory of inductive inference (part Ⅰand Ⅱ) [J] . Inform Contr ,1964 (7) :1 - 2 ,224-254.
    [10] Chaitin GJ. On the length of programs for computing finite binary sequences[J] . J Assoc Comput Math ,1966 (13):547-569.
    [11] Chaitin GJ. On the length of programs for computing finite binary sequences: statistical considerations[J]. J Assoc Comput Math,1969(16):145-159.
    [12] 克拉默, 柯志阳, 吴彤译. 混沌与秩序[M]. 上海:上海科学技术教育出版社, 2000:285.
    [13] Shiner J S, Davison M, Landsberger P T. Simple measure for complexity[J]. Phys. Rev. E, 1999,59(145):1459–1464.
    [14] Miller G A. The magical number seven, plus or minus two: some limitations on our capacity for processing information[J]. Psychology Review, 1956,63(2): 81-97.
    [15] Delbecq A L. Van de Ven, Gustafson D H. Group Techniques for Program Planning: A Guide to Nominal Group and DELPHI Processes[M]. Glenview, IL: Scott, Foresman,1975.
    [16] Warfield J N. A Science for Generic Design: Managing Complexity through Systems. Design. Iowa State University Press, USA. 1994.
    [17] Warfield J N. Complexity and Cognitive Equilibium: Experimental Results and Their Implications[J] Human Systems Management ,1991,10(3):195-202.
    [18] Warfield J N. SPREADTHINK: Explaining Ineffective Groups[J]. Systems Research, 1995,12(1):5-14.
    [19] Scott M. Complexity Measurements of Systems Design[A]. Proceedings of the First World Conference on Integrated Design and Process Technology[C]. 1995, IDPT-vol1,153-161.
    [20] Downs R J, Stea D. Image and Environment[M]. Chicago: Aldine Publishing Company.1973:8-26.
    [21] Downs R J. Cognitive mapping and information processing: A commentary[A]. In Moore, G. and Golledge, R. (Eds),. Environmental Knowing: Theories, Research and Methods[C]. Dowden: Hutchinson and Ross, Inc. 1976: 67-70.
    [22] Kuipers B. The cognitive map: Could it have been any other way? In Spatial Orientation: Research, Theory, and Application[M]. New York: Plenum Press. 1983.
    [23] Shannon C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948,27:379-423,623-656,
    [24] Kullback S, Leibler R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22:79-86.
    [25] Cramer, H. Mathematical Methods of Statistics[M]. Princeton University. Press, Princeton, New Jersey. 1946.
    [26] Amari, S. Differential-Geometrical Methods in Statistics[M]. Volume 28 of Springer Lecture Notes in Statistics, Springer-Verlag, New York, 1985.
    [27] Renyi A. On measures of entropy and information[A]. Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability[C]. Berkeley, University of California Press. 1961: 547–561.
    [28] Nauta D J. The meaning of information[M]. The Hague, Press, 1970.
    [29] Lopez-Ruiz R, Mancini H L, Calbet X. A statistical measure of complexity[J]. Physics Letters A, 1995, (209):321-326.
    [30] Feldman D P, Crutchfield J P. Measures of Statistical Complexity: Why? [J]. Physics Letters A ,1998, (238): 244-252.
    [31] 钟义信. 信息科学原理[M]. 北京:北京邮电大学出版社, 1996.
    [32] Lempel A, Ziv J. On the complexity of finite sequences[J]. IEEE Transactions on Information Theory, 1976, IT- 22(1): 75- 81.
    [33] Kasper F, Schuster H G. Easily calculable mea- sure for the complexity of spatiotemporal patterns[J]. Physical Review A , 1987, 36(2):842-848.
    [34] Stephen Wolfram. Computation theory of cellular automata[J]. Communications in Mathematical Physics, 1984,(96):15-57.
    [35] Grassberger P. Towards a Quantitative Theory of Self-Generated Complexity[J]. International Journal of Theoretical Physics, 1986, (25):907-938.
    [36] Grassberger, P. Information and complexity measures in dynamical systems[A]. Information Dynamics[C].In Atmanspacher, H. and Scheingraber, H. (Eds.), New York: Plenum Press, 1991:15-33.
    [37] Crutchfield J P, Young K. Inferring statistical complexity[J]. Physics Review Letters, 1989,( 63):105-108.
    [38] Crutchfield J P, Young K. Computation at the onset of chaos[A]. In W. H. Zurek,editor, Complexity, Entropy, and the Physics of Information[C]. Addison-Wesley, Redwood City, CA, 1990:223-269.
    [39] Crutchfield J P. The Calculi of Emergence: Computation, Dynamics, and Induction[J]. Physica D, 1994,(75):11-54.
    [40] Pincus S M. Approximate entropy as a measure of system complexity[J]. Proc. Nati. Acad. Sci. USA, 1991, 88:2297-2301.
    [41] Xu J H, Liu ZR, Liu R, Yang QF. Information transmission in human cerebral cortex [J]. Physica D, 1997, (106):363 -374.
    [42] 吴祥宝, 徐京华. 复杂性和脑功能[J] . 生物物理学报, 1991, 7(1) :103-106.
    [43] 陈芳, 顾凡及, 徐京华等. 一种新的人脑信息传输复杂性的研究[J]. 生物物理学报,1998, 14(3):508-512.
    [44] 沈恩华, 蔡志杰, 顾凡及. C0复杂度的数学基础[J]. 应用数学和力学, 2005, 26(9):1083-1090.
    [45] 洛仑兹, 刘式达等译. 混沌的本质[M]. 北京:气象出版社, 1997:186-195.
    [46] 谢惠民. 动力系统的复杂性刻划[J].力学进展, 1996, 26(3):289-305.
    [47] Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physics Review Letters,1983, 9:189-208.
    [48] Theiler J. Statistical precision of dimension estimators [J]. Physics Review A, 1990, 41:3038-3051.
    [49] Gazis D C, Herman R, Rothery R W. Nonlinear Follow-the-Leader Models for Traffic Flow[J]. Operations Research, 1961, 9(4):545 – 567.
    [50] Disbro J E, Frame M. Traffic Flow Theory and Chaotic Behavior[A]. Transportation Research Record 1225[C], TRB, National Research Council, Washington D.C. 1989:109 - 115.
    [51] Johanns R D, Roozemond D A. An object based traffic control strategy: A chaos theory approach with an object-oriented implementation[A]. Advanced Technologies[C]. In M.R. Beheshti K. Zreik, editor, Netherlands,1993:231-242.
    [52] Dendrinos D S. Traffic-flow dynamics: a search for chaos[J]. Chaos, Solitons & Fractals, 1994, 4 (4): 605-617.
    [53] Low D J, Addison P S. Chaos in a car following model including a desired inter vehicle separation[A]. Proceedings of the 28th ISATA Conference[C], Stuttgart, Germany,Sep,1995:539-546.
    [54] Addison P S, Low D J. Order and Chaos in the Dynamics of Vehicle Platoons[J]. Traffic Engineering and Control, 1996, 37(7/8):456-459.
    [55] Low D J, Addison P S. Chaos in a car-following model with a desired headway time[A]. Proceedings of the 30th ISATA Conference[C]. Florence, Italy, 1997:175-182.
    [56] Addison P S, Low D J. The existence of chaotic behaviour in a separation-distance centred non-linear car following model[A]. Road vehicle automation Ⅱ[C]. C., Nwagboso(ed),Wiley, Chichester,1997:171-180.
    [57] Low D J, Addison P S. The Complex Dynamical Behaviour of Congested Road Traffic[A]. Proceedings of the 3rd IMA International Conference on Mathematics in Transport Planning and Control[C]. Cardiff Wales, April 1-3, Pergamon Press, 1998:341-350.
    [58] Low D J, Addison P S. A Nonlinear Temporal Headway Model of Traffic Dynamics[J]. Nonlinear Dynamics, 1998, 16:127-151.
    [59] Addison P S, Low D J. A novel nonlinear car-following model[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 1998 ,8(4):791-799.
    [60] Shahverdiev E M, Tadaki S. Chaos control in traffic flow models[Z]. http://adsabs.harvard.edu/abs/1998chao.dyn.12006S.
    [61] Shahverdiev E M, Tadaki S. Instability control in two dimensional traffic flow model[J]. Physics Letters A, 1999, 256(1):55-58.
    [62] Shahverdiev E M, Tadaki S. Temporal chaos in discrete one dimensional gravity model of traffic flow[Z]. http://adsabs.harvard.edu/abs/1999chao.dyn..2001S.
    [63] Nair, Sanju Attoor, Liu Jyh-Charn, Rilett Laurence, Gupta Saurabh. Non-Linear Analysis of Traffic Flow[A]. Intelligent Transportation Systems, Proceedings. 2001 IEEE, 25-29[C]. 2001: 681-685.
    [64] Safonov L A, Tomer E, Strygin V V, Ashkenazy Y, Havlin S. Delay-induced chaos with multifractal attractor in a traffic flow model[J]. Europhys. Lett., 2002, 57(2) :151-157.
    [65] Safonov L A, Tomer E, Strygin V V, Ashkenazy Y, Havlin S. Multifractal Chaotic Attractors In A System Of Delay-Differential Equations Modeling Road Traffic[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2002, 12(4):1006-1014.
    [66] Nagatani T. Dynamical transitions to chaotic and periodic motions of two shuttle buses[J]. Physica A, 2003, 319: 568-578.
    [67] Nagatani T. Complex motions of shuttle buses by speed control[J]. Physica A, 2003, 322: 685-697.
    [68] Nagatani T. Chaos and headway distribution of shuttle buses that pass each other freely[J]. Physica A, 2003, 323:686-694. 119
    [69] Nagatani T. Complex behavior of elevators in peak traffic[J]. Physica A, 2003, 326: 556-566.
    [70] Nagatani T. Chaotic motion of shuttle buses in two-dimensional-map model[J]. Chaos, Solitons and Fractals, 2003, 18(4): 731-738.
    [71]Nagatani T. Dynamical behavior of N shuttle buses not passing each other: chaotic and periodic motions [J]. Physica A (Statistical mechancs and its applications), 2003, 327 (3-4): 570-582.
    [72] Nagatani T. Fluctuation of riding passengers induced by chaotic motions of shuttle buses[J]. Phys. Rev. E, 2003, 68:036107-1-8.
    [73] Nagatani T. Stability Analysis and Stabilization Strategies for Linear Supply Chains[J]. Physica A, 2004, 335: 644-660.
    [74] Frazier C, Kockelman K M. Chaos Theory and Transportation Systems: An Instructive Example[A]. To be Presented at the 83rd Annual Meeting of the Transportation Research Board January 2004[C]. Washington D.C. 2004.
    [75] Lan L W, Lin F Y. Wang. Y. P. Self-Organization Phenomenon and the Edge of Chaos in Traffic Flow Dynamics[J]. Proceedings of the Eastern Asia Society for Transportation Studies, 2003, 4:574-582.
    [76] Lan, L W, Lin F Y, Kuo A Y. Testing and prediction of traffic flow dynamics with chaos[J]. Journal of the Eastern Asia Society for Transportation Studies, 2003,5:1975-1990.
    [77] Lan, L W, Lin F Y, Kuo A Y. Chaotic forecasting with confined space fuzzy neighborhoods’ difference (CSFND) approach: case of short-term traffic forecast[J]. Journal of the Chinese Institute of Civil and Hydraulic Engineering 2003, 15(3):589-603.
    [78] Lan, L W, Lin F Y, Huang, Y S. Some evidences of chaotic phenomena in short-term traffic flow dynamics: surrogate data approach[A]. Proceedings of the 9th Conference of Hong Kong Society for Transportation Studies[C]. 2004.
    [79] Lan, L W, Lin F Y, Huang, Y S. Confined space fuzzy proportion (CSFP) model for short-term traffic flow prediction[A]. Proceedings of the 9th Conference of Hong Kong Society for Transportation Studies[C]. 2004.
    [80] Lan, L W, Lin F Y, Kuo A Y. Identification for Chaotic Phenomena in Short- term Traffic Flows: A Parsimony Procedure with Surrogate Data[J]. Journal of the Eastern Asia Society for Transportation Studies, 2005, 6:1518-1533.
    [81] 李英, 刘豹, 马寿峰. 交通流时间序列中混沌特性判定的替代数据方法[J].系统工程, 2000,(6):54-58.
    [82] 贺国光, 万兴义, 王东山.基于跟驰模型的交通流混沌研究[J]. 系统工程,2003, (2):50-55.
    [83] 贺国光, 王东山. 交通流的有序运动与混沌运动相互转化现象的仿真研究[J].土木工程学, 2003, (7):53-56.
    [84] 贺国光, 万兴义. 基于最大Lyapunov指数的交通流仿真数据混沌状态识别[J]. 自动化技术与应用, 2003, (4):8-13.
    [85] 贺国光, 王东山. 仿真交通流混沌现象的传播特性研究[J].土木工程学报,2004(1): 70-73.
    [86] 卢宇, 贺国光. 基于改进型替代数据法的实测交通流的混沌判别[J]. 系统工程, 2005,(6):21-24.
    [87] 李松, 贺国光. 跟驰模型的交通流混沌转化现象的仿真系统工程[J]. 2005, (10):34-38
    [88] 张旭涛, 贺国光, 卢宇. 一种在线实时快速地判定交通流混沌的组合算法[J].系统工程, 2005,(9):42-45.
    [89] 陈永海, 贺国光. 基于OVM模型的交通流混沌研究[J]. 长沙交通学院学报, 2006, (1):53-57.
    [90] 张秀媛, 达庆东. 交通运输结合部系统管理的内耗与混沌现象分析[J]. 系统工程理论与实践, 2001, (12):12-16.
    [91] 唐明, 陈宝星, 柳伍生. 基于相空间重构的短时交通流分形研究[J]. 山东交通学院学报, 2004, (1):50-54.
    [92] 杜振财, 王瑞峰, 纪常伟. 基于Logistic映射的交通流的混沌态研究[J]. 交通科技, 2005, (2):78-80.
    [93] 徐学明, 王丽, 荣建. 功率谱在交通流混沌现象研究中的应用[J].公路交通科技, 2006, (3):125-127.
    [94] 裴玉龙, 李洪萍. 快速路交通流时间序列分形维数研究[J]. 公路交通科技, 2006, (2):115-119.
    [95] 蒋海峰, 马瑞军, 魏学业, 温伟刚. 一种基于小数据量的快速识别短时交通流混沌特性的方法[J]. 铁道学报, 2006, (2):63-66.
    [96] 徐华中, 熊和金. 汽车追尾与交通流混沌模型研究[J]. 武汉理工大学学报(交通科学与工程版), 2006, (1):85-87.
    [97] 黄中祥, 王正武, 况爱武. 短期交通流可预测性分析与比较[J]. 土木工程学报, 2004, (1):101-104.
    [98] 王正武, 黄中祥, 况爱武. 短期交通流序列混沌识别及预测精度分析[J].长沙交通学院学报, 2004, (2):73-76.
    [99] 唐志强, 王正武, 招晓菊, 李宏. 基于神经网络和混沌理论的短时交通流预测[J]. 山西科技, 2005, (5):117-118.
    [100] 杨立才, 贾磊, 何立琴, 孔庆杰. 基于混沌小波网络的交通流预测算法研究[J].山东大学学报(工学版), 2005,(2):46-49.
    [101] 宗春光, 宋靖雁, 任江涛, 胡坚明. 基于相空间重构的短时交通流预测研究[J]. 公路交通科技,2003, (4):71-75.
    [102] Wang J, Shi Q, Lu H. The study of short-term traffic flow forecasting based on theory of chaos[A]. Intelligent Vehicles Symposium, 2005. Proceedings. IEEE[C]. 6-8 June 2005: 869- 874
    [103] 杨瑞, 李洋, 吕文超. 城市干路交通流实施混沌智能控制方法的研究[J]. 林业机械与木工设备, 2004, (10):22-23.
    [104] 徐良杰, 王炜. 基于一种新的混合算法的交通流控制优化模型[J]. 信息与控制, 2005,(3):286-290.
    [105] Biham O, Middleton A, Levine D. Self-organization & a dynamic transition in traffic flow models[J]. Phys. Rev. A, 1992,46(10): R6124-R6127.
    [106] Nagatani T. Self-organization and phase transition in traffic-flow model of a two-lane roadway[J]. Journal of Physics A: Mathematical and General, 1993,l26:L781-L787.
    [107] Nagatani T. Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive[J]. Journal of the Physical Society of Japan, 1995, 64,(4):1421-1430.
    [108] Tadaki S, Kikuchi M. Self-Organization in a Two-Dimensional Cellular Automaton Model of Traffic Flow[J]. Journal of the Physical Society of Japan, 1995, 64(12): 4504-4508.
    [109] Fukuda T, Ohno T, Sekiyama K, AraiF. Self rule organization in a non-signal urban traffic flow[A]. Intelligent Transportation System, 1997. ITSC 97[C]. IEEE Conference on Boston, MA, USA 9-12 Nov 1997: 643-648.
    [110] Sekiyama K, Ohno T, Fukuda T. Self-organization in unsignalized urban traffic flow[A]. Intelligent Transportation Systems, 1999. Proceedings[C]. 1999 IEEE/IEEJ/JSAI International Conference on Tokyo, Japan 1999: 260-265.
    [111] Kobayashi F, Takishita K, Fukuda T. Self-organization of non-signal urban traffic flow with fuzzy model[A]. Intelligent Transportation Systems, 2000. Proceedings[C]. IEEE Dearborn, MI, USA, 2000: 21-26.
    [112] Kerner B S. Experimental Features of Self-Organization in Traffic Flow[J]. Phys. Rev. Lett. 1998,81:3797–3800.
    [113] Chowdhury D, Schadschneider A. Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods[J]. Phys. Rev. E, 1999, 59: R1311-R1314.
    [114] Kerner B S. Theory of Congested Traffic Flow: Self-Organization without Bottlenecks[A]. Proceedings of the 14th International Symposium of Transportation and Traffic Theory[C]. Jerusalem, 1999:147-172.
    [115] Fukui M, Ishibashi Y. Self-Organized Phase Transitions in Cellular Automaton Models for Pedestrians[J]. Journal of the Physical Society of Japan, 1999, 68(8): 2861-2863.
    [116] Muramatsu M, Irie T, Nagatani T. Jamming transition in pedestrian counter flow[J]. Physica A. 1999, 267:487-498.
    [117] Muramatsu M, Nagatani T. Jamming transition in two-dimensional pedestrian traffic[J]. Physica A, 2000, 275(1):281-291.
    [118] Muramatsu M, Nagatani T. Jamming transition of pedestrian traffic at a crossing with open boundaries[J]. Physica A: Statistical Mechanics and its Applications,2000, 286:377-390.
    [119] Honda Y, Horiguchi T. Self-Organization in Four-Direction Traffic-Flow Model[J]. Journal of the Physical Society of Japan,2000, 69(11):3744-3751.
    [120] Lei Z, Schwartz B . Visualization of Patterns and Self-organization of Cellular Automata in Urban Traffic Situations[A].American Physical Society, DCOMP Meeting[C]. June 25-28, 2001 Cambridge, Massachusetts Bulletin of the American Physical Society, Vol. 46, Part F, 2001APS..DCM.R1035Z.
    [121] Liu X, Chen D, Gong X, Tang S, Xu W, Wu F, Wang F. Study on the loop control structure of traffic flow based on self-organization theory[A].Systems, Man, and Cybernetics, 2001 IEEE International Conference on Tucson[C]. AZ, USA 2001, (2): 1377-1383.
    [122] Mar E, Shir O E, Solomon S. Solving Traffic Jams: Human Intervention or Self-Organization?[J]. International Journal of Modern Physics,2003,14(8): 1007-1014.
    [123] Hercog L M. Co-evolutionary Agent Self-Organization for City Traffic Congestion Modeling[J]. Lecture Notes in Computer Science, 2004, 3103:993–1004.
    [124] 黄必亮, 杨家本. 交通系统自组织/组织合作的研究[J]. 系统工程理论与实践, 1997, (8):67-71.
    [125] 黄必亮, 杨家本. 改进点格自动机交通网络模型及交通系统自组织现象的研究[J]. 系统工程理论与实践, 1998, (3):1-7.
    [126] 贺国光, 冯蔚东. ITS 与自组织理论[J]. 公路交通科技, 1998, (3):8-12.
    [127] 冯蔚东, 贺国光, 刘豹. 基于自组织理论的交通流初步研究[J]. 系统工程学报, 1998, (4):104-108.
    [128] 顾珊珊, 陈禹. 复杂适应性系统的仿真与研究——基于 CAS 理论的交通模拟[J]. 复杂系统与复杂性科学, 2004, (1):82-88.
    [129] 陈涛,陈森发. 城市道路交通系统耗散结构特性的研究[J]. 土木工程学报, 2004, 37(1):74-77.
    [130] 陈涛, 陈森发. 涨落后的城市道路交通拥挤蒙特卡洛预测[J]. 系统工程理论与实践, 2004, 24(12):123-127.
    [131] 毛亮. 城市道路交通系统发展自组织研究[J]. 交通标准化, 2005, Z1:51-53.
    [132] Thibault S, Marchard A. Reseaux et Topologie[M]. France: Institute National Des Sciences Appliquees de Lyon.Villeurbanne,1987.
    [133] Frankhouser P. Aspects fractals des structures urbaines[J]. L'espace Géographique, 1990, 19 (1):45 -69.
    [134] Benguigui L, Daoud M. Is the suburban railway system a fractal?[J]. Geographical Analysis, 1991,23:362 -368.
    [135] Helbin G D, Keltsch J. Modelling the evolution of hum an trail systems[J]. Nature, 1997, 388: 47-50.
    [136] Bossomaier T, Green D. Patterns in the sand: computers, complexity and life [M]. Reading, Massachusetts: Perseus Books, 1998.
    [137] Amaral L, Scala A, Barthelemy M , Stanley H E. Classes of small-world networks[J]. Proc. Natl. Acad. Sci USA . 2000, (97):11149-11152.
    [138] Latora V, Marchiori M. Is the Boston subway a small-world network? [J]. Physica A, 2002, 314: 109-113.
    [139] Sen P, Dasgupta S, Chatterjee A, Sreeram P A, Mukherjee G, Manna S S. Small-world properties of the Indian Railway network[J]. Phys. Rev. E, 2003,67: 036106-1-5.
    [140] Jiang B, Claramunt C. Topological analysis of urban street networks[J]. Environment and Planning B, 2004, 31: 151-162.
    [141] 刘继生, 陈彦光. 交通网络空间结构的分形维数及其测算方法探讨[J]. 地理学报, 1999, 54(5):471-478.
    [142] 陈彦光, 刘继生. 区域交通网络分形的DBM特征--交通网络Laplacian分形性质的实证研究[J]. 地理科学,1 999,19(2):114-118.
    [143] 刘继生,陈彦光. 基于 GIS 的细胞自动机模型与人地关系的复杂性探讨[J].地理研究, 2002, 21(2):155-162.
    [144] 黄佩蓓, 刘妙龙. 基于 GIS 的城市交通网络分形特征研究[J].同济大学学报(自然科学版), 2002, 30(11):1370-1374.
    [145] 刘妙龙, 黄佩蓓. 上海大都市交通网络分形的时空特征演变研究[J]. 地理科学, 2004, 24(2):144-149.
    [146] 李江, 郭庆胜. 基于 G IS 的城市交通网络复杂性定量描述[J]. 华中师范大学学报(自然科学版), 2002, 4:534-537.
    [147] Wu J J, Gao Z Y, Huang H J, Sun H J. Generation of small-world networks with utility preferential attachment [R]. Technical Report of Institute of Systems Science, Beijing Jiao tong University, 2004.
    [148] Wu J J, Gao Z Y, Huang H J , Sun H J. Random and preferential attachment with aging [R].Technical Report of Institute of System s Science,Beijing Jiaotong University, 2004.
    [149] Wu J J, Gao Z Y, Sun H J , Huang H J. Urban Transit System as a Scale-Free Network [J]. Modern Physics Letters B, 2004, 18:1043-1049.
    [150] 高自友, 吴建军, 毛保华, 黄海军. 交通运输网络复杂性及其相关问题的研究[J]. 交通运输系统工程与信息, 2005, 2:79-84.
    [151] 刘峰涛,贺国光. 宏观交通运输系统的复杂度与可预测性分析[J]. 计算机工程与应用, 2006,(9):6-9.
    [152] 洛仑兹. 混沌的本质[M]. 北京:气象出版社, 1997:156.
    [153] 尼科里斯, 普利高津. 探索复杂性[M]. 成都:四川教育出版社, 1986:83.
    [154] 埃德加·莫兰. 方法:天然之性[M]. 北京:北京大学出版社, 2002:410-411.
    [155] 吴彤. 复杂性范式的兴起[J]. 科学技术与辩证法, 2001, (6):20-24.
    [156] 苗东升. 论复杂性[J]. 自然辩证法通讯, 2000, (6):87-92.
    [157] 邬焜. 复杂性与科学思维方式的变革[J]. 自然辩证法研究, 2002, 18(10):46-49.
    [158] 张华夏. 兼容与超越还原论的研究纲领[J].哲学研究, 2005, (7):115-121.
    [159] 胡赛尔. 现象学与哲学的危机[M]. 北京:国际文化出版公司. 1988:136.
    [160] 胡赛尔. 纯粹现象学通论[M]. 北京:商务印书馆, 1996:86.
    [161] 韩连庆. 现象学运动中的新科学哲学[J].科学技术与辩证法, 2004, 21(2):28-32.
    [162] 王姝彦. 科学哲学的“心理转向”与意向解释的方法论重建[J]. 科学技术与辩证法, 2005, 22(6):6-8.
    [163] Kreuzer E. 非线性动力学系统的数值研究[M]. 上海:上海交通大学出版社, 1989:134.
    [164] 顾培亮. 系统分析与协调[M]. 天津:天津大学出版社, 2003,2版:2.
    [165] 贺国光. ITS 系统工程导论[J]. 北京:中国铁道出版社,2004.
    [166] 许国志.系统科学[M].上海:上海科技教育出版社, 2000.
    [167] Brundtland G H. Our Common Future[R] Word Environment and Development Commission.(WCED)1987.
    [168] Daly H. Towards some operational principles of sustainable development[J]. Ecological Economics 1990,2(1):1-6.
    [169] Whitelegg J. Transport for a sustainable future: the case for Europe[M]. Belhaven Press, London,1993.
    [170] Haq G. Towards Sustainable Transport Planning: A Comparison between Britain and the Netherlands[M]. Aldershot: Avebury, 1997.
    [171] World Bank. Sustainable Transport [R]. Washington, DC. World Bank,1996
    [172] Edward, A. One Life at a Time, Please[M]. New York: Henry Holt. 1988.
    [173] OECD-EST. Guidelines for Environmentally Sustainable Transport (EST). Developed by the OECD Working Group on Transport on behalf of OECD Member countries and presented at the EST conference in Vienna. Paris: OECD. 2000.
    [174] Giorgi L. Sustainable mobility. Challenges, opportunities and conflicts – a social science perspective [J] International Social Science Journal.. 2003, 55(6) :179-183.
    [175] Baeten G. The tragedy of the highway: Empowerment, disempowerment and the politics of sustainability discourses and practices (sustainable transport and equity)[J].European Planning Studies 2000,8 (1): 69-86.
    [176] World Bank. Sustainable Transport. Washington, DC: World Bank. 1996.
    [177] Henson R, Essex S. The development, design and evaluation of sustainable local transport networks [J]. International Social Science Journal.. Volume 55: Issue 176, 2003(6) :219-233.
    [178] Essex S. An Investigation into the Relationship between Urban Form, Transport Networks and Modal Split. [D]. School of Aeronautical, Civil and Mechanical Engineering, University of Salford, 2001.
    [179] Kerrigan M, Bull D. A public transport accessibility index[C]. Proceedings of Seminar B XXth Annual Meeting PTRE, 1992: 245-256.
    [180] Hillier B. Hanson J. Social Logic of Space[D]. Cambridge: Cambridge University Press, 1984.
    [181] Apel D. Pharoah T. Traffic Concepts in European Cities[M]. Aldershot: Avebury. 1995.
    [182] Dahl R A. Democracy and itscritics [M].Yale University,1989.13.
    [183] Emery M, Purser R E. The Search Conference[M]. San Francisco: Josey-Bass Publishers. 1996.
    [184] 理查德 L. 达夫特, 雷蒙德 A. 诺伊. 组织行为学[M]. 北京:机械工业出版社, 2004.
    [185] 中国经济信息网[EB/OL].http://www.cei.gov.cn/ index/Transform.asp?cedb=7&ThreeBlockCode=030701&Template=dbjjnj027&blockcode=DBjjnj_ys, 2005-07-01.
    [186] 日 本 总 务 省 统 计 局 [EB/OL].http://www.stat.go.jp/data/chouki/12.htm. 2005-10-01.
    [187] 刘秉正, 彭建华. 非线性动力学[M].北京: 高等教育出版社, 2004.
    [188] Kasper F, Schuster H G. Easily calculable mea- sure for the complexity of spatiotemporal patterns[J]. Physical Review A , 1987,36(2):842-848.
    [189] Morita H, Kobayashi K. On asymptotic optimality of a sliding window variation of Lempel-Ziv codes[J]. IEEE Transactions on Information Theory, 1993,39(6): 1840-1846.
    [190] Radhakrishnan N, Gangadhar B N. Estimating regularity in epileptic seizure time-series data[J]. IEEE Engineering in Medicine and Biology, 1998,(3):. 89-94.
    [191] 徐京华, 吴祥宝. 以复杂度测度刻划人脑皮层上的信息传输[J]. 中国科学(B辑),1994,24(1):57-63.
    [192] Jia W, Kong N, Li F, et al. An epileptic seizure prediction algorithm based on second-order complexity measure[J]. Physiological Measurement, 2005,26(5): 609-625.
    [193] Chan H L, Lin M A, Fang S C. Linear and Nonlinear Analysis of Electroencephalogram of the Coma[A]. Proceedings of the 26th Annual International Conference of the IEEE EMBS[C]. 2004: 593-595.
    [194] Yan R, Gao R X. Complexity as a Measure for Machine Health Evaluation[J]. IEEE Transactions on instrumentation and measurement, 2004,53(4): 1327-1334.
    [195] 陈桂芬, 邝慧, 崔丽芳 等. 豚鼠听神经放电的复杂性分析[J].生物物理学报,2003,19(3): 297-302.
    [196] 张晓峒. 计量经济学软件EViews使用指南[M]. 天津:南开大学出版社, 2003.
    [197] Zuo B. Remark on metric analysis of reconstructed dynamics from chaotic time series[J].Phys D, 1995, (85):485-495.
    [198] Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D, 1983,9:(1-2):189-208.
    [199] 贺国光, 马寿峰,冯蔚东. 对交通流分形问题的初步研究[J]. 中国公路学报, 2002, (4):82-85.
    [200] Farmer J D, Sidorowich J J. Predicting chaotic time series[J]. Physical Review Letters,1987, 59 (8):845-848.
    [201] Giona M, Lentini F, Cimagalli V. Functional reconstruction and local prediction of chaotic time series[J]. Physical Review A, 1991, 44:3496–3502.
    [202] 宗春光, 宋靖雁, 任江涛, 胡坚明. 基于相空间重构的短时交通流预测研究[J]. 公路交通科技, 2003, (4):71-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700