用户名: 密码: 验证码:
耐高温紫外正型光刻胶和248nm深紫外光刻胶的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光刻胶是完成微电子制造光刻工艺的关键性基础材料,它决定着微电子技术的发展水平。光刻胶通常由成膜树脂、感光剂、溶剂和一些添加剂组成。在光刻胶的研制方面,我国与国外相比,还有比较大的差距。
     本文采用新的方法,合成出了一系列光刻胶成膜树脂的单体,包括:N-苯基甲基丙烯酰胺、N-(p-羟基苯基)甲基丙烯酰胺、N-(p-乙酰氧基苯基)甲基丙烯酰胺、对特丁氧酰氧基苯乙烯(PTBOCS)、N-羟基-5-降冰片烯-2,3-二甲酰亚胺甲基丙烯酸酯和N-羟基-3,6-内氧桥-4-环己烯二甲酰亚胺甲基丙烯酸酯;并对它们进行了FT-IR和1H NMR表征。
     制备了两种常用的248nm深紫外光刻胶用光致酸发生剂(PAG)对甲基苯磺酸三苯基硫鎓盐和N-羟基邻苯二甲酰亚胺对甲基苯磺酸酯,对它们进行了FT-IR和1H NMR表征,测试了它们的热性能、紫外光吸收性能和溶解性能。结果表明它们适合作深紫外光刻胶的PAG。
     通过自由基聚合的方法,采用苯乙烯和前面制备的单体合成了三种聚合物:聚苯乙烯共N-(p-羟基苯基)马来酰亚胺,聚N-(p-羟基苯基)甲基丙烯酰胺共N-苯基马来酰亚胺和聚N-苯基甲基丙烯酰胺共N-(p-羟基苯基)马来酰亚胺。测试了它们的相关性能。结果表明它们的玻璃化温度Tg均在250℃以上,具有良好的耐高温性能、溶解性能、成膜性能和亲水性,可以用作耐高温紫外正型光刻胶的成膜树脂。
     利用前面已经合成的单体PTBOCS和N-羟基-3,6-内氧桥-4-环己烯二甲酰亚胺甲基丙烯酸酯,制备了新的聚合物聚PTBOCS共N-羟基-3,6-内氧桥-4-环己烯二甲酰亚胺甲基丙烯酸酯,对它进行了FT-IR表征,测试了它的热性能和紫外吸收性能;结果表明,该聚合物具有良好的耐热性能(Tg=175℃)、248nm深紫外光透光性能、溶解性能和成膜性能,并且与基体有良好的结合力,适合作248nm深紫外光刻胶的成膜树脂。而另外一种新的聚合物聚PTBOCS共N-羟基-5-降冰片烯-2,3-二甲酰亚胺甲基丙烯酸酯因其溶解性不好,不适合作光刻胶的成膜树脂。
     首次将聚N-(p-羟基苯基)甲基丙烯酰胺共N-苯基马来酰亚胺和聚N-苯基甲基丙烯酰胺共N-(p-羟基苯基)马来酰亚胺用作耐高温的紫外正型光刻胶的成膜树脂;通过与感光剂重氮奈醌磺酰氯(DNS)和阻溶剂二苯甲酮复配,较详细地探讨了聚N-(p-羟基苯基)甲基丙烯酰胺共N-苯基马来酰亚胺—DNS系紫外正型光刻胶的配方组成和与之配套的光刻工艺条件,表明它的成像反差γ=3.001,它的等离子蚀刻速率可以与线形酚醛树脂—重氮萘醌(DNQ)系紫外光刻胶的相比,它的分辨率可以达到1μm左右。
     开发了一种新的248nm深紫外单层光刻胶体系,成膜树脂采用聚PTBOCS共N-羟基-3,6-内氧桥-4-环己烯二甲酰亚胺甲基丙烯酸酯,PAG采用对甲基苯磺酸三苯基硫鎓盐,阻溶剂为(4,4’-二特丁氧酰氧基)二苯基丙烷,溶剂采用1:1(v/v)的乙二醇单甲醚乙酸酯(EGMEA)和乳酸乙酯(EL)的混合液,显影液为2.38%(w/w)氢氧化四甲基铵(TMAH)溶液。探讨了该系光刻胶的配方组成和与之配套的光刻工艺条件,结果表明这是一种环境稳定的化学增幅型深紫外光刻胶。它的抗蚀刻能力与线性酚醛树脂—DNQ系光刻胶的基本相同,初步的光刻实验表明,它的分辨率至少在0.5μm左右,它的感光灵敏度为22mJ/cm2。
     分别探讨了耐高温紫外正型光刻胶聚N-(p-羟基苯基)甲基丙烯酰胺共N-苯基马来酰亚胺—DNS系和248nm深紫外光刻胶聚PTBOCS共N-羟基-3,6-内氧桥-4-环己烯二甲酰亚胺甲基丙烯酸酯—对甲基苯磺酸三苯基硫鎓盐体系的显影成像机理。
Photoresist is a key and foundmental material for the photolithographic technique in the microelectronics manufacturing system. It defines the development level of microelectronics technique. As a rule, photoresist is composed of matrix resin, photosensitizer (photoactive compound), solvent and other additives. At the present time, the research and development of photoresist in China is much behind the internationally leading level.
     By using novel methods, a series of monomers for the matrix resins of photoresist were synthesized, including N-phenyl-methacrylamide, N-(p-hydroxyphenyl) methacrylamide, N-(p-acetoxyphenyl)methacrylamide, p-tert-butoxycarbonyloxystyrene (PTBOCS), N-hydroxy-5-norbornene-2,3-dicarboximidomethacrylate and N-hydroxy-3,6- endo-oxo-4-cyclohexene-dicarboximidomethacrylate. Their FT-IR and 1H NMR spectra were measured for characterization.
     Two common photoacid generators(PAGs) triphenylsulfonoum tosylate and N-hydroxyphthalimidotosylate were prepared. They were characterized by FT-IR and 1H NMR, and tested by thermal property, UV absorbance and solubility. It showed that they could be used as the PAGs of deep-UV photoresist.
     Three copolymers were obtained from the solution free radical copolymerization of the above monomers and comonomer styrene, i.e. poly-styrene-co-N-(p-hydroxy phenyl)maleimide, poly-N-(p-hydroxyphenyl)methacrylamide-co-N-phenylmaleimide and poly-N-phenylmethacrylamide-co-N-(p-hydroxyphenyl)maleimide. The investigations of their properties showed that all of them had high glass transition temperatures(Tg>250℃), good solubilities, film forming characteristics and hydrophilicities, so they could be used as the matrix resins of high thermostability UV positive photoresist.
     A new copolymer poly-PTBOCS-co-N-hydroxy-5-norbornene-2,3-dicarboximido methacrylate was prepared from the above monomers PTBOCS and N-hydroxy-5- norbornene-2,3-dicarboximidomethacrylate. Its FT-IR spectrum, thermal property and UV transmittance were determined. A conclusion could be drawn that it had excellent solubility, film forming characteristic, thermostability(Tg=175℃),UV transmittance in 248nm wavelength and adhesiveness to the wafer substrates, so it could be a good matrix resin of deep-UV photoresist. But another new polymer poly-PTBOCS-co- N-hydroxy-5-norbornene-2,3-dicarboximidomethacrylate had poor solubility in organic solvent, so it was unfit for the matrix resin of deep-UV photoresist.
     For the first time, poly-N-(p-hydroxyphenyl)methacrylamide-co-N-phenyl maleimide and poly-N-penylmethacrylamide-co-N-(p-hydroxyphenyl)maleimide were used as the matrix resins of the high thermostability UV positive photoresist. The optimal formulation and photolithographic processing conditions of a new UV positive photoresist, which was a mixture of poly-N-(p-hydroxyphenyl)methacrylamide-co-N–phenylmaleimide, diazonaphthoquinone sulfochloride(DNS), benzophenone and solvent, were studied in detail. It was found that its imaging contrast was 3.001, its resolution was up to about 1μm and its plasma etching resistance was comparable to that of the novolak-diazonaphthoquinone(DNQ) system UV photoresist.
     A new single-layer 248nm deep-UV photoresist system was developed, whose matrix resin was the above poly-PTBOCS-co-N-hydroxy-3,6-endo-oxo-4-cyclohexene- dicarboximidomethacrylate, PAG was triphenylsulfonium tosylate, dissolution inhibitor was (4,4’-di-tert-butoxycarbonyloxy)diphenylpropane, solvent was 1:1(v/v) ethylene glycol monomethyl ether acetate(EGMEA) and ethyl lactate(EL), and developer was 2.38% tetramethylammonium hydroxide (TMAH) aqueous solution. Its optimal formulation and photolithographic processing conditions were explored. It showed that it was an environmentally stable chemically amplified photoresist(ESCAP), and it had the resolution of no less than 0.5μm, the plasma etching resistance comparable to that of the novolak-DNQ system photoresist, and the sensitivity of 22mJ/cm2.
     The development imaging mechanisms were simply explored for the high thermostability UV positive photoresist of poly-N-(p-hydroxyphenyl)methacrylamide -co-N-phenylmaleimid-DNS system and the 248nm deep-UV photoresist of poly-PTBOCS-co-N-hydroxy-3,6-endo-oxo-4-cyclohexene-dicarboximidomethacrylate-triphenylsulfonium tosylate system.
引文
[1]张兴,黄如,刘晓彦,编著.微电子学概论(第一版).北京:北京大学出版社,2000,1
    [2] Moore G E. Lithography and the future of Moore’s law. Proc. SPIE, 1995, 2438: 2-17
    [3]毕克允,林金庭,梁春广,等.微电子技术—信息装备的精英(第一版).北京:国防工业出版社,2000,1
    [4] Bruning J H. Optical lithography—thirty years and three orders of magnitude. Proc. SPIE, 1997, 3049: 14-27
    [5]穆其道,曹立新.光刻技术的发展与光刻胶的应用.集成电路,2003,6:69-75
    [6]人民网,人民日报,东方言. http://finance.tom.com, 2004.12.16日17时41分
    [7] Shinji O. Lithography for ULSI. Proc. SPIE, 1995, 2438: 18-32
    [8] Karen H B. SEMATECH and the national technology roadmap. Proc. SPIE, 1995, 2438: 33-37
    [9]宋登元,郭宝增,王小平.深亚微米光刻技术.固体电子学研究与进展,1999,19(3):344-352
    [10]宋登元,王小平.光学光刻技术的研究进展.半导体技术,1998,23(2):2-5
    [11]谢常青.深亚微米光学光刻工艺技术.电子工业专用设备,2000,29(3):8-12
    [12]宋登元. ArF准分子激光光刻的研究现状.激光技术, 1999, 23(5): 288-291
    [13]范建光,杨华中,汪蕙.用光学传输矩阵模拟光致抗蚀剂中的驻波效应.固体电子学研究与进展,2002,23(3):361-366
    [14]路敦武,黄惠杰,鄢雨,等.深亚微米激光光刻研究.光学学报,1996,16(8):1169-1172
    [15] Lin Q Y, Michael S. Advanced KrF chemical amplified photoreists for 0.13μm lithography. Proc. SPIE, 2001, 4345: 610-617
    [16]候德胜,冯伯儒,孙方,等.用光致抗蚀剂层制作衰减相移掩膜.微细加工技术,2001,2:6-8
    [17]姚汉民,袁大发.软x射线光刻研究现状与发展.光电工程,1996增刊,23:128-136
    [18]冯伯儒.光学光刻和射线光刻技术的发展.微细加工技术,1997,1:7-9
    [19]江宝林.印刷电路基板光致抗蚀剂.化工新型材料,1994,3:13-16
    [20]刘鹏.光刻胶现状与发展战略设想.浙江化工,1990,21(2):14-17
    [21]曹立新.我国超净高纯试剂和光刻胶的现状与发展.半导体技术,2003,28(12): 12-16
    [22]吴雄杰,裘霞敏.我国电子化学品产业的发展现状及前景.浙江化工,2003,34(6): 25-27
    [23]姜军,周芳,曾俊英.光刻技术的现状与发展.红外技术,2002,24(6): 8-13
    [24]孙宗连,译.新世纪全球电子化学品发展走势.精细与专用化学品,2001,18:11-13
    [25]孙世铭.超净高纯试剂与紫外光刻胶.精细与专用化学品,1999,10:8-11
    [26]刘锡洹.九十年代国外的光致抗蚀剂.电子材料,1992,3:1-12
    [27]吴雄杰,裘霞敏.我国化学电子品产业的发展状况及前景.浙江化工,2003,34(6):25-27
    [28] Yan Z L, Yeh T F, He X H, et al. How to make polyvinylphenol inhibitable by diazonaphthoquinone sulfonates. J. Vac. Sci. Technol. B, 2000, 18(6): 2745-2749
    [29]武玲,余尚先.正性光致抗蚀剂主要成膜树脂—酚醛树脂.感光材料,1994,4:3-8
    [30]黄志齐.紫外正型光刻胶用线形酚醛树脂.影像科学与实践. 1995,4:45-47
    [31]夏伟如,章舒,夏敏,等.正性抗蚀剂用酚醛树脂的制备.科技进展,2002,4:21-24
    [32]夏伟如,章舒,夏敏.酚醛树脂对光刻胶性能的影响.上海化工,2002,12:20-22
    [33]陈明,李元昌,洪啸吟.一种可以正负互用的水型化学增幅抗蚀剂的研究.高等学校化学学报,2000,21(9):1485-1488
    [34]余尚先,杨凌露,张改莲. ArF激光光致抗蚀剂的研究进展.感光科学与光化学,2003,21(1);61-71
    [35]陈明,陈其道,洪啸吟. 193nm光刻中的光致抗蚀剂.感光科学与光化学,2000,18(1): 77-84
    [36]王文君,张改莲,王力元,等.酸增殖剂研究进展.感光科学与光化学, 2003,21(4): 296-302
    [37] Kim H W, Choi S J, Sang G D, et al. A new platform for ArF lithography. J. Photopolym. Sci. Technol. 2000, 13: 419-426
    [38] Takashi A, Kenichiro S, Kunihiko K, et al. Structure design of new alicyclic acrylate polymer with androstane moiety for 193nm resist. Proc. SPIE, 1999, 3678: 283-294
    [39] Naomi S, Tohra U, Koji A, et al. Advanced materials for 193nm resists. J. Photopolym. Sci. Technol. 2000,13: 601-606
    [40] Munirathna P, Bae J B, Kim W K. Laser-specific resists for 193nm lithography. J. Photopolym. Sci. Technol. 2000, 13: 607-615
    [41] Dammel R, Cook M, Klauk-Jacobs A, et al. 193nm resists for deep sub-wavelength application. J. Photopolym. Sci. Technol. 1999, 12: 433-444
    [42] Munirathna P, Bae J B, Michill C, et al. Application of Photodecomposable base concept to 193nm ressits. Proc. SPIE, 2000, 3999: 1137-1146
    [43] Shigeyuki I, Katsumi M, Haseqawa T. Chemically amplified negative resists based on alicyclic acrylate polykmers for 193nm lithography. J. Photopolym. Sci. Technol. 1999, 12: 487-492
    [44]王文君,赵淑敏.紫外光致抗蚀剂的研究现状.中国环境管理干部学院学报,2005,15(4):79-81
    [45]郑金红,黄志齐,陈晰,等. 193nm光刻胶的研制.感光科学与光化学,2005,23(4):300-311
    [46]王文君,李华民,王力元.一种适用于193nm光刻胶的硫鎓盐光产酸剂的制备与性能.感光科学与光化学,2005,23(1):48-54
    [47] Strurtevant J, Conley W E. Photosensitization in dyed and undyed APEXE DUV resist. Proc. SPIE, 1996, 2724: 273-279
    [48] Ito H. Chemically amplified resist: past, present and future. Proc. SPIE, 1999, 3678: 2-12
    [49] Thackery J W, Orsula G W. Deep UV photoresist for 248nm excimer laser photolithography. Pro. SPIE, 1989,1086: 34-44
    [50] Kang D, Robertson S. Measuring and simulating postexposure bake temperature effects in chemically amplified photoresists. Pro. SPIE, 2002, 4690: 963-970
    [51] Bogdanov A L, Nikitaev V A, Polyakov A A. Image formation mechanism in polymethylacrilate(PMMA)-metacrilic acid(MMA)-antracene positive photoresist exposed by pulsed laser and kinetics of its development. Pro. SPIE, 1990, 1262: 425-431
    [52] Hartless R L, Chandross E A. Deep-UV photoresists: poly(methylacrylate-co-indenone. J. Vac. Sci. Technol. 1981, 19(4): 1333-1337
    [53] Frechet J M J, Eichler E. Poly (p-tert-butoxycarbonyloxystyrene): a convenient precursor to p-hydroxystrene resins. Polymer, 1983, 24(8): 995-1000
    [54] Ito H, Willson C G. Positive/negative mid UV resist with high thermal stability. Proc. SPIE, 1987, 771: 24-30
    [55] Ito H, Pederson L A. Sensitive electron beam resist systems based on acid-catalyzed deprotection. Proc. SPIE, 1989, 1086: 11-17
    [56] Dennis R M, William D H, Thomas P S, et al. Methylated poly(4-hydroxystyrene): a new resin for deep-ultraviolet resist application. J. Vac. Sci. Technol. B, 1990, 8(6): 1466-1469
    [57] Hayishi N, Schlegil L. Polyvinylphenols protected with tetrahydropyranyl group in chemical amplification positive deep UV resist systems. Proc. SPIE, 1991, 1466: 377-383
    [58] Makoto M, Eiichi K. Positive deep-UV resist based on silylated polyhydroxystyrene. J. Photopolym. Sci. Technol. 1992, 5: 79-85
    [59] Colley W, Breyta G, Brunsvold B, et al. The lithographic performance of an environmentally stable chemically amplified photoresist(ESCAP). Proc. SPIE, 1996, 2724: 34-60
    [60] Takayoshi T, Yasutaka K, Akira T. PED stabilized chemically amplified photoresist. Proc. SPIE, 1996, 2724: 61-69
    [61] Sang-Jun Choi, Si-Young Jung, Chang-Hwan Kim, etc. Design and properties of new deep-UV positive photoresist. Proc. SPIE, 1996, 2724: 323-331
    [62] Kim H J, Chung Y S, Choi Y J, et al. Investigation on dissolution rate effect of newly prepared polystyrene copolymer on the profiles of DUV resist. Proc. SPIE, 2001, 4345: 528-535
    [63] Malik S, Blakeney A, Ferreira L, et al. Lithographic properties of novel acetal-derivatized hydroxy styrene polymers. Pro. SPIE, 1999, 3678: 388-399
    [64] Fujimori T, Tan S, Aoai T, et al. Structural design of a new class of acetal polymer for DUV resists. Pro. SPIE, 2000, 3999: 579-590
    [65] Ito H, Evaluation and progress of deep UV resist materials. J. Photopolym. Sci. Technol. 1998, 11: 379-386
    [66] Houlihan F M, Nalamasu O, Reichmanis E, et al. An overview of photoacid generator design for acetal resist systems. Proc. SPIE, 1997, 3049: 366-472
    [67] James F C, Timothy A, Arturo J O, et al. Complex triarylsulfonium salts as photoacid gerators for deep UV microlithography: synthesis identification and lithographic characterization of key individual components. Proc. SPIE, 1997, 3049: 473-484
    [68] James F C, Sheri L A, Xu G Y, et al. Impact of photoacid generator structure on DUV resist performance. Pro. SPIE, 1999, 3678: 85-99
    [69] Nigel P H, Kevin M W. Mechanistic studies on the poly(4-tert-butoxy carbonyloxystyrene)/ triphenylsulfonium salt photoinitiation process. Proc. SPIE, 1991, 1466: 384-393
    [70] Hitoshi Y, Toshikage A, Tobias H, et al. Novel non-ionic photoacid generator releasing strong acid for chemically amplified resists. Proc. SPIE, 2004, 5376: 103-114
    [71] Toshikage A, Hitoshi Y, Akira M, et al. A novel photoacid generator for chemically amplified resists with ArF exposure. Proc. SPIE, 2003, 5039: 1155-1163
    [72] Schwartzkopf G, Nagla N N, Siddhartha D, et al. Onium salt structure/property relationships in poly(4-tert-butoxycarbonyloxystyrene) deep UV resists. Proc. SPIE, 1991,1466: 26-37
    [73] Bukofshy S J, Feke G D, Wu Q, et al. Imaging of photogenerated acid in a chemically amplified photoresist. Appl. Phys. Lett. 1998, 73(3): 408-410
    [74] Seiichi T, Seiji N, Toshiyuki I, et al. Radiation and photochemistry of onium salt acid generators in chemically amplified resists. Proc. SPIE, 2000, 3999: 204-213
    [75] Wang L Y, Wang W J, Guo X. The synthesis and properties of N-hydroxy Maleopimarimide sulfonate derivatives as PAG and inhibitor for deep UV photoresist. Pro. SPIE, 2004, 5376: 608-615
    [76] Kunihiro I, Koji A, Kazauaki K, et al. Acid proliferation reactions and their applications. Chem. Lett. 1995, 7: 511-517
    [77] Koji A, Kazuaki K, Hironori O, et al. Sensitivity enhancement of chemical-amplifiction-type photoimaging materials by acetoacetic acid derivatives. J. Photopolym. Sci. Technol. 1995, 8: 43-45
    [78] Kazuaki K, Koji A, Hironori O, et al. Enhancement of the sensitivity of chemical-amplifiction-type photoimaging materials byβ-tosyloxyketone acetals. J. Photopolym. Sci. Technol. 1995, 8: 45-55
    [79] Kazuaki K, Koji A, Kunihiro I, et al. Autocatalytic decomposition of aβ-tosyloxyketone acetal as an acid amplifier. Mol. Cryst. Liq. Cryst. 1996, 280: 307-315
    [80] Koji A, Kazuaki K, Hayashi Y, et al. Effect of phenolic hydroxyl residues on the improvement of acid-proliferation-type photoimaging materials. J. Photopolym. Sci. Technol. 1996, 9: 29-35
    [81]盛丽英,张颂培,王力元. 1-取代-顺式-1,2-环己二醇单磺酸酯类酸增殖剂的合成和性能研究[J].感光科学与光化学,2005,23(5):389-393
    [82] Conley W. Considerations in the development of deep UV photoresist material & processes. Pro. SPIE, 1995, 2438: 40-52 [83 Richard S T, Robert A A, Aonrad G H, et al. High-Tg base-soluble copolymers as novolac replacements for positive photoreists. Polym. Eng. Sci. 1986, 26(16): 1096-1100.
    [84] Chiang W Y, Lu J Y. Preparation and properties of Si-containing copolymer for near-UV resist. I. Poly(N-(4-hydrophenyl)maleimide-alt-p-trimethylsilylstyrene). J. of Polym. Sci.: Part A: Polym. Chem. 1991, 29: 399-410
    [85]彭进,张琳琪,邹文俊,等. N-(4-羟基苯基)马来酰亚胺的合成研究.河南化工,2003,7:13-16
    [86]袁明容,黄建兵,龚本民.聚苯乙烯-N-(4-羟基苯基)-马来酰亚胺合成的研究.高分子材料科学与工程,1990,1:84-88
    [87]胡春弟,张旭玲. N-(4-羟基苯基)马来酰亚胺的合成研究.广东化工,1999,2:66-67
    [88]张东亮,蒋必彪,方建波,等. N-(4-羟基苯基)马来酰亚胺的合成研究.江苏工业学院学报,2003,15(4):8-10
    [89] Tawney P O, Synder R H, Bryan C Y. The chemistry of maleimide and its derivatives.Ⅰ. N-carbamylmaleimide. J. Org. Chem. 1960, 25(1): 56-60
    [90] Robert J C, Carol K S, John M W. The synthesis of N-substituted Isomaleimides. J. Org. Chem. 1961, 26(1): 10-15
    [91] Tawney P O, Synder R H, Conger R P. The chemistry of maleimide and its derivatives.Ⅱ. Maleimide and N-methylolmaleimide. J. Org. Chem. 1961, 26(1): 15-21
    [92] Ludwig B, Stanley V M. Stereospecific lossen rearrangements. J. Org. Chem. 1959, 24(12): 1293-1296
    [93] Mitsuaki N, Takero T, Makoto O. Syntheses and reactions of functional polymers. LIV. Syntheses and polymerizations of O-substituted-N-hydroxymaleimides. J. Org. Chem. 1971, 44(4): 1084-1089
    [94] Ledwith A, Rahnema M, Sen Gupta P K. Phenolic resins for solid phase peptide synthesis.Ⅲ.Copolymerization of acrylonitrile and p-acetoxystyrene and comparison of reactivity with styrene-based resins. J. Polym. Sci. : Polym. Chem. Ed. 1980, 18(7): 2239-2246.
    [95] Ono Y, Nishishita T, Sekiya M. Column packing for high-speed liquid chromatography. Jpn. Kokai Tokkyo Koho, 1978, 78: 80291-80294.
    [96] Fujiwara H, Takahashi A, Suzuki K. Properties and application of poly(p-vinylphenol)(resin M). Maruzen Sekiyu Giho, 1976, 21: 1-15.
    [97] Kato Y, Kametani T, Furukawa K, et al. High-resolution preparative-scale gel permeation chromatography. J. Polym. Sci. : Polym. Phys. Ed. 1975,13(9): 1695-1703.
    [98]孟诗云,李光宪,杨其,等.用于光致抗蚀剂的聚对羟基苯乙烯的合成及其进展.化学进展,2004,16(2):243-249
    [99] Richard C S. Preparation and polymerization of p-vinylphenol. J. Org. Chem. 1959, 24(9): 1345-1347
    [100] Dammel R R, Rahman M D, Lu P H, et al. Lithogrphic performance of isomeric hydroxystyrene polymers. Proc. SPIE, 1994, 2195: 542-558
    [101]郑金红,黄志齐,候宏森. 248nm深紫外光刻胶.感光科学与光化学,2003,21(5): 346~356
    [102]赵双霞,张义玲,崔云梓.中间体对乙酰氧基苯乙烯的合成及其进展.化工中间体,2005,11:8-13
    [103] Corson B B, Heintzelman W J, Schwartzman L H, et al. Preparation of vinylphenols and isopropenylphenols. J. Org. Chem. 1958, 23(4): 544-548
    [104]杨凌露,张改莲,余尚先. DUV光致抗蚀剂的研究进展(Ⅰ)-主体成膜高分子部分.信息记录材料,2003,4(1):16-19
    [105]杨凌露,张改莲,余尚先. DUV光致抗蚀剂的研究进展(Ⅱ)-光产酸源、阻溶剂等添加剂部分.信息记录材料,2003,4(2):23-26
    [106] Noh C, Lee S, Moon B, et al. Novel deep UV photoresist with thermally crosslinkable photoacid generator[J]. Proc. SPIE, 2001, 4345: 536-542
    [107] Rolls W A J, Frechet Jean M J. Preparation of bead polymers containing substituted vinyl phenols and their application in liquid chromatographic separations. Polymeric Materials Sci. and Eng. 1987,56: 745-748
    [108] Frechet Jean M J, Darling G D, Itsuno S, et al. Reactive polymers: design considerations, novel preparations and selected applications in organic chemistry. Pure and Appl. Chem. 1987, 60(3): 353-364
    [109] Meftahi M V, Frechet Jean M J. Study of the compatibility of blends of polymers and copolymers containing styrene, 4-hydroxystyrene and 4-vinylpyridine. Polymer, 1988, 29(3): 477-482
    [110]段长强.现代化学试剂手册(第一分册)(第一版).北京:化学工业出版社,1986,544
    [111]曾昭琼,主编.有机化学实验(第二版).北京:高等教育出版社,1999,140
    [112]唐玉海,刘芸,主编.有机化学实验(第一版).西安:西安交通大学出版社,2002,148
    [113]谷珉珉,贾韵仪,姚子鹏,编著.有机化学实验(第一版).上海:复旦大学出版社,1991,267
    [114]北京大学化学学院有机化学研究所,编.关烨第,李翠娟,葛树风,修订.有机化学实验(第二版).北京:北京大学出版社,2002,144
    [115]王慧,游凤祥,陈明,等.高玻璃化温度化学增幅光致抗蚀剂的制备.感光科学与光化学,1998,16(3):245-249
    [116]李云. N-苯基马来酰亚胺的开发.石化技术与应用,1987,2:9-12
    [117]冯柏成,贺继东,王娟. N-苯基马来酰亚胺的开发与市场展望.精细石油化工,1999,2:52-54
    [118]赵立群,田波,张立新.降冰片烯与N-环己基马来酰亚胺自由基共聚合的竞聚率.沈阳化工学院学报,2005,19(4):318-320
    [119]宋克东,黎华明.环己基马来酰亚胺的合成.合成化学,2004,4:372-374
    [120]浦鸿汀,蒋伟春,刘玲.含活性侧基马来酰亚胺/苯乙烯共聚物的合成与性能研究.高等学校化学学报,2005,26(9):1743-1746
    [121]唐除痴,刘天麟,编著.有机合成中的有机膦试剂(第一版).天津:南开大学出版社,1992,121
    [122]张毓凡,曹玉芬,冯霄,等.有机化学实验(第一版).天津:南开大学出版社, 1991,202
    [123]聂颖,燕丰. N-苯基马来酰亚胺的生产和应用前景.精细化工原料及中间体,2006,10:25-28
    [124]刘建国,李平,李萍,等.聚对羟基苯乙烯单体的中间体—-对特丁氧酰氧基苯乙烯的合成.应用化学,已录用。
    [125] Raj, K Bansal. Organic Reaction Mechanisms (Ed. 1). New Delhi: Tata McGraw-Hill Publishing Company Limited, 1978, 233
    [126] Wade, L. G. Organic Chemistry (Ed. 5). New Jersey: Person Education Inc. 1998, 649
    [127]李葰.微电子工业用光刻胶.上海化工,2004,7:33-37
    [128]邵燕,姜劲松,许朝荣.聚乙烯醇肉桂酸酯光刻胶的合成.上海化工,1999,3:36-37
    [129] Rahman M D, Lu P, Khadim M, et al. Novolak-polyhydroxystyrene copolymer and photoreist compositions. Proc. SPIE, 1994, 2195: 652-662.
    [130] Roschert H, Eckes C, Pawlowski G.α-Hydroxymethylbenzoin sulfonic Acid esters-a versatile class of photoacid generating compounds for chemically amplified deep-UV photoresists. Proc. SPIE, 1993, 1925: 342-353
    [131]中国医药公司上海化学试剂采购供应站,编.试剂手册(第二版).上海:上海科学技术出版社,1985,526
    [132]王文君.化学增幅抗蚀剂用光产酸剂-硫鎓盐的合成方法.中国环境管理干部学院学报,2005,15(2):55-58
    [133] Bernard S W, Sheldon W T, Potratz H A. The preparation of triarylsulfonium halides by the action of aryl Grignard reagents on diphenyl sulfoxide. J. Am. Chem. Soc. 1951, 73: 1965-1967
    [134] Crivello J V, Lam J H W A new preparation of triarylsulfonium and selenonium salts via the copper(Ⅱ)-catalyzed arylation of sulfides and selenides with diaryliodonium salts. J. Org. Chem. 1978, 43: 3055-3060
    [135]刘安昌,莫健华,黄树槐,等.二苯亚砜与芳香化合物缩合制备芳基取代硫鎓盐的研究.化学世界,2005,7:424-427
    [136] John L D, Nigel P. Hacker. Photochemistry of triarylsulfonium salts. J. Am. Chem. Soc. 1990, 112: 6004-6015
    [137]李平,李萍,刘建国.光致酸发生剂—对甲基苯磺酸三苯甲基硫鎓盐的合成.感光科学与光化学,2006,24(6):450-453
    [138]刘安昌,莫健华,黄树槐.一种制备二苯亚砜的高选择性氧化方法.化学试剂,2005,27(5):319-320
    [139]刘鸿.一类含亚砜化合物的合成.惠州学院学报(自然科学版), 2004,24(3):28-31
    [140]朱冰春,王宇光,曹东华,等. N-羟基邻苯二甲酰亚胺的合成与应用.浙江化工,2004,35(4):5-6
    [141]梁舰,李建章,周波,等. N-羟基邻苯二甲酰亚胺(NHPI)用于有机氧化反应的研究进展.化学研究与应用,2004,16(5):597-600
    [142]柏一慧,杜敬星,郑人卫. N-羟基丁二酰亚胺的制备.江西化工,2002,1:37-39
    [143]袁明荣,黄建兵,龚本民.一种新型耐热性抗干法蚀刻正性光刻胶的研制.感光材料,1989,3:28-30
    [144]陈兆斌,沈国妙.马来酰亚胺—苯乙烯共聚物类型的光刻胶.感光材料,1991,1:24-27
    [145] Leonard E B, Karen A G. Optimization of the absorbance of novolak resin films at 248 nanometers. Proc. SPIE, 1990, 1262: 180-186
    [146] Hayashi K I, Hideo K. Charateristics of new KrF excimer laser resist. Proc. SPIE, 1990, 1262: 468-475
    [147] Taro I, Sucheta G, Takafumi F, et al. Positive photosensitive polyimide synthesized by block copolymerization for KrF lithography. Proc. SPIE, 2000, 552-558
    [148] Harry F. Evaluation of resist materials for KrF excimer laser lithography. Proc. SPIE, 1990, 1262: 331-343
    [149] Makoto M, Toshihiko T, Mitsunobu K, et al. An aqueous base developable novel deep-UV resist for KrF excimer laser lithography. Proc. SPIE, 1990, 1262: 8-15
    [150] Robert D A, Quan P L, Gregory M W, et al. New Chemistry in the design of chemistry amplified positive resists. Proc. SPIE, 1993, 1925: 246-256
    [151] Willson C G, Ralph A D, Arnost R, et al. Photoresist materials: a historical perspective. Proc. SPIE, 1997, 3049: 28-41
    [152]王春伟,李弘,朱晓夏.化学放大光刻胶高分子材料研究进展.高分子学报,2005,2:70-80
    [153] Pawlowski G, Sauer T, Dammel R, et al. Modified polyhydroxystyrenes as matrix reisns for dissolution inhibition type photoresists. Proc. SPIE, 1990, 1262: 391-400
    [154]刘建国,郑家燊,李平.聚羟基苯乙烯在光致抗蚀剂中的应用及其合成.感光科学与光化学,2006,24(1): 67-74
    [155] Mohammed N J, Raja S, Vijayakumaran K, et al. Practical route for the preparation of poly(4-hydroxystyrene), a useful photoresist material. J. Polym. Sci. Part A: Polym. Chem. 2000, 38(3): 453-461
    [156] Toshiro I, Hiroshi Y, Shuichi H, et al. Polymer structure effect on dissolution characteristics and acid diffusion in chemically amplified deep ultraviolet resists. J. Vac. Sci. Technol. B. 1997, 15(6): 2541-2544
    [157] Ito H, England W P. Effects of polymer end groups on chemical amplification. Proc. SPIE, 1992, 1672: 2-10
    [158] Kotato S, Masami K, Mitsuo S. Metal triflates and tetrafluoroborates as water-tolerant lewis acids for cationic polymerization in aqueous media. Macromolecules, 2000, 33: 5836-5840
    [159] Lee T Y , Yu C Y, Hsu M Y, et al. Polymers with well-controlled molecular weight for DUV/EUV lithography. Proc. SPIE, 2003, 5039: 548-557
    [160] Barclay G G, Kawker C J, Ito H, et al. Narrow polydispersity polymers for microlithography synthesis and properties. Proc. SPIE, 1996, 2724: 249-261
    [161]马建霞,吴纬国,张庆中,等.浅谈光刻胶在集成电路制造中的应用性能.半导体技术,2005,30(6):32-36
    [162]曾祥林,宋柏泉,赵小林.离子束蚀刻过程中光刻胶收缩行为研究.微细加工技术,1994,3:22-26
    [163]李祥,孙峰.离子蚀刻工艺中坚膜技术的研究.微电子技术,1994,22(1):36-39
    [164]汪继芳.光刻工艺稳定性研究.集成电路通讯,2005,23(1):38-40
    [165] Thomas S, Andrew B, Joe S, et al. Novel cresol/chloroacetaldehyde novolacs for high temperature resist applications. Proc. SPIE, 1990, 1262: 273-283
    [166] Huang W S , Kwong R, Ahmad K, et al. Evaluation of a new environmentally stable positive tonechemically amplified deep-UV resist. Proc. SPIE, 1994, 2195: 37-46
    [167] Houliman F M, Wallow T I, Nalamasu O, et al. Synthesis of cycloolefin-maleic anhydride alternating copolymers for 193nm imaging. Macromolecules, 1997, 30: 6517-6524
    [168] Mertesdorf C, Nathal B, Munzel N, et al. Deep-UV resists based on methacrylamide copolymers. Proc. SPIE, 1994, 2195: 246-257
    [169] Kometani J M, Nalamasu O, Reichmanis E, et al. Synthesis and lithographic characterization of poly(4-t-tert-butoxycarbonyloxystyrene-sulfone). J. Vac. Sci. Technol. B. 1990, 8(6): 1428-1431
    [170] Nalamasu O, Cheng M, Kometani J M, et al. Development of a chemically amplified positive (CAMP) resist material for single layer deep-UV lithography. Proc. SPIE, 1990, 1262, 32-48
    [171] Schwalm R, Binder H, Fischer T, et al. A robust and environmentally stable deep UV positive resist: optimization of SUCCESS ST2. Proc. SPIE, 1994, 2195: 4-13
    [172] Takaaki N, Hiroshi T, Yasuhiro K, et al. Design of high performance chemically amplified resist. Proc. SPIE, 1996, 2724: 174-185
    [173] Yasuhiro K, Hiroshi T, Michinori T, et al. Environmentally stable chemically amplified resist. Proc. SPIE, 1997, 3049: 238-247
    [174] Conley W, Brunsvold B, Buehrer F, et al. New ESTAP-type resist with enhanced etch resistance and its application to future DRAM and logic device. Proc. SPIE, 1997, 3049: 282-299
    [175] Sanjay M, Andrew J B, Lawrence F, et al. Structural basis for high thermal stability of a resist. Proc. SPIE, 1998, 3333: 706-714
    [176] Kenji H, Bernard T B, Edward A F, et al. Studies of dissolution inhibition mechanism of DNQ-novolak resist [Ⅱ] effect of extended ortho-ortho bond in novolak. Proc. SPIE, 1991, 1466, 141-148
    [177]黄毓礼,魏杰,李敏,等.邻叠氮萘醌型光敏剂量子效率的测定.感光材料,1997,5: 22-24
    [178]黄毓礼,魏杰,李敏.不同结构的邻叠氮萘醌型光敏剂感光性能的研究.影像技术,1999,1:11-13
    [179] Ryotaro H, Yasunori U, Makoto H, et al. Design of PACs for high performance photoresists [Ⅱ] effect of number and orientation of DNQs and–OH of PACs on lithographic performance. Proc.SPIE, 1993, 1925: 227-234
    [180]余尚先,顾江南,童晓,等.重氮萘醌系正性抗蚀剂“增感”的进展.感光科学与光化学,1998,16(1):83-90
    [181] Uenishi K, Sakaguchi S, Kawabe Y, et al. Selectively DNQ-esterified PAC for high performance positive photoresists. Proc. SPIE, 1992, 1672: 262-272
    [182] Honda K, Beauchemin B T. Studies of the molecular mechanism of dissolution inhibition of positive photoresist based on novolak-DNQ. Proc. SPIE, 1990, 1262, 493-500
    [183] Wayne M M. Thermal stability of naphthodiazoquinone sensitizers. Proc. SPIE, 1997, 3049: 618-627
    [184]高英新,包永忠,黄志明,等.酚醛-重氮萘醌正性抗蚀剂溶解抑制机理.感光科学与光化学,2004,22(1):33-43
    [185] Murata M, Koshiba M, Harita Y. Mechanisms of the dissolution inhibition effect and their application to designing novel deep-UV resists. Proc. SPIE, 1989, 1086: 48-55
    [186] Furuta M, Asaumi S, Ykota A. Mechanism of dissolution inhibition of novolak-diazoquinone resist. Proc. SPIE, 1991, 1466: 477-484
    [187] Arcus R A. A membrane model for positive photoresist development. Proc. SPIE, 1986, 631: 124-134
    [188] Templeton M K, Szmanda C R, Zampini A. On the dissolution kinetics of positive photoresists: the secondary structure model. Proc. SPIE, 1987, 771: 136-147
    [189] Houlihan F M, Chin E, Nalamasu O, et al. The synthesis, characterization and lithography ofα-substituted 2-nitrobenzyl arylsulfonate photo-acid generators with improved resistance to post exposure bake. Proc. SPIE, 1994, 2195: 138-151
    [190] Andrew R E, Wayne M M. Fluorescence derection of photoacid in chemically amplified resists. Proc. SPIE, 1997, 3049: 879-887
    [191] Katherine E M, William J K, Chris A M, et al. Diffusivity measurements in polymers, PartⅣ:acid diffusion in chemically amplified resists. SPIE, 1997, 3049: 706-711
    [192] Kamonl K, Nakazawa K, Yamaguchi A, et al. Time dependent simulation of acid and productdistributions in chemically amplified resists. Proc. SPIE, 1997, 3049: 180-188
    [193] Yasuhiro S, Donald W J. Photoacid generators in chemically amplified resists. Proc. SPIE, 1998, 3333: 735-746
    [194] James F C, Michael J M, Thomas M Z, et al. Photoacid generation in chemically amplified resists: elucidation of structural effects of photoacid generators using new acid sensitive dyes for monitoring acid generation. Proc. SPIE, 1998, 3333: 680-691
    [195] Kim J B, Kwon Y G, Choi J H, et al. Acid diffusion and evaporation in chemically amplified resists. Proc. SPIE, 1998, 3333: 536-543
    [196] Shi X L. Role of acid charge in chemically amplified resists. Proc. SPIE, 1998, 3333: 347-342
    [197]戴光松,吴世康.三苯基硫鎓盐衍生物激光闪光光解的研究.物理化学学报,1996,12(1):54-58
    [198] Cronin M F, Timothy A, Theodore F, et al. Investigation of onium salt type photoacid generators in positive DUV resist systems. Proc. SPIE, 1994, 2195: 214-224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700