用户名: 密码: 验证码:
聚乙烯醇改性无纺布复合膜的制备与耐污染性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器(MBR)是将膜分离技术和生物反应器相结合的一个新型污水处理工艺。MBR以膜分离装置取代传统废水生物工艺中的二沉池,实现高污泥浓度运行,具有工艺流程简单、占地面积小、固液分离效率高、自动化程度好、剩余污泥产量少等优点。MBR作为一种新型高效的水处理技术,受到各国水处理技术研究者的日益关注。但是高造价的膜组件和膜污染问题成为当前限制MBR广泛应用的主要瓶颈。因此,有必要研究降低膜组件造价和减少膜污染的方法,这对扩大MBR的应用领域具有重要意义。
     本实验研究以国内企业生产的、价格低廉的过滤材料-无纺布代替目前MBR中通常使用的高分子膜材料;为了预防和减少膜污染,以聚乙烯醇(PVA)为改性材料,采用表面涂敷法对疏水性的无纺布表面进行亲水改性,制备了PVA改性无纺布复合膜,用于废水处理。本研究主要考察了制膜工艺和制备条件对PVA改性无纺布复合膜性能的影响以及复合膜的耐污染性能;并借助全反射红外光谱(ATR-FTIR)、X光电子能谱(XPS)以及扫描电子显微镜(SEM)等现代分析技术对复合膜的表面微观结构和表面化学结构进行了表征和分析。研究内容有:
     (1)考察了有/无亲合剂(聚乙二醇)预处理以及改变PVA浓度、催化剂浓度、涂膜时间、热处理温度和时间,复合膜的纯水通量和静态水接触角的变化。结果表明:亲水化预处理有利于PVA均匀地附着于无纺布的表面,但是复合膜纯水通量明显小于没有预处理的复合膜,而两者的静态接触角则没有显示出较大的差别。增加PVA和交联剂浓度以及涂膜时间、热处理温度和时间,均使复合膜的纯水通量降低。PVA改性使无纺布表面的亲水性能得到明显改善。
     (2)采用无亲合剂预处理的制膜工艺,考察了PVA浓度以及交联剂浓度、基膜(无纺布)公称孔径对复合膜的纯水通量、截留率、固定度以及拉伸强度和撕裂强度的影响。结果表明:增加PVA和交联剂的浓度以及减小基膜公称孔径,均使复合膜的纯水通量降低,对聚丙烯酰胺(分子量860万)的截留率提高。PVA在无纺布表面的固定度随着PVA浓度增大而增加,但交联剂浓度变化对固定度的影响不明显。PVA改性增强了无纺布的机械性能,复合膜的拉伸强度和撕裂强度均大于未改性无纺布,但受铸膜液中PVA浓度和交联剂浓度变化的影响。
     (3)ATR-FTIR、XPS以及SEM对复合膜的表面微观结构和表面化学结构的表征和分析结果表明:基于吸附、沉淀等物理化学作用的改性方法,改变了无纺布的表面性质和表面分子结构,在无纺布表面引入了基团-OH和C-O-C,且羟基以多种形式存在于改性无纺布的表面。通过化学交联作用增强了PVA薄膜分子间的相互作用,同时保留了无纺布的基本结构。改性后无纺布表面的组成元素中有C、O两种元素。C元素有三种结合形式,除了C-H外,增加了C-O和O-C-O两种结合形式。改性无纺布中由于含氧基团的引入,O元素的相对含量显著增加,C元素相对含量有所降低。PVA改性使无纺布的空隙率减小,表面变得更光滑。在断面扫描图中发现存在明显的界面层,说明在无纺布的表面复合了PVA薄膜,形成了复合膜结构。
     (4)通过静态吸附牛血清蛋白(BSA)实验和动态处理人工废水实验,研究了复合膜的耐污染性能。PVA浓度为0.8wt%时得到的改性无纺布,对BSA吸附量最小,与未改性无纺布相比,BSA吸附量降低了83.4%,说明无纺布经PVA改性后能有效抑制BSA的吸附,增加无纺布的耐污染性能。改性前后无纺布的膜污染指数(MFI)分别为0.9519和0.2238,改性无纺布显示了良好的耐污染性能。采用统计分析方法研究了MBR中的胞外聚合物(EPS)、溶解性EPS(EPS_S)组分中的P/C(蛋白质/多糖)、活性污泥的相对疏水性(RH)与膜污染阻力的相关性。结果表明:EPS_S以及其组分中的P/C、RH对膜污染阻力有明显影响,与改性无纺布/未改性无纺布膜污染阻力的皮尔逊相关系数r_p分别为:0.868/0.856、0.840/0.866、0.890/0.841。改性无纺布表面能有效抑制EPS_S的吸附,降低EPS_S中的P/C,减少活性污泥的吸附沉积,降低膜污染。
     (5)将PVA改性无纺布复合膜的膜组件置于处理人工废水的浸没式膜生物反应器(SMBR)中,实验结果表明:改性无纺布虽然能有效减少膜污染,降低膜污染阻力,但在过滤过程中仍存在膜污染现象。改性无纺布的过滤阻力主要为膜污染阻力。在引入比污染阻力概念的基础上,以描述压力驱动过滤过程中膜通量与阻力关系的Darcy定律为基础,建立了描述SMBR间歇方式运行时,滤饼阻力控制的过滤过程中的比污染阻力与时间关系的数学模型:R_(stf)(t)=a(1-e~(-t/b)),利用此模型能够预测运行过程中膜通量的衰减趋势,其数学表达式为:J(t)=TMP/μ[R_m+a(1-e~(-t/b))]。将此模型用于预测SMBR处理制药废水的膜通量衰减趋势,与实测值比较的结果显示,当t>b时,相对误差<10%;当t>2b时,相对误差<5%。说明本文所建立的膜污染阻力模型在SMBR运行达到稳定状态后,能较好地预测膜通量衰减趋势,但是在运行初期非稳定状态(tIn recent years, Membrane Bioreactors (MBRs) have been widely used in wastewater treatment to achieve higher effluent quality, which is often difficult to be effectively met by conventional activated sludge process. The advantages of MBR are a high mixed liquid suspended solids (MLSS) concentration, simple process flow, small space occupation, high efficient separation of solid-liquid, a higher automatization, a lower excess sludge production. As a new and high efficient wastewater treatment process, MBR is attracting attention of water treatment pursuers in the world. But the major obstacles for the application of MBRs are the high cost of membrane filtration module and the issue of membrane fouling. So it is necessary to investigate the methods of decrease of membrane filtration module cost and reduction of membrane fouling. Thus, it can broaden its application fields if the crucial problems to be resolved.
     In this experiment, a low cost filtration material- hydrophobic nonwoven fabric (NWF) was used to replace high molecular membrane materials. The NWF is a local product. In order to reduce membrane fouling, the hydrophobic NWF surface was modified by polyvinyl alcohol (PVA) dip coating to prepare hydrophilic PVA-NWF that was used for wastewater treatment. In this work, the influence of membrane preparation processes and conditions on performance of PVA-NWF was investigated, anti-fouling characteristics of PVA-NWF was identified. Chemical structures and morphological changes of the NWF surface were characterized in detail by modern analysis technics i.e. attenuated total reflectance Fourier Transform Infrared (FTIR/ATR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Micrograph (SEM). This work includes:
     (1) To investigate the changes of pure water flux and static water contact angles with non hydrophilic pretreatment and hydrophilic pretreatment by PEG, and with the changes of the PVA concentrations, crystal concentration, dip coating time, heat treatment temperature and time. The results show that PVA can be equably coated on the NWF surface after hydrophilic pretreatment. But pure water membrane flux of pre treatment surface is obviously less than the flux of non pretreatment. Static contact angles of them are not big different. Pure water flux is decreased with the increase of PVA concentration, crosslink concentration, coating time, heat treatment temperature and time. PVA modification makes the contact angles of NWF surface decreased from 86°±1°(before modification) to 40°±1°(pretreatment) and 43°±3°(non pretreatment). The hydrophilicityof NWF surface is improved greatly.
     (2) To prepare membrane without hydrophilic pretreatment to investigate the influence of PVA concentration, crosslink concentrations, nominal size of NWF on pure water flux, rejection, immobilization, tensile strength and tear resistance. The results show that increasing the concentration of PVA and crosslinking, as well as decreasing nominal size of NWF, pure water flux is enhanced, and rejection of PAM (molecular weight 8.6 million) is increased. PVA immobilization on the NWF surface increases with increasing PVA concentration. The influence of variety of crosslinking concentration on immobilization is not obviously. In addition, Mechanical performance of NWF is increased after PVA modification. Both tensile strength and tear resistance are increased after modification, and they are influenced by PVA and crosslinking concentrations in coating solution.
     (3) After characterization and analysis of surface morphological and chemical structures by ATR-FTIR、XPS and SEM, the results show based on physical and chemical modification methods, i.e. absorption and sedimentation etc, the surface character and molecular structure of NWF are changed. The bases -OH and -C-O-C- are introduced to the NWF surface, and -OHs are on the surface in various forms. Interaction between molecules of PVA film is increased by chemical crosslinking. Basic structure of NWF is kept. There are two atoms (C, O) on the modified NWF surface, and three forms of C atom consist of C-H, C-O, O-C-O. Since O base is introduced on the NWF surface, relative content of O atom is enhanced obviously, and relative content of C atom is decreased. PVA Modification makes the pore size rate of NWF smaller and the surface smoother. An obvious interphase layer can be found in cross section of SEM, it reveals that NWF surface is coated by PVA film to form composite membrane.
     (4) Anti-fouling performance of composite membrane is investigated through static absorption of BSA and dynamic treatment of man-made wastewater. The results show that the prepared NWF at 0.8wt% of PVA can absorb least quantity of BSA. Compared with original NWF, the absorption of BSA is decreased by 83.4%. It reveals that PVA modification can restrict BSA absorption. Anti-fouling performance is enhanced. Membrane Fouling Index (MFI) of original and modified NWF is 0.9519 and 0.2238, respectively. Modified NWF has better anti-fouling performance. Correlation between EPS, P/C in soluble EPS (ESPs) composite, RH in activated sludge and fouling resistance is investigated by statistic analysis. The results show that the influence of EPSs, P/C in EPSs and RH on fouling resistance is very obvious. Pearson Correlation coefficients of original and modified NWF are 0.868/0.856, 0.840/0.866, 0.890/0.841. The modified surface can effectively restrict the absorption of EPSs, decrease P/C in EPSs, reduce sedimentation of activated sludge, and decrease fouling resistance.
     (5) PVA-NWF model is immerged in SMBR to be used for man-made wastewater treatment. The results show that PVA-NWF can reduce membrane fouling, can decrease the resistance of membrane fouling, but membrane fouling is still occurring during filtration. Filtration resistance is mainly from membrane fouling resistance. Based on the concept of specific fouling resistance and Darcy law that describes the relationship between flux and resistance during filtration driven by pressure, a module is established to explain therelationship between specific fouling resistance and time during filtration controlled byake resistance in SMBR of periodic operation:R_(stf)(t)=a(1-e~(-t/b)).The decline trend offlux can be predicted by this model, the expression is below J(t)=TMP/μ[R_m+a(1-e~(-t/b))].This model is used to predict the decline trend of flux during pharmaceutical wastewater treatment. Compared with experimental data, the relative error is less than 10% at t>b, the relative error is less than 5% at t>2b. It shows that the model can predict the decline trend of flux during stable operation of SMBR. But the relative error is bigger during unstable operation at initial stage (t
引文
[1] 王晓林,丁宁.反渗透和纳滤技术与应用.北京:化学工业出版社,2005.
    
    [2] Xu N, Xing W H, Xu N P, et al.Study on ceramic membrane bioreactor with turbulencepromoter. Separation and Purification Technology. 2003, 132: 403-410.
    
    [3] Bouhabila E H, Aim R B, Buisson H. Fouling characterisation in membrane bioreactors.Separation and Purification Technology. 2001, 22(3): 123-132.
    
    [4] Ilias S, Schimmel K A. Membrane bioreactor model for removal of organics fromwastewater. Journal of the Air & Wasfe Management. 1995, 45: 615-620.
    
    [5] Defrance L, YJaffrin M. Comparison between filtrations at fixed transmembrane pressureand fixed permeate flux: application to a membrane bioreactor used for wastewatertreatment. Journal of Membrane Science. 1999, 152: 203-210.
    
    [6] Trussell R S, Adham S, Trussell R R. Process limits of municipal wastewater treatmentwith the submerged membrane bioreactor. Journal of Environmental Engineering. 2005,131: 410-416.
    
    [7] 杨宗政,顾平.膜-生物反应器运行中的膜污染及其控制.膜科学与技术.2005,25(2):80-84.
    
    [8] 林燕,孔海南,何义亮等.膜生物反应器异养硝化菌的分离及硝化特性.中国环境科学.2005, 25(4):394-398.
    
    [9] 王春荣,王宝贞,王琳.两段曝气生物滤池的同步硝化反硝化特性.中国环境科学.2005, 25(1):70-74.
    
    [10]崔正国,王修林,单宝田.膜-生物反应器在工业废水处理中的研究及应用.水处理技术.2005, 31(5):7-10.
    
    [11]吴志超,王志伟,顾国维等.厌氧膜-生物反应器污泥组分对膜污染的影响.中国环境科学.2005, 25:226-230.
    
    [12]顾国维,何义亮.膜生物反应器.北京:化学工业出版社,2002.
    
    [13]李静,杜启石,戴海平.污水处理中膜生物反应器的研究进展.天津工业大学学报.2003,22 (6):18-21.
    
    [14] Marrot B, Barrios-Martinez A, Moulin P, et al. Industrial wastewater treatment in a membrane bioreactor: A review. Environmental Progress. 2004, 23(1):59-68.
    
    [15] Ben Aim R M, Semmens M J. Membrane bioreactors for wastewater treatment and reuse: A success story. Water Science and Technology. 2003, 47(1):1-5.
    
    [16]叶芬霞,陈英旭,冯孝善.化学解偶联剂对活性污泥工艺中剩余污泥的减量作用.环境科学学 报.2004,24(3):394-399.
    
    [17]邹联沛,张立秋,王宝贞等.MBR中DO对同步硝化反硝化的影响.中国给水排水.2001,17(6): 10-14.
    
    [18] He S B, Zhang Z J, Wang B Z, et al. Sim-ultaneous nitrification and denitrification in MBR. Proceedings of International Conference on Environmental Biotechnology.??Beijing:2004.
    
    [19]郑样,朱小龙,张绍园.膜生物反应器在水处理中的研究及应用.环境污染治理技术与设备. 2000,1(5):12-19.
    
    [20]樊耀波,王菊思.水与废水处理中的膜生物反应器技术.环境科学.1995,16(5):79-81.
    
    [21]王建功.港口污水膜-生物反应器回用处理技术研究.交通环保.1999,20(5):14-16.
    
    [22]杨期勇.颗粒填料复合式膜生物反应器的长期运行特性.环境工程学报.2008,2(1):31-37.
    
    [23]孙建国,贾红建,常向东等.复合式膜生物反应器处理印染废水的研究.西安工程科技学院学报. 2007,21(5):628-631.
    
    [24]王旭,吴志超,田陆梅等.厌氧膜生物反应器处理酒厂废水运行特性研究.环境污染与防治. 2007,29(10):777-780.
    
    [25]于晓霞,王锦.一体式膜生物反应器中膜污染影响因素的研究.环境科学与管理.2007, 32(11):117-121.
    
    [26]赵英,顾平,白晓琴.运行工艺对膜生物反应器的影响.化工学报.2008,59(1):209-213.
    
    [27]王娜,孙宝盛,臧倩等.优化曝气方式对减缓SMBR一体式反应器中膜污染的影响.水处理技 术.2007,33(12):77-80.
    
    [28]袁晓燕,盛京,吕晓龙等.高分子多孔膜的表面改性与抗污染研究.化学工业与工程.2003, 20(2):95-99.
    
    [29]孟凡刚,张捍民,杨凤林等.膜生物反应器中膜污染滤饼层渗透模型的研究.高校化学工程学报. 2006,20(5):763-76.
    
    [30]季民,杨拓,张亮等.MBR在垃圾渗滤液处理中的应用研究.给水排水.2007,33(9): 47-51.
    
    [31]孙京敏,韩美清,任立人.膜生物反应器(MBR)工艺处理抗生素废水中试研究.环境工程.2007, 25(5):14-16.
    
    [32]张立秋,封莉,张晓菲等.淹没式MBR处理啤酒废水的试验研究.中国给水排水.2004,20(5): 59-61.
    
    [33]郭豪,宋淑艳,张宇峰等.纳滤膜在印染废水处理中的应用研究.天津工业大学学报.2007, 26(6):28-31.
    
    [34]李占臣,史密伟,朱晓磊等.膜生物反应器的研究与进展.环境与可持续发展.2007,6:28-31.
    
    [35] Comerton A M, Andrews R C, Bagley D M. Evaluation of an MBR-RO system to producehighquality reuse water: Microbial control, DBP formation and nitrate. Water Research. 2005,39(16):3982-3990.
    
    [36] Chang L S, Clech P.L.Jefferson B, et al Membrane fouling in membrane bioreactors forwastewater treatment. Journal of Environmental Engineering. 2002,128(11): 1018-1029.
    
    [37] Kang L J, Yoon S H, Lee C H. Comparison of the filtration characteristics of organic andinorganic membranes in a membrane-coupled anaerobic bioreactor. Water Research. 2002,36(7):1803-1813.
    
    [38] Defrance L, Jaffrin M Y. Comparison between f iltrations at fixed transmembrane pressure and fixed permeate flux: Application to a membrane bioreactor used for wastewater treatment. Journal of Membrane Science. 1999, 152(2):203-210.
    [39] Choo, K. H. and Lee, C. H. Effect of anaerobic digestion broth composition on membrane permeability. Water Science and Technology, 1996, 34(9 pt 5): 173-179.
    [40] Meireles M, Aimar P, Sanchez V. Effects of protein fouling on the apparent pore size distribution of sieving membranes. Journal of Membrane Science. 1991,56(1):13-28.
    [41] Magara Y, Itoh M. The effect of operational-factors on solid/liquid separation by ultra-membrane filtration in a biological denitrification system for collected human treatment plants. Water Science and Technology. 1991, 23(7-9):1583-1590.
    [42] Shimizu Y, Rokudai M, Thoyam S, et al. Effect of membrane resistance on filtration characteristics for methanogenic waste. Kakaku Kogaku Ronbunshu. 1990,16:45.
    [43] Reihanian H, Robertson C R, Michaels A S.Mechanisms of polarization and fouling of ultrafiltration membranes by proteins. J Journal of Membrane Science. 1998, 144(1-2): 125-132.
    [44] Choi J G, Bae T H, Kim J H, et al. The behavior of membrane fouling initiation on the crossflow membrane bioreactor system. Journal of Membrane Science. 2002, 203(1-2): 103-113.
    [45] Hong S P, Bae T H, Tak T M, et al. Fouling control in activated sludge submerged hollow fiber membrane bioreactors. Desalination. 2002, 143(3):219-228.
    [46] Zhang S, Yang F, Liu Y, et al. Performance of a metallic membrane bioreactor treating simulated distillery wastewater at temperatures of 30 to 45°C. Desalination, 2006, 194(1-3):146-155.
    [47] Nagaoka H, Yamanishi S, Miya A. Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system. Water Science and Technology. 1998, 38(4-5):497-504.
    [48] Zhang J, Chua H C, Zhou J, et al. Effect of sludge retention time on membrane bio-fouling intensity in a submerged membrane bioreactor. Separation Science and Technology. 2006, 41(7):1313-1329.
    [49] Ueda T, Hata K, Kikuoka Y, et al. Effects of aeration on suction pressure in a submerged membrane bioreactor. Water Research. 1997, 31(3):489-494.
    [50] Ji L, Zhou J T. Influence of aeration on microbial polymers and membrane fouling.In submerged membrane bioreactors. Journal of Membrane Science. 2006,276(1-2):168-177.
    [51] Tam L S, Tang T W, Leung W Y, et al. A pilot study on performance of a membrane bio-reactor in treating fresh water sewage and saline sewage in Hong Kong. Separation Science And Technology. 2006, 41 (7):1253-1264.
    [52] Qin J J, Kekre K A, Tao G. New option of MBR-RO process for production of NEWater from domestic sewase. Journal of Membrane Science. 2006, 272(1-2): 70-77.
    
    
    [53] Defiance L, Jaffrin M Y, Gupta B, et al. Contribution of various constituents ofactivated sludge to membrane bioreactor fouling. Bioresource Technology. 2000, 73(2):105-112.
    
    [54] Harada H, Momonoi K, Yamazaki S, et al. Application of anaerobic-UF membrane reactorfor treatment of a wastewater containing high strength particulate organics. WaterScience and Technology. 1994, 30(12):307-319.
    
    [55] Liu R, Huang, X, Sun Y F, et al. Hydrodynamic effect on sludge accumulation over membranesurfaces in a submmembrane bioreactor. Process Biochemistry. 2003, 39(2):157-163.
    
    [56] Lee J, Ann W Y, Lee C H. Comparison of the filtration characteristics between attachedand suspended growth microorganisms in submerged membrane bioreactor. Water Research.2001, 35(10): 2435-2445.
    
    [57] Lim A L, Bai R. Membrane fouling and cleaning in microf iltration of activated sludgewastewater. Journal of Membrane Science. 2003,216(1-2):279-290.
    
    [58] Chang L S, Lee C H. Membrane filtration characteristics in membrane-coupled activatedsludge system-the effect of physiological states of activated sludge on membranefouling. Desalination. 1998, 120(3): 221-233.
    
    [59]孙培松,KimK J,吴惠珍等.蛋白质在超滤过程中的膜污染和膜清洗.水处理技术.1994,20(2): 81-84.
    
    [60] Otaki M, Okuda A, Tajima K,et al. Inactivation differences of microorganisms by lowpressure UV and pulsed xenon lamps. Water Science and Technology. 2003, 47 (3): 185-190.
    
    [61] Defrance L, Jaffrin M. Y. Reversibility of fouling formed in activated sludge filtration.Journal of Membrane Science. 1999, 157 (1):73-84.
    
    [62] Gander A M, Jefferson B, Judd S. Aerobic MBRs for domestic wastewater treatment: areview with cost considerations. Separation and Purification Technology. 2000, 18(2): 119-130.
    
    [63] Ognier S, Wisniewski C, Grasmick A, Membrane bioreactor fouling sub-criticalfiltration conditions: a local critical flux concept. Journalof Membrane Science. 2004,229(1-2): 171-177.
    
    [64] Jiang T, Kennedy M D, Guinzbourg B F, et al, Optimizing the operation of a MBR pilotplant by quantitative analysis of the membrane fouling mechanism. Proceeding of IWASpecial Conference: Water Environment-Membrane Technology, Seoul, 2004: 495-502.
    
    [65] Chua H C, Arnot T C, Howell J A. Controlling fouling in membrane bioreactors operatedwith a variable throughput. Desalination. 2002, 149(1-3):225-229.
    
    [66] Howell J A, Chua H C, Arnot T C. In situ manipulation of critical flux in a submergedmembrane bioreactor using variable aeration rates, and effects of membrane history.Journal of Membrane Science. 2004, 242 (1-2): 13-19.
    
    [67] Wen Cheng, Huang Xia, Qian Yi. Domestic wastewater treatment using an anaerobic??bioreactor coupled with membrane filtration. Process Biochemistry, 1999, 35(3-4):335-340.
    
    [68] Wen X H, Xing C H, Qian Y. A kinetic model for the prediction of sludge formation ina membrane bioreactor.Process Biochemistry. 1999, 35(3-4): 249-254.
    
    [69] Chiemchaisri C, Yamamoto K, Vigneswaran S. Household bioreactor in domestic wastewatertreatment. Water Science and membrane Technology. 1993, 27(1):171-178.
    
    [70] Zhang J S, Chua H C, Li H, et al. Fouling control in submerged membrane bioreactorswith intermittent permeation Proceeding of IWA Special Conference. Water EnvironmentMembrane Technology, Seoul, 2004:1485-1492.
    
    [71] Yu S W, Im W C, Lim B C. Influence of suction time on permeate flux in MBR for wastewatertreatment, Proceeding of IWA Special Conference. Water Environment-MembraneTechnology, Seoul, 2004: 1285-1290.
    
    [72]刘恩华,环国兰,杜启云等.一种有效的膜清洗方法-海绵球管式膜清洗系统研究.膜科学与技 术.2003-23(6):65-68.
    
    [73]邹联沛,王宝贞,张捍民.膜生物反应器中膜的堵塞与清洗机理研究.给水排水.2000,26(9): 73-75.
    
    [74]迪莉拜尔·苏力坦,莫罹,黄霞.PAC-MBR组合工艺中膜污染及清洗方法的研究.给水排 水.2003,29(5):1-4.
    
    [75]黄霞,莫罹.MBR在净水工艺中的膜污染特征及清洗.中国给水排水.2003,19(5):8-12.
    
    [76] Chang I S, Lee C H, Ahn K H.Membrane Filtration Characteristics in Membrane-CoupledActivated Sludge System: The Effect of Floe Structure on Membrane Fouling. WaterScience and Technology. 1999, 34(9):1743-1758.
    
    [77] Futamura Osamu, Katoh Masuo, Takeuchi Koyosi. Organic waste water treatment byactivated sludge process using integrated type membrane Separation. Desalination.1994, 98(1-3): 17-25.
    
    [78] Knoell T, Safarik J, Cormack T, et al. Biofouling potentials of microporous polysulfonemembranes containing a sulfonated polyether-ethersulfone/polyethersulfone blockcopolymer: correlation of membrane surface properties with bacterial attachment.Journal of Membrane Science. 1999, 15 7(1):117-138.
    
    [79] Wilkes S, Brindle K, Rosenberg S. The preliminary evaluation of a submerged membranebioreactor based on lame diameter hollow fiber membranes for treatment of raw sewage.Proceeding of MBR Conference. Cranfield: 1999,1-8.
    
    [80] Wang Y, Kim J H, Choo K H, et al. Hydrophilic modification of polypropylenemicrofiltration membranes by ozone-induced draft polymerization. Journal of MembraneScience. 2000, 169(2):269-276.
    
    [81] John Pieracci, James V Crivello, Georges Belfort. Photochemical modification of 10kDa polyethersulfone ultrafiltration membranes for reduction of biofoul ing. Journal??of Membrane Science. 1999, 156(2):223-240.
    
    [82] Li N, Liu Z Z, Xu S G. Dynamically formed poly (vinylalcohol) ultrafiltration membraneswith good anti-fouling characteristics. Journal of Membrane Science. 2000, 169(1): 17-2
    
    [83] Morel G, Quazzani N, Graciaa A, et al. Surfactant modified ultrafiltration for nitrateion removal. Journal of Membrane Science. 1997, 134(7):47-57.
    
    [84] Jaekyung Yoon, Yeomin Yoon, et al. Use of surfactant modified ultrafiltration forperchlorate (ClO_4~-) removal. Water research. 2003, 37(10): 2001-2012.
    
    [85]韩式荆,刘忠洲,刘建维.表面活性剂组成对膜分离行为的影响.水处理技术.1989,5(2): 87-92.
    
    [86]吴惠珍,Chen Vicki,孙培松等.阴离子表面活性剂对降低超滤膜污染的影响.水处理技 术.1994,20(2),85-88.
    
    [87]董声雄,洪俊明.聚偏氟乙烯超滤膜的制备及亲水改性.福州大学学报.1998,26(6):119-122.
    
    [88] Musale D A, Kumar A, Pleizier G. Formation and characte-rization of polylacryonitrile/chitosan composite ultrafiltratio nmembrane. Journal of Membrane Science. 1999, 154(11): 163-173.
    
    [89] Sun Y M, Huang J J, Lin P L, et al. Composite poly (2-hydroxyethyl methacrylate)membranes as ratecontrolling barriers for transdermal applications. Biomaterials. 1997,18: 527-533.
    
    [90] Chai X J, Kobayashi T, Fujii N. Ultrasound effect on cross-flow filtration ofpolyacrylonitrile ultrafiltration membranes. Journal of Membrane Science. 1998, 148:129-135.
    
    [91]杨牛珍,王英特,郭明远等.聚丙烯腈超滤膜低温氧等离子体表面改性.西北纺织工学院学报. 2000,14(3):314-317.
    
    [92] Kim K. S., Lee K. H., Cho K. et al. Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment. Journal of Membrane Science. 2002, 99(4): 135-145.
    
    [93]陆晓峰,刘光全,刘忠英等.紫外辐照改性聚砜超滤膜.膜科学与技术.1998,18(5):50-53.
    
    [94] Ruskov T., Turmanova S., Rostov G. Study of IR and Mossbauer spectroscopy of grafted metal complexs of poly(acrylic acid)and on to low density poly(ethylene) and on to poly(tetrafluroethylene). European Polymer Journal. 1997, 33(8): 1285-1288.
    
    [95]范彬,黄霞,文湘华等.微网生物动态膜过滤性能的研究.环境科学.2003,24(1):93-97.
    
    [96]吴盈禧,陈福泰,黄霞.高通量自生动态膜生物反应器的运行特性.中国给水排水.2004,20(2): 5-7.
    
    [97]严瑞煊.水溶性聚合物.北京:化学工业出版社,1998.
    
    [98] Sen J, Shen X. Crosslinked PVA-PS thin-film composite membrane for reverse osmosis. Desalination. 1987, 62: 395-403.
    
    [99] Fujimaki H, Kurihara M, Kurihara. Uemura T. Preparation of semi-Permeable composite membrane having high Permeaility. Kokal Tokkyo Koho, 1995. 18.
    
    [100] lmmelman E, Bezuidenhout D, Sanderson R D. Poly (vinyl alcohol) gel sub-layers reverseosmosis membranes. Ⅲ . Insolubilization by crosslinking with potassiumperoxydisulphate. Desalination. 1993, 94: 115-132.
    
    [101] Yokoyama T. Hydrophilized polsolfone resin hollow fiber membrane and productionthereof. Jpn Kokai TokkyoKoho JP06170193 [94170193]. 1994-06-21.
    
    [102] Lang K, MatsumaT, ChowdhuryG. Preparation and testing of polyvinyl alcohol compositemembranes for reverse osmosis. The Canadian Journal of Chemical Engineering. 1995,73:681-696.
    
    [103] Lang K, SourirajanS, MatsuraT, et al. A study on the preparation of polyvinyl alcoholthin-film composite membranes and reverse osmosis testing. Desalination. 1996,104:185-196.
    
    [104] Li R H, Barbari T A. Performance of poly (vinyl alcohol) thin-gel composite uhraf ihrationmembranes. Journal of Membrane Science. 1995105: 71-78.
    
    [105]吴秋林,吴照和.PVA-PE复合亲水分相膜的研制.膜科学与技术.1995,15(4):29-32.
    
    [106]王洪军,刘家祺,李俊台.PVA/PS中空纤维复合膜脱除丙烯中微量水分的研究.石油化工.2003, 31(11):957-961.
    
    [107]卞晓楷,施柳青,梁国明等.聚乙烯醇复合膜的制备.膜科学与技术.2004,24(2):12-14.
    
    [108]黄晓静.复合聚乙烯醇纳滤膜的研制:(硕士学位论文).西安:西北工业大学,2002.
    
    [109] Sato T, Ishii Y. Effects of activated sludge properties on water flux of ultraf iltration membrane used for human excrement treatment. Water Science and Technology. 1991, 23(7-9): 1601-1608.
    
    [110]徐慧芳,樊耀波.膜生物反应器在粪便污水处理中的研究与应用.环境污染防治技术与设备. 2002,3(6):75-81.
    
    [111]任南琪,张颖,陈兆波.SMBR中不同膜组件形式的膜通量变化数学模型分析.高技术通讯. 2001,9:100-103.
    
    [112] Shimizu Y, Okuno Y L, Uryu K. Filtration characteristics of hollow fibermicrofiltratior membranes used in membrane bioreactor for domestic wastewater treatment. Water Research. 1996, 30(10): 2385-2392.
    
    [113] Bai R, Leow H F. Microfiltration of activated sludge wastewater-The effect of system operation parameters. Separation and Purification Technology. 2002, 29(2):189-198.
    
    [114]IWA著.活性污泥数学模型.张亚雷,李咏梅译.上海:同济大学出版社,2002.
    
    [115] Wintgens T, Rosen J, Melin T, et al. Modelling of a membrane bioreactor system for municipal wastewater treatment. Journal of Membrane Science. 2003, 216(1-2): 55-65.
    
    [1]何义亮,顾国维.膜生物反应器技术的研究和应用展望.上海环境科学.1998,17(7):17-19.
    
    [2]孟志国.非织造布膜生物反应器处理生活污水研究:(博士学位论文).大连:大连理工大学,2006.
    
    [3] Hu C M, Chiang W Y. Separation of liquid mixtures by using polymer membranes.Ⅲ.Water-alcohol separation by pervaporation through modified PAN membrane.Journal ofApplied Polymer Science. 1991, 42(7):1829-1833.
    
    [4] Malaisamy R, Mohan D R. Cellulose acetate and sulfonated polysulfone blendultrafiltration membranes. Part Ⅲ. Application studies. Industrial and EngineeringChemistry Research 2001, 40(22):4815-4820.
    
    [5]李娜,刘忠洲,续曙光.耐污染膜-聚乙烯醇膜的研究进展.膜科学与技术.1999,17(3):1-7.
    
    [6] Rautenbach R, Hoemmerich U. Experimental study of dynamic mass-transfer effects inpervaporation. AIChE Journal. 1998, 44(5):1210-1215.
    
    [7] Mencarini J, Coppola R, Slater C S. Separation of tetrahydrofuran from aqueous mixturesby pervaporation. Separation Science and Technology. 1994, 29(4):465-481.
    
    [8] Sanderson R D, Immelman E, Bezuidenhout D, et al. Polyvinyl alcohol and modif iedpolyvinylalcoholreverse osmosis membranes.Desalination. 1993, 90(1-3):15-29.
    
    [9] VauclairC, TarjusH, SchaetzelP. Permselective properties of PVA-PAA blended membranesused for dehydration of fusel oil by pervaporation. J Membr Sci. 1997, 125(2) :293-301.
    
    [10] Li R H, Barbari T A. Protein transport through membranes based on toluene diisocyanate surface-modified poly (vinyl alcohol) gels. Journal of Membrane Science. 1994, 88(1): 115-125.
    
    [11]杨金华,刘白玲.聚乙烯醇与Cu~(2+)的配位反应及其对生物降解性影响的研究.高分子材料科学与 工程.1997,13(5):40-45.
    
    [12] Zilberman E N, Lerner F.Joseph H M, et al. Properties of hydroxypropylmethylcellulose-polyvinyl alcohol water systems, dispersants in vinyl chloride suspension polymerization. Journal of Applied Polymer Science. 1993, 48(3):435-442.
    
    [13]钱丽颖,刘文波,何北海.天然高分子对化学纤维涂覆改性的新方法.中国造纸学报.2006,21(6): 107-110.
    
    [14]李娜.耐污染超滤膜的研制及特性研究:(博士学位论文).北京:中国科学院生态环境研究 心,2000.
    
    [15] Fane A G, Fell C J, Waters A G. Ultrafiltration of protein solutions through permeationmembranes-The effect of adsorption and solution environmentat. Journal of MembraneScience. 1983, 16:211-224.
    
    [16] Anke Nabe, Eberhard Staude, Georges Belfort. Surface modification of polysulfoneultrafiltration membrane and fouling by BSA solutions. Journal of Membrane Science.1997,133:57-72.
    
    [17] Nobrega R, Balmann H D, Aimar P, et al. Transfer of dextran through ultrafiltrationmembranes: A study of rejection data analysed by gel perrneaion chromatography. Journalof Membrane Science.1989, 45:17-36.
    
    [18] Gatenholm P, Fell C J D, Fane A G. Influence of the. membrane structure on the compositionof the deposit-layer during processing of microbial suspensions. Desalination. 1988,70:363-378.
    
    [19]陆晓峰,陈仕意,刘光全等.超滤膜的吸附污染研究.膜科学与技术.1997,1:37-41.
    
    [20] Hamza A, Pham V A, Matsuura T, et al. Development of membranes with low surface energyto reduce the fouling in ultrafiltration applications. Journal of Membrane Science.1997,131:217-227.
    
    [21] Nitl Nitto Electric Ind. Co. Ultrafiltration composite filter membrane with goodwater-permeability. Japan. JP62277106.
    
    [22] Hanemaaijer J H, Robbertsen T, van den Boomgaard T H. Characterization of clean andfouled ultrafiltration membranes. Desalination. 1988. 68:93-108.
    
    [23] Bian X K, Shi L Q, Liang G M, et al. Study of the preparation of PVA compositenanofiltration membrane. Membrane Science and Techology. 2004, 24:12-14.
    
    [24] Hee J K, Sung S N, Byoung R M. A new technique for preparation of PDMS pervaporationmembrane for VOC removal. Advances in Environmental Research. 2002, 6:255-264.
    
    [25] Kwokl D Y, Neumann A W. Contact angle measurement and contactangle interpretation.Advances in Colloid and Interface Science. 1999,81:167-249.
    
    [26]赵振国.接触角及其在表面化学研究中的应用.化学研究与应用.2000,12(4):370-374.
    
    [27] Kim K J, Lee S B, Han N W. Kinetics of cross-linking reaction of PVA membranes withglutaraldehyde. Korean Journal of Chemical Engineering. 1994,11(1)41-47.
    
    [28] Xu Z K, Wang J L, Shen L Q, et al. Microporous polypropylene hollow fiber membrane PartI. Surface modification by the graft polymerization of acrylic acid. Journal ofMembrane Science. 2002, 196: 221-229.
    
    [29] Deborah H C, Stephen J G.Gregory S F. Entropically influenced reconstruction at thePBD-OX/water interface: The role of physical cross-linking and Rubberelasticity. Macromolecules. 2000,33:8802-8810.
    
    [30] Yeom C K, Lee K H. Pervaporation separation of water-acetic acid mixtures throughpoly(vinyl alcohol) membranes crosslinked with glutaraldehyde. Journal of MembraneScience. 1996, 109:257-265.
    
    [31] Lang K, Sourirajan S, Matsura T, et al. A study on the preparation of polyvinyl alcoholthin-film composite membranes and reverse osmosis testing. Desalination. 1996, 104:185-196.
    
    [1] Destephen J A, Choi K. Modeling of filtration processes of fibrous filter media.Separations Technology. 1996,6: 55-67.
    
    [2] Seo G T, Moon B H, Lee T S, Lim T J, et al. Non-woven fabric filter separation activatedsludge reactor for domestic wastewater reclamation. Water Science and Technology.2003,47:133-138.
    
    [3] Christiane Roy, Richard Auger, Robert Chenier. Use of non-woven textile in intermittentfilters. Water Science and Technology. 1998, 38:159-166.
    
    [4] Tillio Assunc(?)o Pires Ribeiro, José Euclides Stipp Paterniani, Rogério Pereira da SilvaAiroldi. Marcelo Jacomini Moreira da Silva, Performance of non woven synthetic fabricand disc filters for fertirrigation water treatment. Agricultural Science. 2004, 61:127-133.
    
    [5] chang I S, Gander M, Jefferson B et al. Low-cost membrane for use in a submerged MBR.Process Safety and Environmental Protection. 2001, 79 (3): 183-188.
    
    [6] Wu S S, Ji G D, Shen J. A study on ultraviolet irradiation modification of high-densitypolyethylene and its effect in the compatibility of HDPE/PVA fibre composite. MaterialsLetters. 2003, 57: 2647-2650.
    
    [7] Wei Q F. Surface characterization of plasma-treated polypropylene fibers. MaterialsCharacterization. 2004, 52:231-235.
    
    [8] Yanagishita H, Arai J, Sandoh T, et al. Preparation of polyimide composite membranesgraftedby electron beam irradiation. Journal of Membrane Science. 2004, 232: 93-98.
    
    [9]王晓东,彭晓峰,王补宣.动态湿润与动态接触角研究进展.应用基础与工程科学学报.2003, 11(4):396-403.
    
    [10]陆家和,陈长彦.表面分析技术.北京:电子工业出版社,1998.
    
    [11]石光,章明秋,容敏智等.X射线光电子能谱技术在高分子材料摩擦化学研究中的应用.化学 研究.2004,15(3):76-80.
    
    [12]姚穆,周锦芳,黄淑玲等.纺织材料学(第二版).北京:中国纺织出版社,2003.
    
    [13]徐同文.膜化学与技术教程.合肥:中国科学技术大学出版社,2003.
    
    [14]蔡勇,杨荣杰.聚乙烯醇复合凝胶的强度与界面强度研究.北京理工大学学报.2007, 27(4):362-365.
    
    [15]陈来鹏,陆金锚,沈君.聚乙烯醇薄膜的制作及其力学性能的研究.塑料工业.2005,33:43-47.
    
    [16] Zhao Z P, Li J D, Zhang D X, et al. Nanofiltration membrane prepared frompolyacrylonitrile ultrafiltration membrane by low-temperature plasma: I. Graft of acrylic acid in gas. Journal oJ Membrane Science. 2004, 232:1-8.
    
    [17] Dattatray S Wavhal, Ellen R Fisher. Modification of polysulfone ultrafiltration membranes by CO_2 plasma treatment. Desalination. 2005, 172:189-205.
    
    [18] Yeom C K, Lee K H. Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membranes crosslinked with glutaraldehyde. Journal of Membrane Science. 1996, 109: 257-265.
    
    [19]朱诚身.聚合物结构分析.北京:科学出版,2004.
    
    [20]施柳青,卞晓锴,陆晓峰.聚乙烯醇复合纳滤膜的性能研究.净水技术.2002,21(1):21-23.
    
    [21]焦剑,雷渭媛.高聚物结构、性能与测试.北京:化学工业出版社,2003.
    
    [22]吴刚.材料结构表征及应用.北京:化学工业出版社,2002.
    
    [23] Li R H, Barbari T A. Characterization and mechanical support of asymmetric hydrogel membranes based on the interfacial cross-linking of poly (vinyl alcohol) with toluene diisocyanate. Journal of Membrane Science. 1996, 111:115-122.
    
    [24] Kapur V, Charkoudian J, Anderson J L. Transport of proteins through gel-filled porous membranes. Journal of Membrane Science. 1997,131:143-153.
    
    [25]刘荣娥.膜分离技术.北京:化学工业出版社,1998.
    
    [26] Van Damme H S, Hogt A H, Feijen J. Surf ace mobility and structural transitions ofpoly(n-alkyl methacrylates)probed by dynamic contact angle measurements. Journal ofColloid and Interface Science. 1986, 114:167-172.
    
    [27] Deborah H Carey, Stephen J Grunzinger, Gregory S Ferguson. Entropically influencedreconstruction at the PBD-OX / water interface: The role of physical cross-linking andRubber elasticity. Macromolecules. 2000, 33:8802-8810.
    
    [1]徐铜文.膜化学与技术教程.合肥:中国科学技术大学出版社,2003.
    
    [2] Zeman L J, Zydney A L. microfiltration and ultrafiltration: Principles and Applications,1st Edition NewYork: Marcel Dekker,1996.
    
    [3] Mockel D, Staude E, Giver M D. Static protein adsorption ultraf iltration behavior andcleanability of hydrophilized polysulfone membranes. Journal of Membrane Science. 1999,158(1): 63-75.
    
    [4] Liu ZM, Xu Z K, Wan L S, et al. Surface modification of polypropylene microf iltrationmembranes by the immobilization of poly(N-vinyl-2-pyrrolidone): a facile plasmaapproach. Journal of Membrane Science. 2005,249:21-31.
    
    [5]sigal G B, Mrksich M, Whitesides G M. Effect of surface wettability on the adsorptionof proteins and detergents. Journal of the American Chemical Society. 1998,120:3464-3473.
    
    [6] Fang F, Szleifer I. Effect of molecular structure on the adsorption of protein onsurfaces with grafted polymers. Langmuir. 2002, 18: 5497-5510.
    
    [7] Sadana A. Protein adsorption and inactivation on surfaces-Influence of heterogeneities.Chemical Reviews. 1992, 92:1799-1818.
    
    [8] Li R H, Barbari T A. Performance of poly (vinly alcohol) thin-gel compositeultraf iltration membranes. Journal of Membrane Science. 1995,105:71-78.
    
    [9]顾国维,何义亮.膜生物反应器-在污水处理中的研究和应用.北京:化学工业出社,2002
    
    [10] Rosenberger S, Kraume M. Filterability of activated sludge in membrane bioreactors .Desalination. 2003,151(2):195-200.
    
    [11] Mikkelsen L H, Keiding K. Physico-chemical characteristics of full scale sew age sludgewith implications to dewatering. Water Research. 2002, 36(10:2451-2462.
    
    [12]樊文玲,陆晓峰.聚丙烯酸钠复合超滤膜研制初探(Ⅱ)UPANA-1复合膜的性能与结构.膜科学与 技术.2005,25(1):25-29.
    
    [13] Cheryan M, Ultrafiltration and Microfiltration Handbook. USA: Technomic Publishing Co. Inc. ,1998.
    
    [14]孟志国.非织造布膜生物反应器处理生活污水研究(大连理工大学博士学位论文).大连:大连理 工大学,2006
    
    [15] Wang Y, Kim J H, Choo K H, et al. Hydrophilic modification of polypropylenemicrofiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science. 2000, 169(2): 269-276.
    
    [16]余瑞元,袁明秀,陈丽蓉等.生物化学实验原理与方法.北京:北京大学出版社,2005.
    
    [17] Bo Frolund, Rikke Palmgren, Kristian Keiding, et al. Extraction of extracellular polymeric substance from activated sludge using a cation exchange resin. Water Research.??1996, 30(8):1749-1758.
    
    [18] Wilen B, Jin B, Lant P. The influence of key chemical constituents in activated sludge on surface and flocculate properties. Water Research. 2003,37(9):2127-2139.
    
    [19]孟凡刚,张捍民,于连生等.活性污泥性质对短期膜污染影响的解析研究.环境科学.2006, 27(7):1348-1352.
    
    [20] Liu Z M, Xu Z K, Wang J Q, et al. Surface modification of microporous polypropylene membranes by the grafting of poly(c-stearyl-L-glutamate). European Polymer Journal. 2003,39: 2291-2299.
    
    [21]王枢,褚良银,陈文梅等.有机/无机复合型抗污染油水分离膜研究.高校化学工程学报.2005, 19(1):11-16.
    
    [22]李琳译.膜技本基本原理.北京:清华大学出版社,1999.
    
    [23] Liao B Q, Allen D G, Droppo I G, et al. Surface properties of sludge and their rolein bioflocculation and settleability. Water Research. 2001,35(2):339-350.
    
    [24] Lee W, Kang S, Shin H. Sludge characteristics and their contribution to microfiltrationin submerged membrane bioreactors. Journal of Membrane Science. 2003, 216(1-2):217-227.
    
    [25] Chang I S, Kim S N. Wastewater treatment using membrane filtration-effect of biosolidsconcentration on cake Resistance. Process Biochemistry. 2005, 40(3-4):1307-1314.
    
    [26]沈钟,赵振国,王果庭.胶体与表面化学.北京:化学工业出版社,2004.
    
    [27]张捍民,乔森,叶茂盛等.预涂动态膜-生物反应器处理生活污水试验研究.环境科学学 报.2005,25(2):249-253.
    
    [1]徐又一,徐志康.高分子膜材料.北京:化学工业出版社,2005.
    
    [2]Marcel Mulder.膜技术基本原理(第二版).李林译.北京:清华大学出版社,1997.
    
    [3]马琳,秦国彤.膜污染的机理和数学模型研究进展.水处理技术.2007,33(6):1-4.
    
    [4] Lim, A. L. and Bai, R. Membrane fouling and cleaning in microfiltration of activated sludge wastewater. Journal of Membrane Science, 2003, 216(1-2): 279-290.
    
    [5] Nagaoka, H., Ueda, S., and Miya, A. Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Water Science and Technology, 1996, 34(9 pt 5): 165-172.
    
    [6] Rosenberger S, Kraume M. Filterability of activated sludge in membrane bioreactors.Desalination. 2003,151(2):195-200.
    
    [7] Mukai, T., Takimoto, K., Kohno, T., et al., Ultrafiltration behaviour of extracellularand metaboli products in activated sludge system with OF separation process. Water Research, 2000, 34(3):902-908.
    
    [8]邱运仁.金属纤维毡PVA表面改性超滤膜的研究:(中南大学博士学位论文).中南大学,长沙: 2003
    
    [9]张捍民,乔森,叶茂盛等.预涂动态膜-生物反应器处理生活污水试验研究.环境科学学报. 2005,25(2):249-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700