用户名: 密码: 验证码:
PES微孔膜的制备及膜反应器在废水处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着膜技术及膜工艺的发展,膜材料成本的降低,膜分离技术与其它废水处理技术的组合工艺受到水处理界的广泛关注。但膜抗污染性能差、寿命短导致成本高、膜反应器型式单一等问题,阻碍了膜技术在废水处理中的大规模应用。本文以拓展膜技术在废水处理中的应用潜力及范围为目的,选用性能优越的有机膜材料-聚醚砜(PES),对溶液相转化制备PES微孔膜过程中各工艺条件对成膜结构及性能的影响进行系统研究,制备出性能优良、结构可控的均质PES平板微孔膜和PES平板复合膜。对一体式中空纤维膜生物反应器(SH-MBR)、一体式平板膜生物反应器(SF-MBR)、一体式转盘膜生物反应器(SR-MBR)的污水处理效果和抗污染性能进行了研究;将膜分离技术引入光催化反应器构建一体式膜分离-光催化反应器,并对其可行性进行了考察;将膜分离技术与催化臭氧氧化技术结合起来进行洗车场废水处理回用的中试研究。得到主要结果如下:
     (1)聚合物浓度、添加剂种类和含量对PES均质膜结构和性能有很大的影响。制膜液中聚合物浓度增大,膜的厚度增大,孔隙率降低,膜中指状大孔结构减少,海绵状孔结构增加。添加剂PVP含量0-10%时,起到致孔的作用;PVP含量提高至10%以上时,膜中指状孔消失,孔径减小,随着PVP含量增加,膜的亲水性提高。非溶剂水的加入,使膜厚度及孔隙率变小,膜孔径增大,水通量增大。TiO2的加入提高了膜的强度、水通量及抗污染性能。在以上制膜规律的基础上,得出制备性能良好的PES微孔膜的工艺条件如下:PES浓度:11-15wt%,PVP添加剂:5-10wt%,水添加剂:3-5wt%,纳米TiO2:0.3-0.5wt%,凝固浴为水,凝固浴温度:30oC左右,铸膜液的温度:30oC左右。在此工艺条件下可制备出表面孔径0.5-2μm,孔隙率为80%左右,水通量为400-600L/m2. h的PES平板均质膜。
     (2)在制备PES均质膜工艺条件的基础上成功制备了PES/无纺布平板复合膜,并考察了制膜也组成、工艺条件对膜结构和性能的影响,结果表明:聚合物浓度、添加剂种类和含量、PES/SPES共混比例、SPES磺化度对PES/聚酯无纺布平板复合膜的结构和性能也有较大的影响。一定量SPES的加入有利于膜水通量和亲水性的提高,SPES磺化度提高,膜的亲水性有所改善,但是水通量下降。研究得出制备性能良好的PES复合膜的工艺条件如下:PES/SPES=80/20(wt),SPES磺化度5.2%,聚合物浓度10-13%,添加剂PVP含量3-8%,添加剂非溶剂水含量6%左右,纳米TiO2的加入量0.3-0.5wt%,凝固浴温度30oC。在可控条件下制备出高强度的PES/聚酯无纺布平板复合膜,水通量250-1400L/m2. h,亲水性良好。
     (3)将PES平板复合膜用于SF-MBR和SR-MBR,并对SH-MBR、SF-MBR、SR-MBR的污水处理效果和抗污染性能进行了考察。三种膜生物反应器出水水质好,COD去除率均>90%。SH-MBR工艺及SF-MBR工艺的最佳组合操作条件相同为:TMP=20kPa,抽/停8min/2min。PES平板复合膜用于MBR处理污水能达到与商业化生产的聚丙烯中空纤维膜相同的分离效果,且其水通量比PP中空纤维膜更稳定。对SR-MBR的研究发现,膜组件转动产生膜面流速可有效防止可逆污染的发生。在一定范围内增大膜组件转速、气水比及周期内停抽时间可有效改善SR-MBR的抗污染性能。SR-MBR工艺的最佳组合操作条件为:转速25r/min,TMP=25kPa,抽/停9min/1min,气水比15:1。SR-MBR可长期稳定运行,其稳定通量高达61 L/m2.h ,是SH-MBR,SF-MBR稳定通量的6倍左右。
     (4) PVDF平板复合膜具有较强的抗紫外辐射性能,适合用于光催化-膜分离反应器。浸渍法制备的负载TiO2的活性碳(TiO2/AC)表现出比TiO2, TiO2-AC更好的光催化活性和防止膜污染性能。光催化-膜分离反应器中,膜不仅能有效分离光催化剂,还可在一定程度上实现对待降解产物的截留,促使其在反应系统中进一步降解,保证出水水质。用光催化-膜分离反应器降解水溶液中苯酚时,膜对苯酚的平均截留率为19.3%,对COD的平均截留率为18.7%。光催化-膜分离反应器具有传统的悬浮光催化体系和固定薄膜式光催化体系都不具备的优点,用于有机废水的处理是可行的。
     (5) TiO2/AC催化臭氧氧化降解有机物COD的能力明显优于单独臭氧氧化和AC催化臭氧氧化,TiO2/AC作催化剂能明显提高臭氧的利用效率。膜分离-催化臭氧氧化组合工艺用于洗车场废水处理的中试研究,结果表明:系统出水水质好,符合生活杂用水标准,处理量30t/d的洗车场废水处理回用工程吨水造价为2315元,吨水运行费用为0.97元/吨,低于目前的商业用水水费,环境和经济效益佳,具有广阔的应用前景。
Recent years, due to the development of membrane technology and membrane process, the combined processes of membrane separation and other technologies have attracted great attention in the field of wastewater treatment and reuse. Although membrane filtration offers many advantages over conventional separation processes, some drawbacks, such as membrane fouling, high cost and scarcity of membrane reactor formations, limited it’s broadly application in wastewater treatment. This paper focuses on the extension of the potential application and field of membrane process. Polyethersulfone, a kind of excellent membrane material, was chosen to prepare flat homogeneous PES microporous membrane and flat composite PES membrane by solution phase inversion method. The influences of various technical conditions on membrane structures and properties were studies. The flat homogeneous PES microporous membrane and flat composite PES membrane with good performances and controllable structures were prepared. The performances of the PES flat composite membrane were investigated during the process of applications in membrane bioreactor (MBR). The performances of anti-foul and pollutants removal efficiencies of submerged hollow-fiber membrane bioreactor (SH-MBR),submerged flat membrane bioreactor (SF-MBR) and submerged rotating membrane bioreactor (SR-MBR) were investigated. A hybrid membrane bioreactor (H-MBR) was developed to enhance the nitrogen and phosphorus removal, and its performance was investigated too. Photocatalytic membrane reactor, which combines both the advantages of classical photoreactor in which the catalyst is in suspension and membrane processes where separation at molecular level takes place, was designed to degrade organic pollutants in wastewater. Its feasibility was evaluated too. A pilot scale car washing wastewater was treated and reused by the combined process of membrane filtration and catalytic ozonation. The main conclusion of this thesis are as follows:
     (1) The structures and properties of membrane were affected by the polymer concentration and the type and content of the additive. With the increase of the polymer content, the fingerlike macrovoid structures converted to spongy pore gradually, and porosity of the membrane decreased. With the increase of the proportions of PVP from 0% to 10%, fingerlike pore developed sufficiently. When the contents of PVP exceeded 10%, fingerlike pore began to fade away and pore size became smaller. The hydrophilic performance of the membrane was improved by the addition of PVP. Water, used as a kind of nonsolvent additive, made the thickness and porosity of membrane decreased. Pore size and water flux increased with the increase of water content in casting solution. The addition of TiO2 improved the mechanical properties, water flux and anti-foul property of membrane. Based on the above studies, the preparation conditions of membrane with excellent performance were optimized as follows: PES concentrations varied from 11wt% to 15wt%, the content of PVP was 3-8wt%, the content range of water additive was 3-5wt%, the content of nano-TiO2 was from 0.3wt% to 0.5wt%, coagulation baths was water, the temperatures of casting solutions and coagulation baths were about 30oC, respectively. Under the optimal conditions, the homogeneous mricroporous PES membranes were prepared. The pore diameter on the top layer and porosity were 0.5-2μm and approximate 80%, respectively. The range of the water flux was 400-600 L/h.m2.
     (2) Polymer concentrations, the type and content of additive, the proportion of polyethersulfone to sulfonated polyethersulfone (PES/SPES) and the sulfonic rate of SPES had more obvious effect on the PES flat composite membrane structures and properties. Suitable addition of SPES could improve water flux and hydrophilic performance of the membrane. Increasing SPES sulfonic rate was propitious to hydrophilic performance of the membrane, but it was made against to the water flux. The preparation conditions of membrane with excellent performance were optimized as follows: PES/SPES=80/20(wt), the sulfonic rate of SPES was 5.2%, polymer concentrations varied from 10wt% to 13wt%, the content of PVP was 5-8wt%, the content of water additive was about 6wt%, the content of nano-TiO2 was from 0.3wt% to 0.5wt%, coagulation baths was water, the temperatures of casting solutions and coagulation baths were about 30oC, respectively. Under the optimal conditions, PES flat composite membranes were prepared. The pore diameter on the top layer and porosity were 0.5-2μm and approximate 80%, respectively. The range of water flux and contact angel were 250-1400 L/h.m2 and 65o-75o, respectively.
     (3) SH-MBR using PP hollow-fiber membrane and SF-MBR using PES flat composite membrane were used to treat sewage. The qualities of effluent of these two MBRs were excellent, the removal efficiencies of COD were higher than 90%. The optimal operation parameters of SH-MBR and SF-MBR were same: TMP=20kPa, 8min/2min.
     (4) A novel type of submerged rotating membrane bioreactor (SR-MBR), in which a rotatable rounded flat sheet membrane module fixed on the axes and moved by an electromotor, was used to treat synthetic sewage. Thus, an innovative membrane module, which is fixed on the axes and rotated by an electric motor was developed instead of the traditionally immobile membrane module to enhance filtration capacity and fouling prevention ability. The results indicated that the cross-flow velocity produced by the rotation of the membrane module, could help to prevent reversible fouling in the operation. The fouling prevention ability increased proportionately with increasing the rotation speed of the membrane module, ratio of aeration intensity to permeate flux (A/F) and stoppage time in an intermittent permeation cycle until their critical values were reached after which further increases would have little effects. The critical values for rotation speed, A/F and stoppage time were 60 r.min-1, 15 and 1 min for every 10 min cycle, respectively. Under this optimal condition, SR-MBR remained stable for a long time continuously running, and its equilibrium flux reached 61 L/h.m2, which was about 6 times of that of SH-MBR and SF-MBR.
     (5) Microorganism in H-MBR was more active than that in SMBR. The removal efficiencies of COD, NH3-N and TN reached to 92%, 80% and 70% respectively. The TP removal efficiency of H-MBR was not enough, only about 60%, when the TP concentration of the influent ranged from 5-6 mg/L. Declined the influent TP concentration to 3 mg/L, the TP concentration of the effluent became less than 1 mg/L, and the removal efficiency of TP reached 70% above.
     (6) The membrane which prepared by polyvinylidenefluoride (PVDF) was stable to UV irradiation. It was suitable to be used in the photocatalytic membrane reactor. The photocatalytic activity of TiO2-mounte activated carbon (TiO2/AC) catalyst was better than that of TiO2 and TiO2-AC photocatalysts. The selected membrane had the capability to retain the catalyst and to reject the partially degraded organic species. The removal efficiencies of phenol and COD were increased 19.3% and 18.7% due to the membrane separation. The photocatalytic membrane reactor combines both the advantages of classical photoreactor in which the catalyst is in suspension and membrane processes where separation at molecular level takes place seems very attractive.
     (7) The removal efficiencies of phenol solution were studied by TiO2/AC, activated carbon catalytic ozonation and ozonation alone. Results shows, TiO2/AC can well improve the efficiency of catalytic ozonation, and enhance the utilization of ozone. The pilot scale car washing wastewater was treated by the combined process of membrane filtration and catalytic ozonation. The results indicated that the qualities of effluent were better than the standards of reuse water, and the costs of this combined process and run fee were low. The cost of the engineer for 30t/d car washing wastewater treatment and reuse was 2315RMB per 1m3 wastewater. And the operation cost was as low as 0.97 RMB per 1m3 water. This membrane separation– catalytic ozonation combined process holds broadly applied potential in car washing wastewater treatment and reuse.
引文
[1] Rautenbach R.膜工艺组件和装置设计基础[M].北京:化学工业出版社, 1998: 85-96
    [2] Mulder M. Basic Principles of Membrane Technology [M]. Netherlands: Kluwer Academic publishers, 1996:102-154
    [3]邵刚.膜法水处理技术[M].北京:冶金工业出版社, 2003: 85-98
    [4] Shih C H. Mechanisms of microporous hollow fiber membrane formation by isothermal precipitation of semicrystalline polymers from solutions [D]. New York: Columbia University, 1990: 6-12
    [5]王学松.膜分离技术及其应用[M].北京:科学出版社, 1994: 64-86
    [6]时钧,袁权,高从堦.膜技术手册[M].北京:化学工业出版社, 2001: 129-138
    [7] Gunder B and Krauth K. Replacement of final clarification by membrane separation-Results with plate and hollow fiber modules[C]. IAWQ. 19th Biennial International Conference Preprint. Vancouver Canada: Vancouver University publishers, 1998: 144-151
    [8] Authowy R C. Ultrafiltration membranes and applications[M]. New York: Plenum Press, 1980: 1-82
    [9] Marze X and Minfray M. Mixture of two polyethers to make an ultrafiltation membrane [P]. U S: 4319008, 1982: 03-09
    [10]俞三传,高从.多元合金超滤膜的研制[J].膜科学与技术, 2001, 21 (2) :10- 13
    [11] Wilhelm1 F G, Pünt I G M and Van Der Vegt N F A. Cationpermeable membranes from blends of sulfonated poly(etherether ketone) and poly (ether sulfone) [J]. J. Membr. Sci., 2002, 199 (1-2): 167-176
    [12] Kim I C, Choi J G and Tak T M. Sulfonated polyethersulfone by heterogeneous method and its membrane performance [J]. J. Appl. Polym. Sci., 1999, 74(10): 2046 -2055
    [13] Reddy A V R, Mohan D J and Bhattacharya A et al. Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer (I) Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties [J]. J. Membr. Sci., 2003, 214(2): 211-221
    [14] Hvid K B, Nielsen P S and Stengaarg F F. Preparation and characterization of a new ultrafiltration membrane [J]. J. Membr. Sci., 1990, 53(3): 189-202
    [15] Steen M L, Jordan A C and Fisher E R. Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment [J]. J. Membr. Sci., 2002, 204(1-2): 341-357
    [16] Mok S, Worsfold D J and Fouda A et al. Surface modification of polyethersulfone hollow-fiber membranes byγ-ray irradiation [J]. J. Appl. Polym. Sci., 1994, 51(1): 193-199
    [17] Pieracci J, Crivello J V and Belfort G. Increasing membrane permeability of UV-modified poly(ether sulfone) ultrafiltration membranes [J]. J. Membr. Sci., 2002, 202(1-2): 1-16
    [18] Wang I F, Ditter J F and Morris R A. Microfiltration membranes having high pore desity and mixed isotropic and anisotropic structure [P]. U S: 5906742, 1999: 05-25
    [19]赵长生,钟银屏,欧阳庆等.聚醚砜制膜液的相分离[J].水处理技术, 1997, 23(1): 56-59
    [20]何涛,江成璋.聚醚砜微孔膜制备中非溶剂添加剂作用研究[J].膜科学与技术,1998, 18(3):69-72
    [21]陈忠样,周美娟,肖通虎.影响聚醚砜微孔滤膜孔径的因素[J].宁波大学学报,2000, 13(2): 74-76
    [22] Barth C, Gon?alves M C and Pires A T N et al. Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance [J]. J. Membr. Sci., 2000, 166(2): 287-299
    [23]韩春芬,雷新荣.多孔无机膜的制备和应用[J].化工新型材料,2004, 32(8): 5-8
    [24]周健儿,吴建清,刘阳.微孔无机膜的研究状况与展望[J].中国陶瓷工业,2003, 10(4): 29-35
    [25]庞德聆,张晋华,任礼华等.热敏智能径迹膜的研究[J].核技术,2002, 25(7): 73-77
    [26] Yamazaki I M, Paterson R and Geraldo L R. A new generation of track etched membranes for microfiltration and ultrafiltration. PartⅠ. Preparation and characterization [J]. J. Membr. Sci., 1996, 118(2): 239-245
    [27] Zeman L and Fraser T. Formation of air-cast cellulose acetate membranes. PartⅠ. Study of macrovoid formation [J]. J. Membr. Sci., 1993, 84(1-2): 93-106
    [28] Zeman L and Fraser T. Formation of air-cast cellulose acetate membranes. PartⅡ. Kinetics of demixing and microvoid growth [J]. J. Membr. Sci., 1994, 87(2): 267-279
    [29] Lloyd D R, Kinzer K E and Tseng H S. Microporous membrane formation via thermally induced phase separation.Ⅰ.solid-liquid phase separation [J]. J. Membr. Sci., 1990,52(3): 239-261
    [30] Lloyd D R, Kim S S and Kinzer K. E. Microporous membrane formation via thermally induced phase separation.Ⅱ. liquid-liquid phase separation [J]. J. Membr. Sci., 1991, 64(1-2): 1-11
    [31] Wienk I M, Boom R M and Beerlage M A M et al. Recent advances in the formation of phase inversiom membranes made from amorphous or semi-crystalline polymers [J]. J. Membr. Sci., 1996, 113(2): 361-371
    [32] Kinnerle K and Strathmann H. Analysis of the structure-determining process of phase inversion membranes [J]. Desalination, 1990, 79(2-3): 283-302
    [33] Mulder M, Oude H J and Wijnans J G et al. A retioale for the preparation of asymmetric pervaporation membrane [J]. J. Appl. Polym. Sci., 1995, 30(8): 2805-2820
    [34]王保国,刘茂林,蒋维钧.中空纤维聚偏氟乙烯微孔膜研究[J].膜科学与技术,1995, 15(1): 46-50
    [35] Smolders C A, Reuvers A J and Boom R M et al. Microstrucuture in phase inversion membrane. PartⅠ. Formation of macrovoids [J]. J. Membr. Sci., 1992, 73(2-3): 259-275
    [36]刘茉娥,陈欢林.新型分离技术基础[M].杭州:浙江大学出版社, 1999: 78-95
    [37] Bottino A, Capannelli G and Munari S et al. Solubility parameters of poly (vinylidene fluoride) [J]. J. Polym. Sci., 1988, 26(3): 785-794
    [38] Tomaszewska W. Preparation and properties of flat-sheet membranes from poly (vinylidene fluoride) for membrane distillation [J]. Desalination, 1996, 104(1-2): 1-11
    [39]贠延滨,杨兰,刘丽英等.增强型PVDF微孔膜的研制[J].现代化工,2001, 21(12): 34-38
    [40]孔瑛,吴庸烈,杨金荣等.氯化锂为添加剂制得的疏水聚偏氟乙烯不对称微孔膜的形态结构及其膜蒸馏性能[J].功能高分子学报, 1992, 5(4): 336-341
    [41] Wang D L, Li K and Teo W K. Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives [J]. J. Membr. Sci., 2000, 178(1): 13-23
    [42]俞三传,高从堦.小孔径PVDF超滤膜的研制[J].水处理技术,1999,25(2): 83-87
    [43] Lin D J, Chang C L and Huang F M et al. Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4 /Water/ DMF/ PVDF system [J]. Polymer, 2003, 44(2): 413-422
    [44]孔瑛,吴庸烈,杨金荣等.蒸馏膜用PVDF微孔膜的结构控制Ⅰ铸膜液中溶胀剂对膜形态结构的影响[J].水处理技术,1992, 18(1): 11-15
    [45] Jian K and Pintauro P N. Asymmetric PVDF hollow-fiber membranes for organic/water pervaporation separations [J]. J. Membr. Sci., 1997, 135(1): 41-53
    [46]孔瑛,吴庸烈,杨金荣等.蒸馏膜用PVDF微孔膜的结构控制Ⅲ制膜条件的选择和膜蒸馏性能[J].水处理技术,1992, 18(3): 167-172
    [47] Uragami T, Natio Y and Sugihaha M. Studies on synthesis and permeability of special polymer membranes 39. Permeation characteristics and structure of polymer blend membranes from poly(vinylidene fluoride) amd poly(ethylene glycol) [J]. Polym. Bull., 1991, 4(3): 617-622
    [48]董声雄,洪俊明.小角X射线散射法测定超滤膜孔径[J].福州大学学报(自然科学版),1997, 25(3): 112-115
    [49] Boom R M, Wienk L M and Boomgaard Th Van den et al. Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive [J]. J. Membr. Sci., 1992, 73(2-3): 277-292
    [50] Boom R M, Boomgaard Th Van den and Smolders C A. Mass-transfer and thermodynamics during immersion precipitation for a two-polymer system-evaluation with the system PES-PVP-NMP-water [J]. J. Membr. Sci., 1994, 90(3): 231-249
    [51] Wang D L, Li K and Teo W K. Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membrane [J]. J. Membr. Sci., 1999, 163(2): 211-220
    [52]陆茵,陈欢林,李伯耿.添加剂对PVDF相转化过程及膜孔结构的影响[J].高分子学报,2002, 2002(5): 656-661
    [53] Deshmukh S P and Li K. Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fiber membrane [J]. J. Membr. Sci., 1998, 150(1): 75-85
    [54]陈炜.聚偏氟乙烯(PVDF)平板膜的制备工艺及化学改性研究[D].杭州:浙江大学图书馆, 2003:8-10
    [55]李战胜,李怒广,汪成璋.浸入凝胶法聚合物形成机理的研究现状[J].膜科学与技术, 2002, 22(2):29-36
    [56] Reuvers A J and Smolders C A. Formation of membranes by means of immersion precipitation. PartⅡ. The mechanism of formation of membranes preparaed from the system cellulose acetate-acetone-water [J]. J. Membr. Sci., 1987, 34(1): 67-86
    [57] Wijmans J G, Baaij J P B and Smolders C A. The mechanism of formation of microporous or skinned membranes produced by immersion precipitation [J]. J. Membr. Sci., 1983, 14(2-3): 263-274
    [58] Brindle K, Stephenson T. Application of membrane biological reactors for the treatment of wastewaters [J]. Biotechnol. Bioeng., 1996, 49(6): 601-610
    [59] Knoblock M D, Sutton P M and Mishra P N et al. Membrane biological reactor system for treatment of oily wastewaters [J]. Wat. Environ. Res., 1994, 66(2): 133-139
    [60] Ueda T, Hata K and Kikuoka Y. Treatment of domestic sewage from rural settlements by a membrane bioreactor [J]. Wat. Sci. Technol., 1996, 34(9):189-196
    [61] Wisniewski C and Grasmick A. Floc size distribution in a membrane bioreactor and consequences for membrane fouling [J]. Colloids and Surfaces, 1998, 138(2-3): 403-411
    [62] Choi J G, Bae T H and Kim J K et al. The behavior of membrane fouling initiation on the cross-flow membrane bioreactor system [J]. J. Membr. Sci., 2002, 203(1): 103-113
    [63] Fuchs W, Binder H and Mavrias G et al. Anaerobic treatment of wastewater with high organic content using a stirred tank reactor coupled with a membrane filtration unit [J]. Wat. Res., 2003, 37(4): 902–908
    [64] Kang I J, Yoon S H and Lee C H. Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor [J]. Wat. Res., 2002, 36(7): 1803-1813
    [65] Stefan H and Walter T. Treatment of urban wastewater in a membrane bioreactor at high organic loading rates [J]. J. Biotechnol., 2001, 92(1): 95-101
    [66] Zoha K D and Stenstrom M K. Application of a membrane bioreactor for treating explosives process wastewater [J]. Wat. Res., 2002, 36(4): 1018-1024
    [67] Lee Y H, Cho J W and Seo Y W et al. Modeling of submerged membrane bioreactor process for wastewater treatment [J]. Desalination,2002,146(1-3): 451-457
    [68] Ognier S, Wisniewski C and Grasmick A. Influence of macromolecule adsorption during filtration of a membrane bioreactor mixed liquor suspension [J]. J. Membr. Sci., 2002, 209(1):27-37
    [69] Liu R, Huang X and Wang C et al. Study on hydraulic characteristics in a submerged membrane bioreactor process [J]. Process Biochem., 2000, 36(3): 249-254
    [70] Shim J K, Yoo I K and Lee Y M. Design and operation consideration for wastewater treatment using a flat submerged membrane bioreactor [J]. Process Biochem., 2002, 38(2): 279–285
    [71] Chang I S, Lee C H and Ahn KH. Membrane filtration characteristics in membranecoupled activated sludge system-the effect of floc structure of activated sludge on membrane fouling [J]. Sep. Sci. Tech., 1999, 34(5): 1743-1758
    [72] Gander M, Jefferson B and Judd S. Aerobic MBRs for domestic wastewater treatment: a review with cost considerations [J]. Sep. Pur. Technol., 2000, 18(1): 119-130
    [73] Manem J. Membrane bioreactors for waste water treatment and drinking water production[C]. Proceeding of The 3rd World Congress of Engineering Organizations. Beijing China: Tsinghua University Publishers, 1993: 907-914
    [74] Shimizu Y, Okuno Y I and Uryu K et al. Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment [J]. Wat. Res., 1996, 30(10):2385-2392
    [75] Kishino H, Ishida H and Iwabu H et al. Domestic wastewater reuse using a submerged membrane bioreactor [J]. Desalination, 1996, 106(1): 115-119
    [76] Bodzek M, Debkowska Z and Lobos E et al. Biomembrane wastewater treatment by activated sludge method [J]. Desalination, 1996, 107(1):83-91
    [77] Ueda T, Hata K and Kikuoka Y. Effect of aeration on suction pressure in a submerged membrane bioreactor [J]. Wat. Res., 1997, 31(3): 489-494
    [78] Chang I S, Bag S O and Lee C H. Effects of membrane fouling on solute rejection during membrane filtration of activated sludge [J]. Process Biochem., 2001, 36(8-9): 855-860
    [79] Defrance L, Jaffrin M Y and Gupta B et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling [J]. Bioresource Technol., 2000, 73(2):105-112
    [80] Hong S P, Bae T H and Tak T M et al. Fouling control in activated sludge submerged hollow fiber membrane bioreactors [J], Desalination, 2002, 143(3): 219-228
    [81] Clech P L, Jefferson J and Chang I S et al. Critical flux determination by the flux-step method in a submerged membrane bioreactor [J]. J. Membr. Sci., 2003, 227(1-2):81-93
    [82] Kimura S. Japan’s Aqua Renaissance 90’Project [J]. Wat. Sci. Tech., 1991, 25(10): 95-105
    [83]岑运华.日本水综合再生利用系统90年代的进展概要[J].环境科学研究, 1990, 3(2): 50-54
    [84]黄霞,桂萍,范小军.应用膜生物反应器处理生活污水的研究[J].中国给水排水,1998,4(5): 6-8
    [85] Yamamoto K, Hiasa M and mahmood T. Direct Solid-liquid Separation using HollowFiber membrane in An Activated Sludge Tank [J]. Wat. Sci. Technol., 1989, 21(4-5): 43-54
    [86]樊耀波,王菊思.水与废水处理中的膜生物反应器技术[J].环境科学,1995,16(5):79-81
    [87] Chang J, Manem J and Beaubien A. Membrane bioprocesses for the denitrification of drinking water supplies [J]. J Membr. Sci., 1993, 80(1): 233-239
    [88] Vincent U, Raymond B, Jacques M. Membrane bioreactor: a new treatment tool [J]. Journal Science, 1993, 80(5): 75-86
    [89] Husain H and Cote P. Membrane bioreactor for Municipal Wastewater treatment. WQI, 1999, 10(3-4):19-22
    [90]林哲.膜分离活性污泥法的研究.城市环境和城市生态[J],1994,7(1): 6-11
    [91]樊耀波.膜-生物反应器净化石油化工污水的研究[J].环境科学学报,1997,17(1): 68-72
    [92]刑传宏,钱易.无机膜生物反应器处理生活污水试验研究[J].环境科学,1997,18(3): 69-82
    [93]吴志超.巴西基酸生产废水膜生物工艺处理试验研究[J].中国环境科学,1999,19(2): 163-168
    [94]王建功.港口污水膜-生物反应器回用处理技术研究[J].交通环保,1999,20(5): 14-16
    [95]何义亮.厌氧MBR处理高浓度食品废水的应用[J].环境科学,1999,20(6): 54-57
    [96]王连军.无机膜-生物反应器处理啤酒废水及其膜清洗的试验研究[J].工业水处理,2000,20(2): 32-34
    [97]黄其明.PW膜-生物反应器法处理制药发酵废水[J].工业用水与废水,2001, 32(5): 49-51
    [98]刘锐,黄霞,刘若鹏等.膜生物反应器和传统活性污泥工艺的比较[J].环境科学, 2001, 22(3): 20-24
    [99]吕红,徐又一,朱宝库等.分体式膜-生物反应器在废水处理中的工艺条件[J].环境科学, 2003, 24(3): 61-64
    [100]成英俊,张捍民,张兴文等.生物膜—膜生物反应器脱氮除磷性能[J].中国环境科学,2004,24(1): 72-75
    [101]相震,陈淑娟,王连军等.膜生物反应器联合工艺处理合成制药废水的中试[J].环境科学与技术,2005,28(4): 99-100
    [102]郝爱玲,陈永玲,顾平.膜生物反应器用于微污染地表水处理的中试研究[J].化工学报,2006,57(1): 136-139
    [103] Yasutoshis S, Okuno Y I and Uryu K. Filtration characteristic of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment [J]. Wat. Res., 1996, 30(10): 2385-2392
    [104] Choo K H and Lee C H. Membrane fouling mechanisms in the membrane- coupled anaerobic bioreactor [J]. Wat. Res., 1996, 30(8): 1771-1780
    [105] Lee J and Ahn W Y. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor [J]. Wat. Res., 2001, 35(10): 2435-2445
    [106] Chua H C, Arnot T C and Howell J A. Controlling fouling in membrane bioreactors a variable throughput [J]. Desalination, 2002, 149(1-3): 225-229
    [107] Mercier-Bonin M, Daubert I and Leonard D et al. How unsteady filtration conditions can improve the process efficiency during cell cultures in membrane bioreactors [J]. Sep. Pur. Technol., 2001, (22-23): 601-615
    [108] Shim J K, Na H S and Lee Y M et al. Surface modification of polypropylene membranes byγ-ray induced graft copolymerization and their solute permeation characteristics [J]. J. Membr. Sci., 2001, 190(2): 215-226
    [109] Yamagishi H, Crivello J V and Belfort G. Development of a novel photochemical technique for modifying poly(arylsulfone) ultrafitration membranes [J]. J. Membr. Sci., 1995, 105(3): 237-247
    [110] Gancarz I, Pozniak G and Bryjak M. Modification of polysulfone membranes. 1. CO2 plasma treatment [J]. Eur. Polym. J. , 1999, 35(8): 1419-1428
    [111] Kwon D Y and Vigneswaran S. Influence of particle size and surface charge on critical flux of crossflow microfiltration [J]. Wat. Sci. Tech., 1998, 38 (4-5): 481-488
    [112] Choo K H, Kang I J and Yoon S H. Approaches to membrane fouling control in anaerobic membrane bioreactor [J]. Wat. Sci. Tech., 2000, 41(10-11): 363-371
    [113] Ulbricht M and Belfort G. Surface modification of ultrafiltration membranes by low temperature plasma: II. Graft polymerization onto polyacrylonitrile and polysulfone [J]. J. Membr. Sci., 1996, 111(2): 193-215
    [114] Futamura O, Katoh M and Takeuchi K. Organic waste water treatment by activated sludge process using integrated type membrane separation [J]. Desalination, 1994, 98(1-3): 17-25
    [115] Huang X, Liu R and Qian Y. Behavior of soluble microbial products in a membrane bioreactor [J]. Process Biochemistry, 2000, 36(5): 401-406
    [116] Bouhabila E H, Aim R B and Buisson H. Microfiltration of activated sludge using submerged membrane with air bubbling (application to wastewater treatment) [J]. Desalination, 1998, 118(1-3): 315-322
    [117] Fan X J, Urbain V and Qian Y. Ultrafiltration of activated sludge with ceramic membranes in a cross-flow membrane bioreactor process [J]. Wat. Sci. Tech., 2000, 41 (10-11): 243-250
    [118] Rosenberg S, Kruger U and Witzig R et al. Performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water [J]. Wat. Res., 2002, 36(2): 413-420
    [119]彭跃莲,刘忠洲.膜生物反应器在废水处理中的应用[J].水处理技术, 1999, 25(2): 63-69
    [120] Bouhabila E H, Aim R B and Buisson H. Fouling characterisation in membrane bioreactors [J]. Sep. Purif. Tech., 2001, (22-23): 123-132
    [121] Sata I Y. Effects of actived sludge properties on water flux of ultrafiltration membrane used for human excrement treatment [J]. Wat. Sci. Tech., 1991,23(5-6): 1601-1608
    [122] Nagaoka H, Ueda S and Miya A. Influence of bacterial extracellular polymers on the membrane separation activated sludge process [J]. Wat. Sci. Tech., 1996, 34(9): 165-172
    [123] Magara Y and Itoh M. The effect of operational factors on solid/liquid separation by ultra-membrane filtration in a biological denitrification system for collected human excreta treatment plant [J]. Wat. Sci. Tech., 1991,23(5-6):1583-1590
    [124] Lee Y, Cho J, Seo Y and Lee J et al. Modeling of submerged membrane bioreactor process for wastewater treatment [J]. Desalination,2002, 146(1-3): 451-457
    [125]罗虹,顾平,杨造燕.膜生物反应器内泥水混合液可过滤性的研究[J].城市环境与城市生态,2000,13(1): 51-53
    [126] Muller E B, Stouthamber A H and Verseveld H W et al. Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by cross-flow filtration [J]. Wat. Res., 1995, 29(4): 1179-1189
    [127] Shimizu Y, Uryu K and Okuno Y I et al. Effect of particle size distributions of activated sludges on cross-flow microfiltration flux for submerged membranes [J]. J. Ferment Bioeng., 1997, 83(6): 583-589
    [128] Rosenberger S and Kraume M. Filterability of activated sludge in membranebioreactors [J]. Desalination, 2003, 151(2): 195-200
    [129] Chang J S, Tsai L J and Vigneswaran S. Experimental investigation of the effect of particle size distribution of suspended particles on microfiltration [J]. Wat. Sci. Tech., 1996, 34(9): 133-140
    [130] Isiniewski C and Grasmick A. Floc size distribution in a membrane bioreactor and consequences for membrane fouling [J]. Coll. Surf., 1998 , 138(2-3): 403-411
    [131] Nagaoka H, Yamanishi S and Miya A. Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system [J]. Wat. Sci. Tech., 1998, 38(4-5): 497-504
    [132] Deffrance L and affrin M Y. Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment [J]. J. Membr. Sci.,1999, 152(2):203-210
    [133] Chen V, Fane A G and Madaeni S et al. Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation [J]. J.Mem.Sci,1997,125(1): 109-122
    [134] Deffrance L and Jaffrin M Y. Reversibility of fouling formed in activated sludge filtration [J]. J. Mem. Sci.,1999,157(1): 73-84
    [135] Marshall A D, Munro P A and Tragardh G. Effect of protein fouling in microfiltration and ultrafiltration of proteins [J]. Desalination, 1993, 91(1): 95-108
    [136] Devereux N and Hoare. Membrane separation of protein precipitates: Studies with cross flow in hollow fibers [J]. Biotechnol. Bioeng.,1996,28(3): 422-431
    [137]刘锐,黄霞,钱易等.一体式膜-生物反应器长期运行中的膜污染控制[J].环境科学,2000,2(2): 58-61
    [138] Chiemchaisri C and Yamamoto K. Performance of membrane separation bioreactor at various temperatures for domestic wastewater treatment [J]. J. Membr. Sci., 1994, 87(2): 119-129
    [139] Ahna K-H, Song K-G and Choa E et al. Enhanced biological phosphorus and nitrogen removal using a sequencing anoxicknaerobic membrane bioreactor (SAM) process [J]. Desalination, 2003, 157(1-3): 345–352
    [140] Chang I S and Judd S J. Air sparging of a submerged MBR for municipal wastewater treatment [J]. Process Biochem., 2002, 37(8):915–920
    [141] Kim J S, Lee C H and Chun H D. Comparison of ultrafiltration characteristics between activated sludge and BAC sludge [J]. Water Res., 1998, 32(11): 3443-3451
    [142] Lim A L and Bai R. Membrane fouling and cleaning in microfiltration of activatedsludge wastewater [J]. J. Membr. Sci., 2003, 216(1-2): 279–290
    [143]邹联沛,王宝贞,张捍民.膜生物反应器中膜的堵塞与清洗机理研究[J].给水排水,2000,26(9): 73-75
    [144] Yoon S-H, Kim H-S and Park J-K et al. Influence of important operational parameters on performance of a membrane biological reactor [J]. Wat. Sci. Technol., 2000, 41(10-11): 235-242
    [145] Ueda T and Hata K. Domestic waste water treatment by submerged membrane bioreactor with gravitational filtration [J]. Wat. Res., 1999, 33(12): 2888-2892
    [146] Suwa Y, Suzuke T and Toyohara H et al. Single stage-single sludge nitrogen removal by an activated sludge process with cross-flow filtration [J]. Wat. Res., 1992, 26(9): 1149-1157
    [147] Seo G T, Lee T S and Moon B H et al. Two stage intermittent aeration membrane bioreactor for simultaneous organic, nitrogen and phorus removal [J]. Wat. Sci. Technol., 2000, 41(10-11): 217-225
    [148] Goltara A, Martinez J and Mendez R. Carbon and nitrogen removal from tannery wastewater with a membrane bioreactor [J]. Wat. Sci. Tech., 2003, 48(1): 207-214
    [149] Choo K H and Stensel H. Sequencing batch membrane reactor treatment: nitrogen removal and membrane fouling evaluation [J]. Wat. Env. Res., 2000, 72(4): 490-498
    [150] Nagaoka H. Nitrogen removal by a submerged membrane separation activated sludge process [J]. Wat. Sci. Tech., 1999, 39(8):107-114
    [151] Cote P, Buisson H and Praderie M. Immersed membrane activated sludge process applied to the treatment of municipal wastewater [J]. Wat. Sci. Tech., 1998, 38(4-5): 437-442
    [152] Rosenberger S, Kruger U and Witzig R et al. Performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water [J]. Wat. Res., 2002, 36(2): 413-420
    [153] Lesjean B, Gnirss R and Adam C. Process configurations adapted to membrane bioreactors for enhanced biological phosphorous and nitrogen removal [J]. Desalination, 2002, 149(1-3): 217-224
    [154] Zhang D J and Verstraete. The treatment of high strength wastewater containing high concentration of ammonium in a stage anaerobic and aerobic membrane bioreactor [J]. J. Environ. Eng. Sci., 2002, 1(1): 303-310
    [155] Lee J C, Kim J S and Cho M H et al. Potential and limitations of alum or zeolite addition to improve the performance of a submerged membrane bioreactor [J]. Wat.Sci. Tech., 2001, 43(11): 59-66
    [156] Jun B H, Miyanaga K and Tanji Y et al. Removal of nitrogenous and carbonaceous substances by a porous carrier-membrane hybrid process for wastewater treatment [J]. J. Biochem. Engin., 2003, 14(1): 37-44
    [157] Nowakowska M, Sterzel M and Zapotoczny S et al. Photosensitized degradation of ethyl parathion pesticide in aqueous solution of anthracene modified photoactive dextran [J]. Appl. Catal. B: Environ., 2005, 57(1): 1-8
    [158] Tennakone K and Wijayantha K G U. Photocatalysis of CFC degradation by titanium dioxide [J]. Appl. Catal. B: Environ., 2005, 57(1): 9-12
    [159] Cunningham J, Al-Sayyed G and Sedlak P et al. Aerobic and anaerobic TiO2-photocatalysed purifications of waters containing organic pollutants [J]. Catalysis Today., 2005, 53(1): 145-158
    [160] Baolong Z, Baishun C and Keyu S et al. Preparation and characterization of nanocrystal grain TiO2 porous microsphere [J]. Appl. Catal. B: Environ., 2003, 40(4): 253-258
    [161] Xi W and Geissen S U. Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration [J]. Wat. Res., 2001, 35(5): 1256-1262
    [162] Molinara R, Mungari M and Drioli E et al. Study on a photocatalytic membrane reactor for water purification [J]. Catalysis Today, 2000, 55(1): 71-78
    [163] Molinari R, Pirilla F and Falca M et al. Photocatalytic degradation of dyes by using a membrane reactor [J]. Chemical Engineering and Processing, 2000, 43(9): 1103-1114
    [164] Molinari R., Borgese M and Drioli E et al. Hybrid processes coupling photocatalysis and membranes for degradation of organic pollutants in water [J]. Catalysis Today, 2002, 75(1): 77-85
    [165] Molinari R, Grande C and Drioli E et al. Photocatalytic membrane reactors for degradation of organic pollutants in water [J]. Catalysis Today, 2001, 67(1-3): 273-279
    [166] Mozia S, Tomaszewska M and Morawski A W. A new photocatalytic membrane reactor (PMR) for removal of azo-dye Acid Red 18 from water [J]. Appl. Catal. B: Environ., 2005, 59(1-2): 131-137
    [167] Xi W-M and Geissen S-U. Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration [J]. Wat. Res., 2001, 33(5): 1256-1262.
    [168]傅剑锋,季民,金洛楠.影响光催化超滤膜反应器降解Acid Blue 7的因素研究[J].化工进展,2005,24(8): 916-920
    [169]杨群豪,孟耀斌,黄霞等.悬浮床光催化—膜分离反应器中膜污染的控制[J].净水技术,2002,21(2): 28-30
    [170]范益群,史载锋,徐南平等.光催化膜反应器用于亚甲基蓝的降解[J].南京化工大学学报,1999,21(5): 49-52
    [171] Jung B, Yoon J K and Kim B et al. Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes [J]. J. Membr. Sci., 2004, 243(1): 45-57
    [172] Li J T, Wang S C and Nagai K et al. Effect of polyethyleneglycol (PEG) on gas permeabilityies and permselectivies in its cellulose acetate (CA) blend membrane [J]. J. Membr. Sci., 1998, 138(1): 143-152
    [173] Niyogi S and Adhikari B. Preparation and characterization of a polyimide membrane [J]. Eur. Polym. J., 2002, 38(6): 1237-1243
    [174] Kim S R, Lee K H and Jhon M S. The effect of ZnCl2 on the formation of polysulfone membrane [J]. J. Membr. Sci., 1996, 119(1): 59-64
    [175] Wang D M, Lin F C and Wu T T et al. Formation mechanism of the macrovoids induced by surfactant additives [J]. J. Membr. Sci., 1998, 142(2): 191-204
    [176] Kesze S, MatkóS and Bertalan G et al. Progress in interface modifications: from compatibilization to adaptive and smart interphase [J]s. Eur. Polym. J., 2005, 41(4): 697-705
    [177] Lai J Y, Lin F C and Wang C C et al. Effect of nonsolvent additives on the porosity and morphology of asymmetric TPX membranes [J]. J. Membr. Sci., 1996, 118(1): 49-61
    [178] Huang J, Tu M L and Wang Y C et al. Dehydration of acetic acid by pervaporation through an asymmetric polycarbonate membrane [J]. Eur. Polym. J., 2001, 37(3): 527-534
    [179] Hansen C M. The Universality of the solubility Parameters [J]. Ind. Eng. Chem. Prod. Res. Dev., 1969, 8(1): 2-8
    [180] Kim J H, Min B R and Perk H C et al. Phase behavior and Morphological studies of polyimide/PVP/solvent/water systems by phase inversion [J]. J. Appl. Polym. Sci., 2001, 81(11): 3481-3488
    [181] Kang Y S, Kim H J and Kim U Y. Asymmetric membrane formation via immersion precipitation method.Ⅰ. Kinetic effect [J]. J. Membr. Sci., 1991, 60(2-3): 219-232
    [182] Pieracci J, Crivello J V and Belfort G. UV-Assisted Graft Polymerization of N-Vinyl-2-pyrrolidinone onto Poly(ether sulfone) Ultrafiltration Membranes Using Selective UV Wavelengths [J]. Chem. Mater., 2002, 14(2): 256-265
    [183] Pieracci J, Crivello J V and Belfort G. Photochemical modification of 10kDa polyethersulfone ultrafiltration membranes for reduction of biofouling [J]. J. Mem. Sci., 1999, 156(2): 223-240
    [184] Visvanathan C, Yang B and Muttamara S et al. Application of air backflushing technique in membrane bioreactor [J]. Water Sci. Tech., 1997, 36 (12):259-266
    [185] Cote P and Buisson H. Immersed membrane activated sludge for the reuse of municipal wastewater [J]. Desalination, 1997, 113 (2-3): 189-196
    [186] Laborie C S, Durand-Bourlier L and Laine J M. Air sparging in ultrafiltration hollow fibers: relationship between flux enhancement [J]. J. Membr. Sci., 2001, 181(1): 57-69
    [187] Chiemchaisri C, Yamamoto K and Vigneswaran S. Household membrane bioreactor in domestic wastewater treatment [J]. Wat. Sci. Tech., 1993, 27 (1): 171-178
    [188] Chiemchaisri C, Wong Y K and Urase T et al. Organic stabilisation and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment [J]. Filtrat. Separat., 1993, 30(3): 247-252
    [189] Yamamoto K and Win K M. Tannery wastewater treatment using a sequencing bath membrane reactor [J]. Water Sci. Tech., 1991, 23(1): 16-48
    [190] Benitez J, Rodriguez A and Malaver R. Stabilisation and dewatering of wastewater using hollow fiber membranes [J]. Water Res., 1995, 29 (10): 2281-2286
    [191] Howell J A, Chua H C and Arnot T C. In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rates, and effects of membrane history [J]. J. Membr. Sci., 2004, 242(1): 13-19
    [192] Jiang T, Kennedy M D and Van Der Meer G J et al. The role of blocking and cake filtration in MBR fouling [J]. Desalination, 2003, 157(1-3): 335-343
    [193] Lee W, Kang S and Shin H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors [J]. J. Membr. Sci., 2003, 216(1-2): 217-227
    [194] Howell J A. Subcritical flux operation of microfiltration [J]. J. Membr. Sci., 1995, 107(1-2):165-171
    [195] Field R W, Wu D and Howell J A et al. Critical flux concept for microfiltration fouling [J]. J. Membr. Sci., 1995, 100(3): 259-272
    [196] Fane A G, Beatson P and Li H. Membrane fouling and its control in environmentalapplications [C]. Proceedings of Membrane Technology in Environmental Management. Tokyo: Environment Publishers, 1999: 12-19
    [197] Cho D, Fane A G and Ghayeni S B et al. Biological waste water treatment and membranes [C]. Proceedings of Membrane Technology in Environmental Management. Tokyo: Environment publishers, 1999: 263-269
    [198] Tardieu E, Grasmic A and Jaugey K et al. Influence of hydrodynamics on fouling velocity in a recirculated MBR for wastewater treatment [J]. J. Membr. Sci., 1999, 156(1): 131-140
    [199] Ognier S, Wisniewski C and Grasmick A. Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept [J]. J. Membr. Sci., 2004, 229(1): 171-177
    [200] Madaeni S S, Fane A G and Wiley D E. Factors influencing critical flux in membrane filtration of activated sludge [J]. J. Chem. Technol. Biotechnol., 1999, 74(3): 539-543
    [201] Defrance L and Jaffrin M Y. Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment [J]. J. Membr. Sci., 1999, 152 (a): 203-210
    [202] Defrance L and Jaffrin M Y. Reversibility of fouling formed in activated sludge filtration [J]. J. Membr. Sci., 1999, 157 (b): 73-84
    [203] Hasar H and Kinaci C. Empirical model representing microbial activity in a submerged MBR treating strength wastewater [J]. Desalination, 2004, 170(1): 161-167
    [204] Paola A D, Garcia-Lopez E and Marci G et.al. Surface characterisation of metal ions loaded TiO2 photoatalysts: structure-activity relationship [J], Applied Catalysis B: Environmental, 2004, 48: 223-233
    [205] Aguedach A, Brosillon S and Morvan J et al. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide [J]. Applied Catalysis B: Environmental, 2005,57(1): 55-62
    [206] Ding H Y, Wang Y P and Peng P Y. Study on preparation and properties of TiO2 Supported on granular activated carbon [J]. Journal of Nanjing Normal University, 2004, 27(1): 63-67
    [207] Dabrowski A, Podkoscielhy P and Hubicki Z et al. Adsorption of phenolic compounds by activated carbon: critical review [J]. Chemosphere, 2005, 58(8): 1049-1070
    [208] Ma J and Graham N. Degradation of atrazine by manganese catalysed ozonation:Influence of humic substances [J]. Wat. Res., 1999, 33(3): 785-792
    [209] Rakitskaya T L, Bandurko A Y and Ennan A A et al. Carbon fibrous material supported base catalysts of ozone decomposition [J]. Microporous and Mesoporous Material, 2001, 43(1):153-160
    [210] Kasprzyk-Hordern B, Ziólek M and Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment [J]. Applied Catalysis B: Environmental, 2003, 46(4): 639-669
    [211]马军,张涛,陈忠林等.水中羟基氧化铁催化臭氧分解和氧化痕量硝基苯的机理探讨[J].环境科学, 2005, 26(2): 78-82
    [212] Rivera-Utrilla J and Sanchez-Polo M. Ozonation of 1,3,6-nap-htalenetri- sulphonic acid catalysed by activated carbon in aqueous phase [J]. Applied Catalysis, B: Environmental, 2002, 39(4): 319-329
    [213] Sanchez-Polo M and Rivera-Utrilla J. Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalenetrisulphonic acid with ozone [J]. Carbon, 2003,41(2): 303-307
    [214] Han D-H, Cha S-Y and Yang H-Y. Improvement of oxidative decomposition of aqueous phenol by icrowave irradiation in UV/H2O2 process and kinetic study [J]. Water Research, 2004, 38(11): 2782-2790
    [215] Tryba B, Morawski A W and Inagaki M. Application of TiO2-mounted activated carbon to the removal of phenol from water [J]. Applied Catalysis B: Environmental, 2003, 41(4): 427-433
    [216]崔龙哲,申哲昊,吴桂萍等.活性炭臭氧氧化处理水中的聚乙二醇的研究[J].环境科学与技术, 2006,29(8): 73-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700