用户名: 密码: 验证码:
地幔流体与铀成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南岭成矿带位于欧亚大陆东南缘,东南邻太平洋板块,北西接江南造山带。古生代以来,先后经历了加里东、海西—印支、燕山期等多期次的构造岩浆活动,形成了三条近东西向展布的岩浆岩带,自北向南分别为越城岭—诸广山、花山—大东山—贵东、怀集—莲花山,它们均受控于区域性深大断裂控制。南岭成矿带内还发现有大量的稀有和有色金属矿产,是我国稀有和有色金属矿产最集中的产地之一,也是花岗岩型铀矿的聚集区。
     诸广山南部矿田位于南岭东西向构造带和万洋山-诸广山南北向构造带的复合部位,矿田内的产铀岩体的形状可看作由两部分组成:西部岩体呈东西向展布,主要由燕山早期岩体组成;东部呈南北向展布,主要由印支期岩体组成,其间有少量燕山期岩体分布。诸广山岩体内部,各类脉岩十分发育,包括细晶岩、石英斑岩、花岗斑岩、伟晶岩、石英脉、辉绿岩、辉绿玢岩、闪长玢岩、拉辉煌斑岩和闪斜煌斑岩等,其中尤以白垩纪基性岩脉与岩体内广泛分布的铀矿化的关系十分密切。由此可知,诸广山南部矿田内是构造岩浆和热液活动中心,尤其是晚白垩到第三纪时期,区域伸展活动,深部地幔流体对岩体的改造作用进一步加强,为区内大规模铀成矿提供了有利条件。
     本文以诸广南部矿田为研究对象,在系统收集、归纳、整理现有地质、地球物理和地球化学资料基础上,采用地球化学、同位素地球化学、流体地球化学等方法,对区内产铀花岗岩及中基性脉岩的岩石学特征、地球化学特征、同位素地球化学特征,并在此基础上,研究区内构造、成矿流体活动性质及其演化特征、成矿物质来源、成矿定位机制以及基性岩脉的源区特征、成因机制及其与铀矿化的成因联系,查明地幔流体成矿作用的表现形式、地球化学标志及定位标志。通过研究,得出以下几点成果认识:
     (1)开展了精细的锆石SHRIMP U-Pb年代学研究。初步获得的结果表明,印支期岩体的年龄为239 ~ 231Ma,属于印支早期岩浆活动产物;燕山期岩体的年龄为160 ~ 154Ma,属于燕山早期岩浆活动产物;不同方向的基性岩脉是燕山晚期岩浆活动产物。
     (2)对印支期花岗岩进行岩石学、地球化学和同位素地球化学研究,表明印支期岩体是后碰撞作用产物。具有富硅、富铝、碱含量较高、钾大于钠和过铝质等主量元素特征;在微量元素蛛网图上,富集Rb、Th,亏损Ba、Sr、P、Ti、Nb、Ta,铀富集明显;在稀土元素方面,稀土总量较高,轻稀土富集明显和Eu亏损强烈;在同位素方面,εNd(t)值较低(平均为-11.5)、(87Sr/86Sr)i值较高(平均为0.72295)和Nd模式年龄古老(平均为1941Ma)。上述特征清楚显示,印支期花岗岩应属于壳源型或S型花岗岩范畴。印支期花岗岩的CaO/Na2O比值变化明显,为0.11 ~ 0.50,反映其源区由砂质岩和泥质岩混合组成。但由于它们具有高的Rb/Sr和Rb/Ba比值,因而在Rb/Sr-Rb/Ba图解上,大部分数据点都投影于泥质岩区域内,表明它们的源区主要由泥质岩或泥质岩与砂质岩按一定比例混合组成。在构造环境判别图解上,反映出在后碰撞作用的环境下,位于中-下地壳部位的古老变质沉积岩由于在地壳缩短之后的伸展、减薄环境下产生的减压、导水和地幔上涌等因素的综合影响下,分别由泥质岩或由泥质岩和砂质岩组成的混合源区发生部分熔融而形成本区的印支期花岗岩。
     (3)燕山期花岗岩的SiO2含量(69.47 ~ 77.50%)、碱总量(6.46% ~ 10.07%)、K2O/Na2O比值(0.91 ~ 1.23)和ACNK值(0.94 ~ 1.31)变化较为明显;在微量元素蛛网图上,富集Rb、Th,亏损Ba、Sr、P、Ti和Nb、Ta亏损轻微,铀富集明显;在稀土元素方面,稀土总量稍低且变化较为明显,Eu亏损明显,轻稀土轻微富集,配分模式呈特征的海鸥型;在同位素方面,εNd(t)值较低(-12.6 ~ -10.0)、(87Sr/86Sr)i值变化较大(0.70761 ~ 0.77651)和Nd模式年龄古老(1763 ~ 1964Ma)。上述特征清楚显示,燕山期花岗岩总体上可归属于壳源型或S型花岗岩范畴(。7)燕山期花岗岩的CaO/Na2O(0.10 ~ 0.84)、Rb/Sr(1.8 ~ 30.0)和Rb/Ba(0.53 ~ 232.0)比值变化明显。在Rb/Sr-Rb/Ba图解上,数据点基本上都投影于泥质岩区域内。在构造环境判别图解上,燕山期花岗岩都投影于后碰撞花岗岩区域内,表明它们应是在伸展的构造环境中形成的板内岩浆活动产物。
     (4)白垩纪中基性脉岩的主量元素组成如SiO2、TiO2、Al2O3和碱总量变化明显;在微量元素蛛网图上,分布形式明显呈现左侧“隆起”和右侧相对平缓的特征,Nb、Ta显示亏损;在稀土分布模式图解上,LREE/HREE比值和(La/Yb)N值较高,Eu基本没有亏损,配分模式呈右倾型。早白垩纪辉绿岩εNd(t)值(-8.2 ~ 4.3)和(87Sr/86Sr)i值(0.70828 ~ 0.72338)变化明显,它们的铅同位素组成又具有Dupal异常铅特征,反映它们源自相对富集的不均一地幔源区;晚白垩纪辉绿玢岩εNd(t)值(-2.2 ~ -0.9)、(87Sr/86Sr)i值(0.71276 ~ 0.71312)、206Pb/204Pb (18.500 ~ 18.574)和207Pb/204Pb( 15.718 ~ 15.790)比值变化小。在Nd-Sr、Nd-Pb和Pb-Pb相关图解上,早白垩世数据点基本上都位于MORB和EMⅡ端员之间和太平洋深海浊积岩区域内,反映辉绿岩的地幔源区因受到俯冲太平洋板块及其沉积物脱水所分泌的流体交代作用的影响而发生富集;晚白垩世辉绿玢岩数据点都位于MORB和EMⅡ端员之间,反映它们源自具有MORB和EMⅡ端员按一定比例混合特征的富集地幔源区。反映源区的富集作用主要归因于俯冲带流体对上覆地幔楔的交代改造。
     (5)通过对302矿床脉石矿物的氢、氧同位素组成的研究,确定的成矿期成矿流体的δDH2O=-65 ~ -82‰,δ18OH2O=6.8 ~ 0.6‰,矿后期成矿流体的δDH2O=-50 ~ -65‰,δ18OH2O=-0.8 ~ -7.1‰,在δDH2O-δ18OH2O图解上,成矿期数据点都位于地幔流体演化区域边缘,反映成矿期成矿流体主要由地幔流体和部分大气降水混合而成,而矿后期成矿流体则可能主要由大气降水演化形成。在包裹体均一温度-盐度图解上,数据点呈现明显的正相关分布,反映高温高盐度的地幔流体与低温低盐度的大气降水之间不同程度的混合,进一步证实成矿流体由地幔流体和大气降水混合组成。
     (6)成矿组分具有多来源特征:方解石的δ13C值(-8.4 ~ -5.3‰)反映碳主要来自地幔;萤石的(87Sr/86Sr)i值(0.71474~0.71697)介于矿区内辉绿岩(0.70861~0.72473)和赋矿花岗岩(0.73519 ~ 0.77152)之间,反映锶主要来源于基性岩脉(富集地幔),或基性岩脉(幔源)与赋矿岩体(壳源)之间不同程度的混合。沥青铀矿的εNd(t)值(平均为-11.5)和Nd模式年龄(平均为1787Ma)相似于赋矿花岗岩(油洞岩体分别为-13.2和1945Ma,长江岩体分别为-11.0和1770 Ma)而与辉绿岩(分别为-1.4和809 Ma)区别明显。
     (7)主成矿组分铀来自地壳而不是地幔,这是因为南岭地区的基底变质岩具有高的铀含量(一般为4 ~ 6×10-6)、赋矿花岗岩不仅铀含量高(长江岩体平均为19.5×10-6,油洞岩体平均为11.1×10-6),而且碱交代作用明显。当富含CO2的地幔流体与其相互作用时,很容易与其中活化的铀形成稳定的铀酰碳酸络离子UO2(CO3)22-和UO2(CO3)34-而被转移进入成矿流体。
     根据地幔流体成矿作用判别标志,诸广山岩体内的302矿床与贵东岩体内的石土岭、仙石和希望矿床一样,可能都属于地幔流体成矿作用范畴,从而进一步证实,与其它大型、超大型金属矿床一样,地幔流体在大型、超大型花岗岩型铀矿床形成中同样具有十分重要的意义。
Nanling metallogenic belt locates Southeast of Eurasia, whose Southeast is Pacific Plate and Northwest is Jiangnan Orogen. It formes three Magmatic belt ,which are yuechengling-wanyangshan,qitianlling-zhuguangshan,huashan-dadongshan-east of guizhou province and who are controlled by regional discordogenic fault,and comes through many tectonic- magmatic activities since Paleozoic.Nanling metallogenic belt also discovers a lot of rare and non-ferrous metal belt which is one of the rare and non-ferrous metal assemble area and granital uranium ore assemble area.
     The uranium ore field of south zhuguang mountain lies in the mulriple part of Naling west-east tectogene and wanyangshan-zhuguangshan south-north tectogene,the mother body of uranium rock is composed of two parts:the west rock is formed by early Yanshanian rocks which are distributed as west-east and the east is composed of Indosinian rocks and a few of Yanshanian rocks,which are distributed as south-north.Many kides of dike rocks shch as aplite、quartz porphyry and granite porphyry ect.are discovered in the zhuguangshan rock..The relationship between basic dyke and uranium mineralization distributed in the rock is close.So,. The uranium ore field of south zhuguang mountain is the center of tectonic- magmatic activitie and thermal fluid,alteration of mantle fluild to rock,specially during late
     Cretaceous to tertiary,provides advantaged congdition to uranium ore field.in the study erea. The paper ,taking uranium ore field of south zhuguang mountain as study object and based on collection and coordination of geology、physical geography and geochemistry deta.,analyses the character of lithology geochemistry and isotope geochemistry of granite and basic dykite and studies the property of tectonic and mine liquid and its evolvement,the source and mechanism of mine liquid ,as well as the source and mechanism of basic dykite and its relationship to uranium mineralization,at the same time ,the paper also discusses manifestation geochemistry sign and position mark of mantle liquid metallogenesis. The paper gains these conclusion.
     (1) The subtle chronology study of zircon SHRIMP U-Pb.The results show that the age of Indosinian rock is 239 ~ 231Ma,which belongs to early Indosinian and the age of Yanshanian is 160 ~ 154Ma,which belongs to early Yanshanian, different basic dykite is the result of late Yanshanian.
     (2) The study of lithology geochemistry and isotope geochemistry of Indosinian rock shows that they are Indosinian collision,which are rich Si Al and high alkali K>Al.. The spider map of trace element shows positive Rb、Th and negative Ba、Sr、P、Ti、Nb、Ta,rich in U;∑REE is high, positive LREE and negative Eu, lowεNd(t),high (87Sr/86Sr)I and old Nd pattern age.Ale of these show Indosinian granite belong to lithosphere type or S type.The ratio of CaO/Na2O changes between 0.11 to 0.50,which shows the source is composed of arenite and argillaceous rock.which are admixture in definite ratio because of high Rb/Sr and Rb/Ba. The tectonic discrimination diagrams reflecte that the admixture source fusion,which is composed of argillaceous rock and arenite, forms the Indosinian granite.
     (3) The range of SiO2 content(69.47 ~77.50%)、alkaline gross (6.46% ~ 10.07%)、K2O/Na2O ratio (0.91 ~1.23) and ACNK (0.94~1.31)value from the Yanshanian granites is obviously wider. In the standard and modular diagram of trace element, the Yanshanian granites show moderate Rb and Th enrichment,Ba、Sr、P、Ti loss、moderate Nb and Ta depletion, obvious uranium enrichment;The granites display mew's wing REE patterns:lower and obvious change of REE content,negative Eu anomaly, light REE enrichment;However, The granites have a small rage of moderately negativeεNd(t) values(-12.6~-10.0), a great change of 87Sr / 86Sr ratio(0.70761 ~ 0.77651) and an old age of Nd mode (1763~1964Ma).Then It can be concluded that the Yanshanian granite belongs to crustal type or S-type granites category. (7) The CaO/Na2O (0.10~0.84), Rb/Sr (1.8~30.0) and Rb/Ba (53~232.0) ratio in these Yanshanian granite are change significantly. As shown in the plot Rb/Sr vs. Rb/Ba , datas are almost in the shale area, while these granite dates fall into collide granite area in the tectonic environment graph, which indicate they are the product of within-plate magmatic activity formed in stretched tectonic environment
     (4) The Cretaceous medium-basic dykes are significantly varied in their major elements concentration(SiO2、TiO2、Al2O3 and alkali gross);The standard and modular diagram of trace element,uplift at left and relatively flat at right,shows negative Nb、Ta trend;The REE pattern is a right distribution with higer LREE/HREE and (La/ Yb) N ratio、basic Eu value without loss. TheεNd(t) (8.2-4.3) and (87Sr / 86Sr) i value of Early Cretaceous diabase (0.70828 ~ 0.72338) change obviously, while their lead isotope composition has anomaly Dupal characteristic which reflects these diabases are derived from concerntratly inhomogeneous mantle source; Late Cretaceous diabase-porphyrites have a slight variation inεNd(t) value (-2.2~-0.9 )、(87Sr /86Sr) i value ( 0.71276 ~0.71312)、206Pb / 204Pb (18.500 ~ 18.574) and 207Pb / 204Pb (15.718 ~ 15.790) ratios. In the Nd - Sr, Nd - Pb and Pb - Pb related diagram, the Early Cretaceous date fall into MORB、EMⅡand the Pacific Ocean deep-sea turbidite group, which reflects the mantle source of diabase enriched by the influence of fluids metasomatism caused by Pacific-Oceanic Plate subduction and sediment dehydration, Whereas the Late Cretaceous data locate between the MORB and EMⅡ,which indicates they derived from mantle source with mixing MORB and EMⅡmember according to a certain proportion. The enrichment reflect source, owing to fluid metasomasis between subduction zones and overlying mantle wedge.
     (5) Based on the study of hydrogen and oxygen isotopic composition in 302 metallic miner, we get some fluid date(δDH2O=-65 ~ -82‰,δ18OH2O=6.8 ~ 0.6‰for metallogenic epoch;δDH2O=-50 ~ -65‰,δ18OH2O=-0.8 ~ -7.1‰for late stage of metallogenic epoch). In theδDH2O-δ18OH2O diagram ,dates in metallogenic epoch mainly fall into the edge of evolution area of. These indicate fluid of metallogenic epoch is composed by mixing mantle fluid and atmospheric fall, while fluid in late stage of metallogenic epoch is mainly evolved from atmospheric fall. The homogenization temperature obviously shows positive correlation with salinity distribution of inclusions, indicating mantle fluid with high temperature and salinity mixed with low salinity atmospheric fall according to different degree, which also verify metallogenic epoch mixed by mantle fluid and atmospheric fall .
     (6) Ore-forming components with multiple source characteristics: calciteδ13C value (-0.84%~-0.53 %)mainly reflects the carbon from the mantle; (87Sr / 86Sr) i value of Fluorite (0.71474 ~ 0.71697) is between the diabase (0.70861 ~ 0.72473) and ore-rich granite (0.77152~0.73519) , reflecting strontium mainly from the mafic dikes or a mixture of mafic dikes and ore-rich rock. TheεNd (t) value (- 11.5 on average) and Nd age pattern (1787Ma on average) of detrital uraninite share similar with ore-rich granite(-13.2, 1945Ma forεNd (t), Nd in oil hole rock; -11.0,1787Ma forεNd (t), Nd in Yangtze rock), but obviously differ in diabase(-1.4 forεNd (t) ; 1770Ma for Nd) .
     (7) Because of basement metamorphic in the Nanling region with high content of uranium( 4 ~ 6×10-6) and ore-rich granite with high content of uranium (19.5 x 10-6 for Yangtze rock , 11.1 x 10-6 for oil hole rock) and obvious alkali metasomasis , the major uranium is from the crust, but not the mantle. When the fluid rich in CO2 reacts with uranium, especially activate uranium to produce stable UO2(CO3)22- or UO2(CO3)34-, which are transferred into the ore-forming fluid.
     According to the mineralization of mantle fluid, the 302 metallic belongs to the ore-forming processes of mantle fluid like Shi-tuling、Xianshi and Xiwang metallic, It is thereby confirmed that as other large and super-large metallics, mantle fluid has very vital significance in formation of large and super-large metallic deposit.
引文
[1]Andersen T. 2002. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chem. Geol. 192: 59-79
    [2]Baptiste PJ, Fougute Y. 1996. Abundance and isotope composition of helium in hydrothermal sulfides from the East Pacific Rise at 13N. Geochim. Cosmochim. Acta, 60: 87-93
    [3]Barbarin B. 1996. Genesis of the two main types of peraluminous granitoids. Geology, 24: 295-298
    [4]Bernard-Griffiths J, Fourcade S, Dupuy C. 1991. Isotopic study (Sr, Nd, O and C) of lamprophyres and associated dykes from Tamazert (Morroco): Crustal contamination processes and source characteristics. Earth Planet. Sci. Lett., 103: 190-199
    [5]Bhatia. 1983. Plate tectonics and geochemical composition of sandstones. J. Geol., 91: 611-627
    [6]Black LP, Gulson BL. 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR J. Aust. Geol. Geophys. 3, 227-232
    [7]Cantrell KJ, Bryne RH. 1987. Rare-earth element complexation by carbonate and oxalate ions[J]. Geochim. Cosmochim. Acta, 51: 597-605
    [8]Carter A, Roques D, Bristow C, et al. 2001. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29: 211~214
    [9]Cerny P, Goad BE, Hawthorne FC, et al. 1986. Fractionation trends of the Nb- and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitoba. Am. Mineral, 71(3-4): 501-517
    [10]Chappell BW, White AJR. 1992. I- and S-type granites in the Lachlan Fold Belt. Transation of the Royal Society of Edinburgh: Earth Sciences, 83:1-26
    [11]Chow TJ, Patterson CC. 1962. The occurrence and significance of lead isotopes in pelagic sediments. Geochim. Cosmochim. Acta, 26: 263-308
    [12]Chung SL, Cheng H, Jahn BM et al. 1997. Major and trace element, and Sr-Nd isotope contraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening. Lithos, 40: 203-220
    [13]Condie KC. 1997. Source of Proterozoic mafic dyke swarnls: Constraints from Th/Ta and La/Yb ratio. Precamb Res, 8l: 3-l4.
    [14]Currie KL, Willanms PR. 1993. An Archean cala-alkaline lamprophyre suit, northeastern Yigarn Block, western Australia. Lithos, 31: 33-50
    [15]Dostal J, Chatterjee AK. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chem. Geol., 63: 207-216
    [16]Dupre B, Allegre CJ. 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303: 142-146
    [17]Esperanca S, Holloway J R. 1987. On the origin of some mica-lamprophyres: experimental evidence from a mafic minette. Contrib. Mineral. Petrol., 95(2): 207-216
    [18]Faure G. 1986. Principles of isotope geology. John Wiley and Sons, New York
    [19]Floyd PA, Winchester JA. 1975. Magma-type and tectonic setting discrimination using immobileelements. Earth Planet. Sci. Lett., 27: 211-218
    [20]Foley SF, Jackson SE, Fryer BJ, et al. 1996. Trace element partition coefficients for clinopyroxene and phlogophite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochim. Cosmochim. Acta, 60(4): 629-638
    [21]Green TH. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol., 120: 347-359
    [22]Green DH, Wallace ME. 1988. Mantle metasomatism by ephemeral carbonatite melts. Nature, 336(6198): 459-462
    [23]Groves DI. 1993. The crustal continuum model for late-Archean lode-gold deposits of the Yilgarn Block,Western Australia. Mineral Deposits, 28: 366-374
    [24]Halls HC, Fahrig WF. 1987. Mafic dyke swarms. Geol Assoc Can Spec Paper. p.526
    [25]Hart SR. 1984. A large-scale isotope anomaly in Southern Hemisphere mantle. Nature, 309: 753-757
    [26]Hart SR. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet. Sci. Lett., 90: 273-296
    [27]Hart SR, Hauri EH, Oschmann LA et al. 1992. Mantle plume and entrainment: isotopic evidence. Sciences, 256: 517-520
    [28]Hemming SR, McLennan SM. 2001. Pb isotope compositions of modern deep sea turbidites. Earth Planet. Sci. Lett., 184: 489-503.
    [29]Hill RI, Campbell H, Davies GF et al. 1992. Mantle plumes and continental tectonics. Sciences, 256: 186-192
    [30]Hoek JD, Seitz HM. 1995. Continental mafic dykes swarnls as tcctonic indicators: An example from the Vestfold Hills, East Antarctica. Precamb Res, 75: 121-139
    [31]Hofmann AW. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, 385: 219-229
    [32]Hofmann AW, White WM. 1982. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett., 57: 421-436
    [33]Ionov DA, Griffin WL, O’Reilly SY. 1997. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem. Geol., 141(3-4): 153-184
    [34]Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochmi. Acta, 63(3-4): 489-508
    [35]Irvine TN, Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci., 8: 523-548
    [36]Jackson SE, Pearson NJ, Griffin WL et al. 2004. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ U-Pb zircon geochronology. Chem. Geol., 211: 47-69
    [37]Jahn BM, Wu FY, Lo CH, et al. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic- ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157: 119-146
    [38]Jahn BM, Wu FY, Capdevila R, et al. 2001. Highly evolved juvenile granites with tetrad REE patterns:the Woduhe and Baerzhe granites from the Great Xing’an Mountain in NE China. Lithos. 59:171-198
    [39]Le Bas NJ, LeMaitre RW, Streckeisen A et al. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol., 27: 745-750
    [40]Lee J, Williams I, Ellis D. 1997. Pb, U and Th diffusion in nature zircon. Nature, 390(13): 159-162
    [41]Li XH. 1997. Timing of the Cathaysia Block formation: constraints from SHRIMP U–Pb zircon geochronology. Episodes, 20(3):188-192
    [42]Li XH, Chung SL, Zhou HW, et al. 2004. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: 40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for tectonic evolution of SE China. In: Malpas J, Fletcher C J, Aitchison J C, et al, eds. Aspects of the Tectonic Evolution of China. London: Geological Society London Special Publications, 193-216
    [43]Liegeios JP, Navez J, Hertogen J et al. 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, 45: 1-28
    [44]Ling HF, Burton KW, O'Nions RK et al. 1997. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts. Earth Planet. Sci. Lett., 146: 1-12.
    [45]Ling HF, Shen WZ, Wang RC, et al. 2001. Geochemical characteristics and genesis of Neoproterozoic granitoids in the Northwestern margin of the Yangtze Block. Phys. Chem. Earth, 26: 805-819
    [46]Ling HF, Shen WZ, Deng P, et al. 2005. Geochemical characteristics and genesis of the Luxi-Xianrenzhang diabase dikes in Xiazhuang uranium orefield, northern Guangdong province. Acta Geologica Sinica, 2005, 79(4): 497-506
    [47]Ludwig KR. 1999. Isoplot/Ex (Version 2.05): A geochronological toolkit for Microsoft Excel. Spec. Pub., Berkeley Geochronology Center 1a, 43
    [48]Maniar PD, Piccoli PM. 1989. Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull., 101: 635-643
    [49]Maruyama S, Seno T. 1986. Orogeny and relative plate motions: example of the Japanese island. Tectonophysics, 127: 305-329
    [50]McKenzie D, O’Nions RK. 1983. Mantle reservoirs and ocean island basalts. Nature, 301: 229-231
    [51]McLennan SM, Taylor SR. 1979. Rare-earth element mobility associated with uranium mineralization[J]. Nature, 282: 247-250
    [52]McLennan SM, Taylor SR, McCulloch, MT et al. 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidite: crustal evolution and plate tectonic associations, Geochim. Cosmochim. Acta, 54: 2015-2050
    [53]Michard A, Beaucarite C, Michard G. 1987. Uranium and rare-earth element in CO2-rich waters from Vals-Les-Basin (France). Geochim. Cosmochim. Acta, 51: 901
    [54]Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth Sci. Rev., 37: 215-224
    [55]Miller C, Schuster R, Klotzli U et al. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics andpetrogenesis. J. Petrol., 40(9): 1399-1424
    [56]Muller D, Rock NM, Groves DI. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in diferent tectonic settings: A pilot study. Mineral. Petrol. 46: 259-289
    [57]Munker C. 1998. Nb/Ta fractionation in a Cambrian arc/back system, New Zealand: Source constraints and application of refined ICPMS techniques. Chem. Geol., 144(1-2): 23-45
    [58]Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol., 67:551-578
    [59]O’Neil JR, Epstein S. 1966. Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide. Science, 152: 198-201
    [60]Parsons T, Thompson GA, Sleep NH. 1994. Mantle plume influence on the Neogene upft and extension of the U.S. western Cordillera? Geology, 22: 83-86
    [61]Patino DAE, Humphreys ED, Jahnston AD. 1990. Anatexis and metamorphismin tectonicallythickened continental crust exemplified by the Sevier hinterland, western North America. Earth Planet. Sci. Lett., 97: 290-315
    [62]Pearce JA. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ and Norry MJ (eds.), Continental basalts and mantle xenoliths. Nantwich: Shiva, 230-249
    [63]Pearce JA. 1996. Sources and setting of granitic rocks. Episodes, 19(4): 120-125
    [64]Pearce JA, Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet. Sci. Lett., 19: 290-300
    [65]Peccerillo A, Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks of the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol., 58: 63-81
    [66]Righter K. 2000. A comparison of basaltic volcanism in the Cascades and western Mexico: composotional diversity in continental arcs. Tectonophysics, 318: 99-117
    [67]Rudnick RL, Fountain DM. 1995. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys., 33: 267-309
    [68]Sleep NH. 1990. Hotspots and mantle plumes: some phenomenology. J. Geophy. Res., 95: 6715-6736
    [69]Strong DF, Hanmer SK. 1981. The leucogranites of southern Brittany: origin by faulting, frictional heating, fluid flux and fractional melting. Can. Minera1., 19: 163-176
    [70]Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45: 29-44
    [71]Taylor HP, Sheppard SMF. 1986. Igneous rocks: I. Processes of isotopic fractionation and isotope systemation[A]. In:“Stable isotopes in high temperature geological processes”(eds. Valley JW, Taylor HP and O’Neil JR), Rev. Mineral., 16: 227-271
    [72]Taylor SR, McLennan SM. 1985. The continental crust: its composition and evolution. Oxford: Blackwell. 1-312
    [73]Taylor SR, McLennan SM. 1995. The geochemical evolution of the continental crust. Rev. Geophys., 33: 241-265
    [74]Treuil M, Joron JM. 1975. Vtilisation des elements hydromagmatophiles pour la simplification de lamodelisation quantitative des processus magmatiques, Exemples de’l afar et de la dorsade medioatlatiqus. Soc. It. Mine. Petro., 31, 125
    [75]Wang YJ, Fan WM, Guo F et al. 2003. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu Fault, South China: implications for the lithospheric boundary between the Yangtze and Cathaysia blocks. International Geology Review, 45: 263-286
    [76]Weaver BL. 1991. The origin of ocean island basalt end-member compositions trace element and isotopic constraints. Earth Planet. Sci. Lett., 104: 381-397
    [77]Weaver BL, Wood DA, Tarney J. 1987. Geochemistry of ocean island basalts from the south Atlantic: Ascension, Bouvet, St.Helena, Gough and Tristan da Cunha. In: Alkaline igneous rocks. Edited by Fitton JG and Upron BGJ. Blackwell Scientific Publiccation, London, 30: 253-267
    [78]Wendlandt RF, Harrisob WJ. 1979. Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapor. Contrib. Mineral. Peytrol., (4): 409-419
    [79]Willan RCR, Kelley SP. 1999. Marie dikes swart'as in the South Shetland Islands volcanic arc: Unravelling mulhiepisodic magmatism related to subduction and continental rifting. J Geophys Res., 104(B10): 23 051-23 068
    [80]Winchester JA, Floyd PA. 1976. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks. Earth Planet. Sci. Lett., 28: 459-469
    [81]Windley BF. 1995. The evolving continents. 3rd ed. New York: John Wiley
    [82]Wu Fuyuan, Sun Deyou, Li Huimin, et al. 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem. Geol. 187, 143-173
    [83]Xu Keqin, Sun Nai, Wang Dezi et al. 1984. Petrogenesis of the grantoid and their metallogenetic relations in South China. In: Xu KQ, Tu GC (eds.). Geology of granites and their metallogenetic relations. Beijing: Science Press, 1-33
    [84]Xu XS, O’Reilly SY, Griffin WL et al. 2005. Relict Proterozoic basement in the Nanling Mountains (SE China) and its tectonothermal overprinting. Tectonics, 24: TC2003, doi:10.1029/2004TC001652
    [85]Zhao ZF, Zheng YF, Wei CS et al. 2001. Carbon concentration and isotope composition of granites from Southeast China. Phys. Chem. Earth, 26(9-10): 821-833
    [86]Zindler A, Hart SR. 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 14: 493-571
    [87]Zhang Guoquan, Hu Ruizhong Bi Xianwu et al. 2007. REE geochemical characteristics of the No. 302 uranium deposit in northern Guangdong, South China[J]. Chinese Journal of Geochemistry, 26(4): 425-433
    [88]Zhou JC, Jiang SY, Wang XL, et al. 2005. Re-Os isochron age of Fankeng basalts from Fujian of SE China and its geological significance. Geochem J, 39: 497-502
    [89]Zhou XM, Li WX. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326: 269-287
    [90]柏道远,周亮,马铁球,等. 2007.湘东南印支期花岗岩成因及构造背景.岩石矿物学杂志, 26(3): 197-212
    [91]曹荣龙. 1996.地幔流体的前缘研究.地学前缘, 3: 161-171
    [92]曹荣龙,夏林析. 1990.中国上地幔特征与动力学论文集.北京:地震出版社
    [93]曹荣龙,朱寿华. 1995.地幔流体与成矿作用.地球科学进展, 10: 323-329
    [94]陈江峰,江博明. 1999. Nd, Sr, Pb同位素示踪和中国东南大陆地壳演化.见郑永飞主编.化学地球动力学.北京:科学出版社, 262-287
    [95]陈鸣. 1989.诸广山岩体南体中段花岗岩类锆石标型特征初步研究.矿物学报, 9(3): 269-275
    [96]陈鸣. 1990.诸广山岩体斑状和小斑状二云母花岗岩的期次划分及演化特征.矿物岩石, 10(4): 14-21
    [97]陈培荣,刘义. 1990. 302铀矿床成矿物理化学条件、热液来源和运移方向.矿床地质, 9(2): 149-157
    [98]陈培荣,章邦桐,孔兴功,等. 1998.赣南寨背A型花岗岩体的地球化学特征及其构造地质意义.岩石学报, 14(3): 163-173
    [99]陈培荣,孔兴功,王银喜,等. 1999.赣南燕山早期双峰式火山-侵入杂岩的Rb-Sr同位素定年及意义.高校地质学报, 5: 367-383
    [100]陈培荣,孔兴功,倪琦生,等. 1999.赣南燕山早期双峰式火山的厘定和意义.地质论评, 45(增刊): 734-741
    [101]陈培荣,华仁民,章邦桐,等. 2002.南岭燕山早期后造山花岗岩类:岩石学制药和地球动力学背景.中国科学(D辑): 32(4): 279-289
    [102]陈培荣,周新民,张文兰,等. 2004.南岭东段燕山早期正长岩-花岗岩杂岩的成因和意义.中国科学(D辑), 34(6): 493-503
    [103]陈小明,王汝成,刘昌实,等. 2002.广东从化佛冈(主体)黑云母花岗岩定年和成因.高校地质学报, 8(3): 293-307.
    [104]陈跃辉,陈肇博,陈祖伊,等. 1998.华东南中新生代伸展构造与铀成矿作用.北京:原子能出版社. 97-113.
    [105]陈振胜,张理刚. 1992.热液体系氢氧同位素分馏机制及其地质意义.地质学报, (2): 158-168.
    [106]陈志刚,李献华,李武显,等.2003.赣南全南正长岩的SHRIMP锆石U-Pb年龄及其对华南燕山早期构造背景的制约.地球化学,32(3):223~229
    [107]邓访陵. 1987.诸广山花岗岩复式岩基南部的同位素地质年代学.地球化学, (2): 141-152
    [108]邓平. 2003.南岭东段中-新生代盆-山动力学及其铀成矿作用(博士学位论文).南京:南京大学地球科学系
    [109]邓平,舒良树,谭正中. 2003.诸广-贵东大型铀矿聚集区富铀矿成矿地质条件.地质论评, 49(5): 486-494
    [110]邓平,沈渭洲,凌洪飞,等. 2003.地幔流体与铀成矿作用——以下庄矿田仙石铀矿床为例.地球化学, 32(6): 520-528
    [111]董云鹏,朱炳泉,常向阳,等. 2002.滇东师宗-弥勒带北段基性火山岩地球化学及其对华南大陆构造格局的制约.岩石学报, 18(1): 37-46
    [112]杜乐天. 1982.花岗岩型铀矿文集.北京:原子能出版社.
    [113]范春方,陈培荣. 2000.赣南陂头A型花岗岩的地质地球化学特征及其形成的构造环境.地球化学, 29(4): 359-366.
    [114]高山,骆庭川,张本仁等. 1999.中国东部地壳的结构和组成.中国科学(D辑), 29(3): 204-213.
    [115]葛小月,李献华,周汉文. 2003.琼南晚白垩纪基性岩墙群的年代学、元素地球化学和Sr-Nd同位素研究.地球化学, 32(1): 11-20
    [116]郭新生,陈江峰,张巽,等. 2001.桂东南富钾岩浆杂岩的Nd同位素组成华南中生代地幔物质上涌事件.岩石学报, 17(1): 19-27
    [117]韩发,沈建忠,聂凤军,等. 1994.江南古陆南缘四堡群同位素地质年代学研究.地球学报, (1-2):43-50
    [118]侯增谦,卢记仁,林盛中等.2005.峨眉地幔柱轴部的榴辉岩——地幔岩源区主元素、痕量元素及Sr、Nd、Pb同位素证据.地质学报,79(2): 200-219
    [119]胡瑞忠. 1989. XW铀矿床成矿机理.成都地质学院学报, 16(3): 1-9
    [120]胡瑞忠. 1994.花岗岩型铀矿床成因讨论——以华南为例.地球科学进展, 9(2): 41-46
    [121]胡瑞忠,金景福. 1990.贵东花岗岩体中煌斑岩的成因.矿物岩石, 10(4): 1-7
    [122]胡瑞忠,李朝阳,倪师军,等. 1993.华南花岗岩型铀矿床成矿热液中ΣCO2来源研究.中国科学(B辑), 23(2): 189-196
    [123]胡瑞忠,毕献武,苏文超,等. 2004.华南白垩第三纪地壳拉张与铀成矿的关系.地学前缘, 11(1): 153-160
    [124]胡瑞忠,毕献武,彭建堂,等. 2007.华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题.矿床地质, 26(2): 139-152
    [125]胡雄健,许金坤,童朝旭,等. 1991.浙西南前寒武纪地质.北京:地质出版社
    [126]黄智龙,刘从强,朱成明,等. 1999.云南老王寨金矿区煌斑岩成因及其与金矿化的关系.北京:地质出版社, 30-112
    [127]贾大成,胡瑞忠,谢桂青. 2002.湘东北中生代基性岩脉岩石地球化学及其构造意义.大地构造与成矿, 26(2): 179-184
    [128]贾大成,胡瑞忠,卢焱,等. 2003.湘东北钠质煌斑岩地幔源区特征及成岩构造环境.中国科学(D辑), 33(4): 344-352
    [129]简平,刘敦一,孙晓猛. 2003.滇川西部金沙江石炭纪蛇绿岩SHRIMP测年:古特提斯洋盆演化的同位素年代学制约.地质学报, 77(2): 217-228
    [130]金景福,胡瑞忠. 1985. 302铀矿床成因探讨.成都地质学院学报, (4): 1-10
    [131]金景福,倪师军,胡瑞忠. 1992. 302铀矿床热液脉体的垂直分带及其成因探讨.矿床地质, 11(3): 252-258
    [132]金文山,孙大中. 1997.华南大陆深部地壳结构及其演化.北京:地质出版社孔兴功,陈培荣,章邦桐. 2000.赣南白面石盆地双峰式火山岩的Rb-Sr和Sm-Nd同位素特征.地质论评, 46(2): 186-189.
    [133]孔祥生,李志飞,冯长根,等. 1995.浙江陈蔡地区前寒武纪地质.北京:地质出版社
    [134]李建红,梁良,刘成东. 1995. 622铀矿床近矿围岩蚀变地质地球化学特征.华东地质学院学报, 18(4): 335-343
    [135]李曙光,刘德良,陈移之,等. 1993.中国中部蓝片岩的形成时代.地质科学, 28(1): 21-27
    [136]李曙光, Jagouty E,肖益林,等. 1996.大别山-苏鲁地体超高压变质年代学——I. Sm-Nd同位素
    体系.中国科学(D辑), 26(3): 249-257
    [137]李曙光,李惠民,陈移之,等. 1997.大别山-苏鲁地体超高压变质年代学——II.锆石U-Pb同位素体系.中国科学(D辑), 27(3): 200-206
    [138]李献华. 1990.万洋山-诸广山花岗岩复式岩基的岩浆活动时代与地壳运动.中国科学(B辑), (7): 747-755
    [139]李献华. 1990.诸广山岩体内中基性岩脉的成因初探.科学通报, 16: 1247-1249
    [140]李献华. 1992.诸广山中生代花岗岩的成因.广东地质, 7(2): 1-13
    [141]李献华. 1993.万洋山-诸广山加里东期花岗岩的形成机制—微量元素和稀土元素地球化学证据.地球化学, (1): 35-43
    [142]李献华. 1996. Sm-Nd模式年龄和等时线年龄的适用性与局限性.地质科学, 31(1): 97-103
    [143]李献华,桂训唐. 1991.万洋山-诸广山加里东期花岗岩的物质来源—I. Sr-Nd-Pb-O多元同位素体系示踪.中国科学, B辑, (5): 533-540
    [144]李献华,朱炳泉,桂训唐. 1992.万洋山-诸广山加里东期花岗岩的物质来源—II同位素多维空间的拓分析.中国科学, B辑, 22(8): 855-859
    [145]李献华,胡瑞忠,饶冰. 1997.粤北白垩纪基性岩脉的年代学和地球化学.地球化学, 26(2): 15-31
    [146]李献华,李武显,李正祥. 2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报, 52(9): 981- 991
    [147]李献华,周汉文,刘颍,等. 1999.桂东南钾玄质侵入岩带及其岩石学和地球化学特征.科学通报, 44(18): 1992-1998
    [148]李献华,周汉文,刘颍,等. 2000.粤西阳春中生代钾玄质侵入岩及其构造意义:Ⅰ.岩石学和同位素地质年代学.地球化学, 29(6): 513-520
    [149]李献华,周汉文,刘颍,等. 2001.粤西阳春中生代钾玄质侵入岩及其构造意义:Ⅱ.微量元素和Sr-Nd同位素地球化学.地球化学, 30(1): 57-65
    [150]李献华,周汉文,韦刚健,等. 2002.滇西新生代超钾质煌斑岩的元素和Sr-Nd同位素特征及其对岩石圈地幔组成的制约.地球化学, 31(1): 26-34
    [151]李耀菘. 1997.铀矿床同位素地球化学.见:于津生主编.”中国同位素地球化学研究”.北京:科学出版社, 287-313
    [152]李子颖,李秀珍,林锦荣. 1999.试论华南中新生代地幔柱构造、铀成矿作用及其成矿方向.铀矿地质, 15(1): 9-17
    [153]李子颖,黄志章,李秀珍,等. 1998.试论华南中新生代地幔柱构造与铀成矿作用.矿床地质, 17(增刊): 99-102
    [154]李占游. 1987.西北某花岗岩型碱交代热液铀矿床稀土元素地球化学.铀矿地质, 3(3): 175-183
    [155]凌洪飞,沈渭洲,邓平,等. 2004.粤北笋洞花岗岩的形成时代、地球化学特征与成因.岩石学报, 20(3): 413-424
    [156]凌洪飞,沈渭洲,邓平,等. 2005.粤北帽峰花岗岩体地球化学特征及其成因研究.岩石学报, 21(3): 677-687
    [157]刘丛强,黄智龙,李和平,等. 2001.地幔流体及其成矿作用.地学前缘, 8(4): 231-244
    [158]刘汝洲,程旭初,胡柳英,等. 1995.下庄矿田岩浆演化系列及成矿富集作用.科研报告(内部)
    [159]陆建军,吴烈勤,凌洪飞,等. 2006.粤北下庄铀矿田黄陂-张光营辉绿岩脉的成因:元素地球化学和Nd-Sr-Pb-O同位素证据.岩石学报, 22(2): 397-406
    [160]陆建军,邓平,沈渭洲,等. 2008.希望铀矿床的同位素地球化学特征及其成因研究.矿床地质(待刊)
    [161]马长信,刘荣贵,吕桂德,等.1992.赣东北前震旦纪地质.北京:地质出版社
    [162]马芳,穆治国,李江海. 2000.前寒武纪基性岩墙群的地球化学特征与岩石成因讨论.地质地球化学, 28(4): 58-64
    [163]马铁球,邝军,柏道远,等. 2006.南岭中段诸广山南体燕山早期花岗岩地球化学特征及其形成的构造环境分析.中国地质, 33(1): 119-131
    [164]毛孟才,沈俊,张导夫. 2002.南岭地区前震旦纪基底特征及其对铀成矿的贡献.铀矿地质, 18(1): 36-40
    [165]倪师军,金景福,要全泰. 1992. 302铀矿床石英萤石和方解石的热释光的垂直分带.矿物岩石, 12(4): 103-108
    [166]倪师军,胡瑞忠,金景福. 1994. 302铀矿床热液的混合和沸腾垂直分带模式.铀矿地质, 10(2): 70-77
    [167]邱检生,王德滋. 1997.鲁西中生代富钾火山岩及煌斑岩微量元素和Nd-Sr同位素研究.高校地质学报, 3(4): 384-395
    [168]邵建国,彭少梅,彭松柏. 1995.云开地块周边断裂带40Ar/36Ar-39Ar/36Ar等时线定年.广东地质, 10(2): 34-40
    [169]邵济安,张履桥,魏春景,等. 2001.北京南口中生代双峰式岩墙群的组成及其特征.地质学报, 75(2): 205-212
    [170]邵济安,贾文,储著银,等. 2003.内蒙古喀喇沁早白垩世橄辉云煌岩岩筒.岩石学报, 19(3): 429-434
    [171]沈渭洲,朱金初,刘昌实,等. 1993.华南基底变质岩的Sm-Nd同位素及其对花岗岩类物质来源的制约.岩石学报, 9(2): 115-124
    [172]沈渭洲,凌洪飞,李武显,等. 1999.中国东南部花岗岩类Nd-Sr同位素研究.高校地质学报, 5(1): 22-32
    [173]沈渭洲,凌洪飞,邓平,等. 2006.粤北下庄矿田基性岩脉与铀矿化关系研究.见陈骏主编“地质与地球化学研究进展——庆贺王德滋院士致力于地质科学60周年暨80华诞”,南京:南京大学出版社, 257-268
    [174]沈吉,赵一英,刘道忠. 1991.华南诸广山花岗岩体銣-锶、氧、铅、硫同位素研究.岩石学报, 7(2): 38-43
    [175]舒良树,周新民. 2002.中国东南部晚中生代构造格架.地质论评, 48(3): 249-260
    [176]舒良树,邓平,王彬,等. 2004.南雄-诸广地区晚中生代盆山演化的岩石化学、运动学与年代学制约.中国科学(D辑), 34(1): 1-13
    [177]宋彪,张玉海,万渝生,等. 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(增刊): 26-30
    [178]孙涛,陈培荣,周新民. 2002.中国东南部晚中生代伸展应力体制的岩石学标志.南京大学学报(自然科学版), 38(6): 737-746
    [179]孙涛,周新民,陈培荣,等. 2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义.中国科学(D辑), 33(12): 1209-1218
    [180]涂勘,解广轰, Flower MFJ,等. 1992.南海海盆新生代玄武岩的地球化学特征与Dupal型同位素异常区的成因讨论.见:刘若新主编.“中国新生代火山岩年代学与地球化学”.北京:地震出版社, 269-284
    [181]王德滋,刘昌实,沈渭洲,等. 1993.桐庐I型和相山S型两类碎斑熔岩对比.岩石学报, 9(1): 44-54
    [182]王联魁,张玉泉,刘师先. 1975.南岭诸广山花岗岩体的多次侵入活动和某些地球化学特征.地球化学, (3): 189-201
    [183]王学成. 1986.贵东岩体地质地球化学特征及339矿床成因研究(硕士学位论文).南京:南京大学地球科学系
    [184]王学成. 1989.华南产铀花岗岩内暗色岩脉的成因及其与铀成矿关系研究(博士学位论文).南京:南京大学地球科学系
    [185]王学成,章邦桐,张祖还. 1991.暗色岩脉与铀成矿关系研究.矿床地质, 10(4): 359-370
    [186]王学成,倪琦生,章邦桐,等. 1994.贵东花岗岩体内基性岩脉岩浆包裹体特征及成因机制研究.南京大学学报(地球科学), 6(1): 37-44
    [187]王岳军,廖超林,范蔚茗,等. 2004.赣中地区早中生代OIB碱性玄武岩的厘定及构造意义.地球化学, 33(2): 109-117
    [188]王正其,李子颖. 2007.幔源铀成矿作用探讨.地质论评, 53(5): 608-615
    [189]王中刚,于学元,赵振华. 1989.稀土元素地球化学.北京:科学出版社
    [190]汪云亮,张成江,修淑芝. 2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别.岩石学报, 17(3); 413-421
    [191]温志坚. 1998.地幔流体的研究进展及其与金属成矿作用的关系.国外铀金地质, 15(4): 292-297
    [192]温志坚,毛景文. 2002.超临界流体的研究进展及其对成矿地球化学研究的启示.地质论评, 48(1): 106-112
    [193]谢窦克,马荣生,张禹慎,等. 1996.华南大陆地壳生长过程与地幔柱构造.北京:地质出版社
    [194]谢国刚,李均辉,李武显,等. 1997.庐山前震旦纪岩石中锆石U-Pb法定年及其地质意义.地质科学, 32(1):110~115
    [195]谢桂青,胡瑞忠,赵军红,等. 2001.中国东南部地幔柱及其与中生代大规模成矿关系初探.大地构造与成矿学, 25(2): 179-186
    [196]谢桂青,胡瑞忠,贾大成. 2002.赣西北基性岩脉的地质地球化学特征及其意义.地球化学, 31(4): 329-33
    [197]谢桂青,彭建堂,胡瑞忠,等. 2001.湖南锡矿山锑矿区煌斑岩的地球化学特征.岩石学报, 17(4): 629-636
    [198]谢昕,徐夕生,邹海波.等. 2001.中国东南沿海中-新生代玄武岩微量元素和Nd-Sr-Pb同位素研究.岩石学报, 17: 617-628[199]肖庆辉,邓晋福,马大铨,等. 2002.花岗岩研究思维与方法.北京:地质出版社
    [200]徐文雄,王树忠,黄国龙,等. 2008.诸广岩体南部基性岩脉的地球化学特征及成因.东华理工大学学报(自然科学版), 31(2): 101-110
    [201]许美辉. 1992.福建永定地区早侏罗世双峰式火山岩及其构造环境.福建地质, (2): 115-125
    [202]许长海,周祖翼. 2001.大别造山带140 ~ 85Ma热窿伸展作用——年代学约束.中国科学(D辑), 31(11): 925-937
    [203]闫峻,陈江峰,谢智,等. 2005.长江中下游地区蝌蚪山晚中生代玄武岩的地球化学研究:岩石圈地幔性质与演化的制约.地球化学, 34(5): 455-469
    [204]袁宗信,张宗清. 1992.南岭花岗岩类岩石Sm,Nd同位素特征及岩石成因探讨.地质论评, 38(1): 1-15
    [205]翟明国,扬进辉,刘文军. 2001.胶东黄金大型矿集区及大规模成矿作用.中国科学(D辑), 31(7): 545-552
    [206]张成立,周鼎武,刘颖字. 1999.武当山地块基性岩墙群地球化学研究及其大地构造意义.地球化学, 28(2): 126-135
    [207]张贵山,温汉捷,裘愉卓. 2004.闽西晚中生代基性岩脉的地球化学研究.地球化学, 33(3): 243-253
    [208]张鸿翔,徐志方,黄智龙,等. 2000.地幔流体基本特征及成因.地质地球化学, 28(2):1-7
    [209]张理刚. 1989.成岩成矿理论与找矿.北京:北京工业大学出版社
    [210]张明,涂勘,解广轰,等. 1992.海南岛新生代玄武岩微量元素和同位素地球化学.见:刘若新主编“中国新生代火山岩年代学与地球化学”.北京:地震出版社, 246-268
    [211]张敏. 2006.粤北产铀岩体的年代学和地球化学及铀成矿机制研究(硕士学位论文).南京:南京大学地球科学系
    [212]张铭杰,王先彬,李立武. 2000.地幔流体组成.地学前缘, 7(2): 401-412
    [213]张勤文,黄怀曾. 1982.中国东部中新生代构造岩浆活化史.地质学报, 56(2): 111-122
    [214]张晓阳. 2000.湘东北文家市地区仓溪岩群Sm-Nd同位素年龄及其地质意义.湖南地质, 19(3):156-158
    [215]张彦春. 2002.诸广、贵东花岗岩中碱性地幔流体与铀成矿.铀矿地质, 18(4): 210-219
    [216]张祖还,赵乙英,章邦桐,等. 1984.铀地球化学.北京:原子能出版社
    [217]赵军红,胡瑞忠. 2001.初论地幔柱与铀成矿关系.大地构造与成矿学, 25(3): 171-178
    [218]赵振华,包志伟,张伯友. 1998.湘南中生代玄武岩类地球化学特征.中国科学(D辑), 28(增刊): 7-14
    [219]朱炳泉,等. 1998.地球科学中同位素体系理论与应用.北京:科学出版社
    [220]周新民. 2003.对华南花岗岩研究的若干思考.高校地质学报, 9(4): 556-565
    [221]周新民. 2007.南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京:科学出版社
    [222]周新民,孙涛,沈渭洲. 2004.华南中生代花岗岩-火山岩成因与构造体制转换岩浆岩研究发展战略研讨会暨第三届花岗岩成因与地壳演化学术讨论会(论文摘要集).南京: 170-172.
    [223]朱捌,凌洪飞,沈渭洲,等. 2006.粤北石土岭铀矿床同位素地球化学研究.矿床地质,25(1): 71-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700