用户名: 密码: 验证码:
小麦苗期耐旱耐低磷胁迫相关性状的QTL定位及遗传图谱的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivum L.)是我国主要的粮食作物之一,干旱和土壤缺磷都是限制小麦获得高产、稳产的重要因素,而耐旱、耐低磷胁迫都是由微效多基因控制的复杂数量性状,利用传统的细胞遗传学和数量遗传学方法难以对其进行深入研究。本研究以3个关联RIL群体为材料,对小麦苗期耐旱和耐低磷胁迫的相关性状进行条件和非条件QTL分析,以期明确与苗期耐旱和耐低磷胁迫相关的位点在染色体上的位置和效应,在QTL水平揭示耐旱和耐低磷胁迫与苗期相关性状之间的遗传关系,此研究对于小麦耐旱、耐低磷胁迫相关性状的遗传改良具有重要的意义。同时以潍麦8号和冀8901为亲本杂交获得的RIL群体为材料,采用基于PCR原理的分子标记和单核苷酸多态性(SNP)标记构建新的连锁图谱,以期将其与本实验室已构建的3个遗传图谱进行整合,为小麦农艺性状的多群体联合定位奠定基础。
     本研究获得以下主要结果:
     (1)以WL(179个株系)、WY(172个株系)、WJ(175个株系)三个关联的重组自交系群体为材料,对小麦苗期在正常水分和干旱胁迫条件下的胚芽鞘长、苗高、最大根长、根数、苗干重、茎叶干重、根干重、根冠干重比等8个表型性状进行非条件和条件QTL分析,共检测到121个位点,分布在小麦的21条染色体上,可分别解释表型变异的2.12~28.56%,71个位点为贡献率大于10%的主效QTL。其中,通过非条件QTL分析检测到87个QTL,12个QTL在两个或两个以上的群体内同时检测到,18个QTL在两种水分条件下同时检测到,38个QTL只在正常水分条件下检测到,31个QTL只在干旱胁迫条件下检测到。通过条件QTL分析共检测到34个与苗期耐旱性相关的QTL,其中8个QTL在干旱胁迫下苗期性状的非条件QTL分析中也被检测到,说明条件QTL可以有效地排除性状正常表现效应的影响,而检测到真正与耐旱性有关的位点。发现了11个与小麦幼苗性状和耐旱性表达有关的重要的QTL簇,分别位于1BL、1D、2A、2B、2D、4A、6B、7B染色体上,9个QTL簇包含两个以上的群体检测到的位点,8个QTL簇包含通过条件QTL分析检测到的与耐旱性相关的位点,说明这些QTL簇所在的染色体区段可能为调控苗期耐旱相关性状表达的重要区域。
     (2)以WL、WY、WJ三个关联重组自交系群体为材料,对小麦苗期在正常供磷和低磷胁迫条件下的苗高、最大根长、主根数、苗干重、茎叶干重、根干重、茎叶磷利用效率、根磷利用效率、苗磷利用效率、茎叶磷含量、根磷含量、苗磷含量等12个表型性状进行了非条件和条件QTL分析,共检测到159个位点,分布在小麦的21条染色体上,可分别解释表型变异的4.04~71.12%,其中,105个位点为贡献率大于10%的主效QTL。通过条件QTL分析检测到110个QTL,10个QTL在同一群体的两种磷素水平下被检测到,38个QTL只在正常供磷条件下检测到,48个QTL只在低磷胁迫条件下检测到,19个QTL被两个群体同时检测到。条件QTL分析检测到54个QTL,10个QTL在低磷胁迫的非条件QTL分析中也被检测到。说明低磷胁迫下通过性状的非条件QTL分析检测到的大部分QTL只与性状的表达有关,而与耐低磷胁迫没有直接的关系。检测到16个与小麦苗期耐低磷胁迫性状相关的重要的QTL簇,分别位于1D、2A、2B、3A、3B、4B、4D、5A、5D、6A、6B染色体上,其中4个QTL簇包含的位点来自WL、WY、WJ三个群体,10个QTL簇的位点来自两个群体,10个QTL簇既包括非条件分析检测到的位点,又包括条件分析检测到的耐低磷胁迫位点。说明这些QTL簇所在的区段可能为调控苗期耐低磷胁迫相关性状表达的重要区域。
     (3)利用包含163个株系的潍冀RIL群体进行基于PCR原理的分子标记和单核苷酸多态性(SNP)标记的遗传图谱的构建,获得了包括3916个标记,1257个位点的分子标记遗传连锁图谱,其中,基于PCR原理的分子标记有143个,SNP标记有3773个,图谱总长度2291.6cM,位点间平均遗传距离为1.82cM,由于相邻标记间距离大于50cM,在2A染色体上形成了一个连锁断点。A基组含有541个位点,全长为925.9cM,位点间平均遗传距离为1.71cM;B基组含有574个位点,全长为899.1cM,位点间平均遗传距离为1.57cM;D基组位点数最少,含有142个位点,全长为466.6cM,位点间平均遗传距离为3.29cM。
     (4)3个重要的QTL簇在小麦苗期耐旱和耐低磷胁迫这两个试验中被同时检测到,第一个QTL簇位于1D染色体的wpt67199-Xwmc429.3标记区间内,与耐旱、耐低磷胁迫、根长、根数、根磷利用效率、苗和茎叶磷含量等性状的表达有关。第二个QTL簇位于2B染色体的Xbarc55.1-wpt-3561标记区间内,与耐旱、耐低磷胁迫、根数、苗和茎叶磷利用效率、磷积累量、苗干重、茎叶干重等性状的表达有关。第三个QTL簇位于7B染色体wpt669158-wpt-666615标记区间内,与耐旱、耐低磷胁迫、茎叶、苗干重、苗磷含量、苗磷利用效率等性状的表达有关。能在不同群体,不同环境,不同生长发育阶段,不同性状的QTL分析中被检测到,说明这三个QTL簇所在的染色体区段可能对小麦的生长发育具有重要的影响,有必要对其进一步深入研究。
Wheat(Triticum aestivum L.)is one of the major food crops. Drought and phosphorusdeficiency in soil are major factors limiting high and stable yield of wheat. Drought andlow-phosphorus tolerance are all complex quantitative traits controlled by polygenes withminor effects, and it is difficult to conduct intensive study by traditional cytogenetics andquantitative genetics. Using three related F9recombinant inbred line (RIL) populations asmaterials, unconditional and conditional QTL analysis of seedling traits related to drought andlow-phosphorus tolerance in wheat were conducted in this paper. Aim was to explicit theposition and the effect of loci concerned with drought and low-phosphorus tolerance in wheat,and reveal the genetic relationship between drought and low-phosphorus tolerance andseedling traits at the QTL level,respectively. It would be important for the geneticimprovement of wheat for increasing drought tolerance and efficient utilization of phosphorus.At the same time, a new genetic map based on PCR-based molecular marker and singlenucleotide polymorphism (SNP) was constructed using another RIL population derived fromcrossing between Weimai8and Ji8901as material. Aim was to make it integrate with otherthree genetic maps constructed by our lab and take foundation for multi-population jointlyQTL analysis of agricultural traits in wheat. The main results were as follows:
     (1) Conditional and unconditional analysis of8traits of wheat seedling—coleoptilelength (CL), plant height (PH), the longest root length (RL), root number (RN), seedling dryweight (SDW), stem-and-leaves dry weight (SLDW), root dry weight (RDW), root-to-shootdry weight ratio (RSDWR)—were conducted under two water conditions using three F9RILpopulations.Total of121QTLs located on all of the21chromosomes of wheat were detected,accounting for2.12-28.56%of phenotypic variance respectively. All of them,71were majorQTLs with a contribution rate greater than10%. Eighty seven QTLs were detected byunconditional QTL analysis. All of them,12were detected in more than one population,18were simultaneously detected under the two water conditions,38were detected under onlynormal water condition, and31were detected only under drought stress condition. Total34 QTL related to drought tolerance of seedling were detected. Only8QTL were also detectedby unconditional analyses of the seedling traits under drought stress condition. It indicatedthat conditional QTL analysis could exclude effectively the influence of normal expressioneffect of trait to detect QTL really related to drought tolerance. Eleven important QTL clusterslocated on chromosome1BL,1D,2A,2B,2D,4A,6B, and7B were discoved. All of them,9included QTLs detected in more than one population, and8included QTLs related to droughttolerance by conditional QTL analysis. It indicated that these chromosomal intervals withQTL clusters should be important areas controlling the expression of seedling traits related todrought tolerance.
     (2) Conditional and unconditional QTL analyses of the12traits of wheatseedlings—plant height (PH), the longest root length (RL), root number (RN), seedling dryweight (SDW), stem-and-leave dry weight (SLDW), root dry weight (RDW), stem and leavephosphorus utilization efficiency (SLPU), root phosphorus utilization efficiency (RPU), shootphosphorus utilization efficiency (SPU), stem and leave phosphorus content (SLPC), rootphosphorus content (RPC), shoot phosphorus content (SPC)—were conducted under normalphosphorus and low-phosphorus conditions using three F9recombinant inbred line (RIL)populations. Total of159QTLs located on the21chromosomes of wheat were detected,accounting for4.04-71.12%of phenotypic variance respectively. All of them,105were majorQTLs with a contribution rate greater than10%. One hundred and ten QTLs were detected byunconditional QTL analysis. Among of these QTLs,19were detected simultaneously in twopopulations,10were detected simultaneously under two phosphorus conditions,38weredetected only under normal phosphorus condition, and48were detected underlow-phosphorus condition. Total of54QTLs related to low-phosphorus tolerance of seedlingwere detected. Only10QTLs were also detected by unconditional analysis of seedling traitsunder low-phosphorus condition. It indicated that most of the QTLs detected by unconditionalQTL analysis of seedling traits under low-phosphorus condition were only concerned withexpression of these traits, but not concerned directly with low-phosphorus tolerance. Sixteenimportant QTL clusters located on chromosome1D,2A,2B,3A,3B,4B,4D,5A,5D,6A, and6B were discovered. All of them,4included loci detected in WL, WY, and WJ threepopulations,10included loci detected in two populations, and10included loci related tolow-phosphorus tolerance. It indicated that these chromosome intervals with these QTLclusters should be important areas controlling the expression of seedling traits related tolow-phosphorus tolerance.
     (3) A genetic map comprising3916marker and1257loci were constructed based on PCR-based and SNP molecular markers using the recombinant inbred line (RIL) populationderived from crossing of Weimai8and Ji8901. The genetic map spaned2291.6cM, with anaverage density of one marker per1.82cM. Due to the linkage distance>50cM between theadjacent loci, there was a linkage gaps in chromosome2A. A genome included541loci andspaned925.9cM, with an average density of one locus per1.71cM. B genome included574loci and spaned899.1cM, with an average density of one locus per1.57cM. D genomeincluded142loci and spaned466.6cM, with an average density of one locus per3.29cM.
     (4) Three important QTL clusters were detected simultaneously in both drought toleranceand low-phosphorus tolerance trials of wheat seedling. The first QTL cluster located onchromosome1D between wpt-67199and Xwmc429.3, related to drought tolerance,low-phosphorus tolerance, RL, RN, RPUE, SPC, and SLPC. The second QTL cluster locatedon chromosome2B between Xbarc55.1and wpt-3561, related to drought tolerance,low-phosphorus tolerance, RN, SPUE, SLPUE, SPC, SLPC, SDW, and SLDW. The thirdQTL cluster located on chromosome7B between wpt-669158and wpt-666615, related todrought tolerance, low-phosphorus tolerance, SPUE, SPC, SDW, and SLDW. These threeQTL clusters could be detected by QTL analyses of different population, differentenvironment, different growth and development stage, and different trait, which indicated thatthese three QTL clusters could have significant influence in the growth and development ofwheat and it is necessary to conduct more intensive study.
引文
曹卫东,贾继增,金继运.小麦磷素利用效率的基因位点及其交互作用[J].植物营养与肥料学报.2001,7(3):285-292
    曹红星,张正斌,孙程旭,徐萍,赵鸿彬.小麦幼苗磷利用效率及相关基因的染色体定位[J].西北植物学报.2009,29(12):2429-2436
    陈海梅,李林志,卫宪云,李斯深,雷天东,胡海州,王洪刚,张宪省.小麦EST-SSR标记的开发、染色体定位和遗传作图[J].科学通报,2005,50(20):2208-2216
    崔法,王洪刚.高密度小麦遗传连锁图谱构建及产量相关性状QTL定位[D].山东农业大学博士毕业论文,2011
    郭营,李斯深.小麦不同矿质营养处理下苗期、产量和籽粒性状的QTL分析[D].山东农业大学博士毕业论文,2011
    崔世友,耿雷跃,孟庆长,喻德跃.大豆苗期耐低磷性及其QTL定位[J].作物学报,2007,33(3):378-3831
    崔世友,耿雷跃.大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析[J].作物学报,2007,33(5):744-750
    曹卫东,贾继增,金继运.小麦磷素利用效率的基因位点及其交互作用[J].植物营养与肥料学报,2001,7(3):285-292
    耿雷跃,崔士友,张丹,等.大豆磷效率QTL定位及互作分析[J].大豆科学,2007,26(4):461-466
    洪义欢,肖宁,张超,苏琰,陈建民. DArT技术的原理及其在植物遗传研究中的应用[J].遗传,2009,31(4):359-364
    郝转芳,苏治军.基于SNP标记的关联分析在玉米耐旱研究中的应用[J].作物杂志,2009(6):1-7
    何慈信,朱军,严菊强, Mebrouk Benmoussa,吴平.水稻穗干物质重发育动态的QTL定位[J].中国农业科学,2000,33(1):24-32
    黎裕,王天宇,石云素等.玉米抗旱性的QTL分析研究进展和发展趋势[J].干旱地区农业研究,2004,22(1):32-39
    刘建中,李滨,李玉京,姚树江,李继云,李振声.普通小麦各染色体组有效利用土壤磷基因的遗传分析[J].西北植物学报,1999,19(l):1-6
    李玉京,李滨,李继云,李振声.植物有效利用土壤磷特性的遗传学研究进展[J].遗传,1998,20(3):38-41
    李振兴,倪中福,彭惠茹,刘志勇,许胜宝,刘刚,孙其信.小麦根系性状对磷胁迫响应QTL定位[J].自然科学进展,2007,17(10):1352-1360
    李卫华,尤明山,刘伟,徐杰,刘春雷,李保云,刘广田.小麦GMP含量发育动态的QTL定位[J].作物学报,2006,32(7):995-1000
    李春寿,叶胜海.混合分组分析法在作物基因定位上的研究进展[J].上海农业学报,2002,18(3):24-27
    李兆波,吴禹,王岩. SNP标记技术及其在农作物育种中的应用[J].辽宁农业职业技术学院学报,2010,12(3):8-9
    廖祥政,王瑾,周荣华,任正隆,贾继增.发掘人工合成小麦中千粒重QTL的有利等位基因[J].作物学报,2008,34(11):1877-1884
    彭勃,王阳,李永祥,刘成,张岩,刘志斋,谭巍巍,王迪,孙宝成,石云素,宋燕春,王天宇,黎裕.玉米籽粒产量与产量构成因子的关系及条件QTL分析[J].作物学报,2010,36(10):1624-1633
    王健康.数量性状基因的完备区间作图方法[J].作物学报,2009,35(2):239-245
    吴云鹏,张业伦,肖永贵,阎俊,张勇,张晓科,张利民,夏先春,何中虎.小麦重要品质性状的QTL定位[J].中国农业科学,2008,41(2):331-339
    邢永忠,徐才国.作物数量性状基因研究进展[J].遗传,2001,23(5):498-502
    严建兵,汤华,黄益勤,石永刚,李建生,郑用琏.不同发育时期玉米株高QTL的动态分析[J].科学通报,2003,48(18):1959-1964
    周淼平,任丽娟,张旭,余桂红,马鸿翔,陆维忠.小麦产量性状的QTL分析[J].麦类作物学报,2006,26(4):35-40
    周淼平,张旭,任丽娟.用JoinMap3.0初步构建小麦遗传连锁图[J].江苏农业学报,2003,19(3):133-138
    朱秀志,彭正松,向成华. SNPs分析技术及其在小麦遗传育种中的应用研究[J].天津农业科学,2005,11(1):12-15
    张坤普,徐宪斌,田纪春.小麦籽粒产量及穗部相关性状的QTL定位[J].作物学报,2009,35(2):270-278
    张立平,葛秀秀,何中虎,王德森,闫俊,夏先春, Mark W Sutherland.普通小麦多酚氧化酶活性的QTL分析[J].作物学报,2005,31(1):7-10
    张立平,阎俊,夏先春,何中虎, Sutherland M. W..普通小麦籽粒黄色素含量的QTL分析[J].作物学报,2006,32(1):41-45
    Akbari M., Wenzl P., Caig V., Carling J., Xia L., Yang S., Uszynski G., Mohler V.,Lehmensiek A., Kuchel H., Hayden MJ., Howes N., Sharp P., Vaughan P., Rathmell B.,Huttner E., Kilian A. Diversity arrays technology (DArT) for high-throughput profiling ofthe hexaploid wheat genome. Theor Appl Genet,2006,113:1409-1420
    Alheit K., Reif J., Maurer HP., Hahn V., Weissmann E., Miedaner T., Wurschum T.Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on ahigh-density DArT marker consensus genetic linkage map. BMC genomics2011,12:380
    Alpert K. B., Tanksley S. D. High-resolution mapping and isolation of a yeast artificialchromosome contig containing fw2.2: A major fruit weight quantitative trait locus intomato [J]. Proc Natl Acad Sci.,1996,93:15503-15507
    Ammiraju J. S. S, Dholakia B. B., Santra D.K., Singh H., Lagu M. D., Tamhankar S. A.,Dhaliwal H. S., Rao V. S., Gupta V.S., Ranjekar P. K. Identification of inter simplesequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet,2001,102:726-732
    Bernard M. L., Sourdille P., Cadalen T. The Courtot×Chinese Spring wheat population and itsinterest for QTL detection [A]. US Department of Agriculture. Plant and Animal GenomeⅦ Conference[C].Town and Country Hotel, San Diego,CA, January,2000.232
    Beebe S. E., Rojas-Pierce M., Yan X. L. Quantitat ive trait loci for root architecture t raitscorrelated with phosphorus acquisition in common bean. Crop Sci.,2006,46:413-423
    Buckler E. S., Holland J. B., Acharya C. B., Brown P. J., Browne C., Ersoz E., Flint-Garcia S.,Garcia A., Glaubitz J. C., Goodman M. M., Harjes C., Guill K., Kroom D. E., Larsson S.,Lepak N. K., Li H. H., Mitchell S. E., Pressoin G., Peiffer J. A., Rosas M. O., RochefordT. R., Romay M. C., Romero S., Salvo S., Villeda H. S., Sliva H. S. D., Sun Q., Tian F.,Upadyayula N., Ware D., Yates H., Yu J., Zhang Z., Kresovich S., McMullen M D. Thegenetic architecture of maize flowering time. Science,2009,325:714-718
    Blanco A., Giovanni C.. Quantitative trait loci influencing grain protein content in tetraploidwheats. Plant Breeding,1996,115(5):310-316
    Blanco A., Simeone R., Gadaleta A.. Detection of QTL for grain protein content in durumwheat. Theo Appl Genet,2006,112:1195-1204
    B rner A., Schumann E., Fürste A., C ter H., Leithold B., R der MS., Weber WE.. Mappingof quantitative trait locus determining agronomic important characters in hexaploid wheat(Triticum aestivum L.). Theor Appl Genet,2002,105:921-936
    Bochev B. et al. Genetic basis of mineral nutrition in Triticum aeshvum. Ⅱ. Effect of thecytoplasm on the absorption of nutrient elements. In: M. R. Saric and B. C. Loughman.eds. Genetic aspects of plant nutrition. Martinus Nijhoff Publishers,1983,429-434
    Chao S., Sharp P. J.,Worl A. J.,Warham E. J., Koebner R. M. D. and Gale M. D.. R F LP-based genetic maps of wheat homoeologous group7chromosomes.Theor Appl Genet,1998,495-504
    Cui S.Y., Geng L. Y., Meng Q. C., Yu D. Y.. QTL mapping of phosphorus deficiencytolerance in soybean (GlycineMax. L) during seedling stage. Acta Agron. Sin.,2007,33(3):378-383
    Cattivelli, L., Delogu, G., Terzi, V. and Stanca, A. M.. Progress in barley breeding. In: GeneticImprovement of Field Crops. G. A. Slafer (Eds.) Marcel Dekker, New York,1994, pp.95-181
    Chen J. Y., Xu L., Cai Y. L., Xu J.. QTL mapping of phosphorus efficiency and relat ivebiologic characteristics in maize (Zea mays L.) at two sites. Plant Soil,2008,313:251-266
    Campbell K. G., Bergmem C. J., Gualberto D. G., Anderson J. A., Giroux M. J., Hareland G.,Fulcher R. G., Sorrells M. E., Finney P. L.. Quantitative trait loci associated with kerneltraits in asoft×hard wheat cross.1999, Crop Sci.,39:1184-1195
    Cadalen T., Sourdille P., Charmet G., Tixier M. H., Gay G.,Boeuf C., Bernard S., Leroy P.,Bernard M. Molecular markers linked to genes affecting plant height in wheat using adouble haploid population.Theor. Appl. Genet.,1998,96:933-940
    Cosgrove D. J., Li Z. C.. Role of expansion in cell enlargement of oat coleoptiles. PlantPhysiol,1993,103:1321-1328
    Cui F., Li J., Ding A. M., Zhao C. H., Wang L., Wang X. Q., Li S. S., Bao Y. G., Li X. F., FengD. S., Kong L. R., Wang H. G. Conditional QTL mapping for plant height with respect tothe length of the spike and internode in two mapping populations of wheat. Theor ApplGenet,2011,122:1517-1536
    Cuthbert J. L.,Somers D. J., Br l-Babel A. L., Brown P. D., Crow G. H. Molecular mappingof quantitative trait loci for yield and yield components in spring wheat (Triticumaestivum L.) Theor Appl Genet,2008,117:595-608
    Dholakia B. B., Ammiraju J. S. S., Singh H., Lagu M. D., R rder M. S., Rao V. S.. Molecularmarker analysis of kernel size and shape in bread wheat. Plant Breeding,2003,122:392-395
    Elouafi I. and Nachit M.. A genetic linkage map of the Durum×Triticum dicoccoidesbackcross population based on SSRs and AFLP markers and QTL analysis for millingtraits. Theoretical and Applied Genetics,2004,108:401-413
    Ellis R. H.. Seed and seedling vigor in relation to crop growth and yield. Plant Growth Regul,1992,11:249-255
    Fullon T. M., Grandillo S., Bech-Bunn T., et al. Advanced backcross QTL an alysis of aLycopersicon esculentumx and Lycopersicon parviflorum cross. Theor Appl Genet.,2000,100:1025-1042
    Francki M. G., Walker E., Crawford A. C., Broughton S., Ohm H. W., Barclay I., Wilson R.E., McLean R. Comparison of genetic and cytogenetic maps of hexaploid wheat(Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics,2009,281:181-191
    Geng L. Y., Cui S. Y., Zhang D. et al. QTL mapping and epist asis analysis for P-efficiency insoybean (Glycine Max L.). Soybean Sci.,2007,26(4):461-466
    Graner A., Jahoor A., Schondelmaier J., Siedler H., Pillen K., Fischbeck G., Wenzel G. andHerrmann R. G. Construction of an RFLP map of barley. Theor Appl Genet,1991,83:250-256
    Guo L. B., Xing Y. Z., Mei H. W., Xu C. G., Shi C. H., Wu P., Luo L. J.. Dissection ofcomponent QTL expression in yield formation in rice. Plant Breed,2005,124:127-132
    Hai L., Guo H. J., Wagner C., Xiao S. H.. Wolfgang Friedt Genomic regions for yield andyield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested undervarying environments correspond to QTL in widely different wheat materials. PlantScience,2008,175:226-232
    Hao S. R., Guo X. P., Wang W. M., Zhang L. J., Wang Q., Wang Q. M., Liu Z. P.. Effects ofwater stress in tillering stage and rewatering on rice root growth. Agric Res Arid Areas,2007,25(1):149-152
    Hai L., Guo H. J., Wagner C., Xiao S. H.. Wolfgang Friedt Genomic regions for yield andyield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested undervarying environments correspond to QTL in widely different wheat materials. PlantScience,2008,175:226-232
    Han Y. P, David C.. BAC-end sequence-based SNPs and Bin mapping for rapid integration ofphysical and genetic maps in apple. Genomics,2009,(93):282-288
    Hamada A., Nitta M., Nasuda S., Kato K., Fujita M., Matsunaka H. et al. Novel QTL forgrowth angle of seminal roots in wheat(Triticum aestivum L.) Plant Soil.2012,354:395-405
    Huang X. Q., C ster H., Ganal M. W., R der M. S.. Advanced backcross QTL analysis for theidentification of quantitative trait loci alleles from wild relatives of wheat (Triticumaestivum L.). Theor Appl Genet,2003,106:1379-1389
    Huang X. Q., Kempf H., Ganal M. W., R der M. S.. Advanced backcross QTL analysis inprogenies derived from a cross between a German elite winter wheat variety and asynthetic wheat (Triticum aestivum L). Theor Appl Genet,2004,109:933-943
    Huang X. Q., Cloutier S., Lycar L., Radovanovic N., Humphreys D. G., Noll J. S., Somers D.J., Brown P. D.. Molecular detection of QTL for agronomic and quality traits in a doubledhaploid population derived from two Canadian wheats (Triticum aestivum L.). TheorAppl Genet,2006,113:753-766
    Hu S. P., Yang H., Zou G. H., Liu H. Y., Liu G. L., Mei H. W., Cai R., Li M. S., Luo L. J..Relationship between coleoptile length and drought resistance index of rice and theirQTL. Chin Rice Sci.,2006,20(1):19-24
    Huang X., Feng Q., Qian Q., et al. High-throughput genotyping by whole-genomeresequencing [J]. Genome Research,2009,(19):1068
    Hu B., Wu P., Liao C. Y. et al. QTL and epistasis underlying activity of acid phosphataseunder phosphorus sufficient and deficient condition in rice (Oryza sat iva L.). Plant Soil,2001,230:99-105
    Jaccoud D., Peng K., Feinstein D., Kilian A.. Diversity Arrays: a solid state technology forsequence information independent genotyping. Nucleic Acids Res,2001,29(4):25
    Jing R. L., Hu R. H., Zhu Z. H.. A study on heritabilities of seedling morphological traits anddrought resistance in winter wheat cultivars of different genotype.Acta Bot Boreali-OccidSin,1997,17(2):152-157
    Jiang H., Jiang L., Guo L.B., Gao Z.Y., Zeng D.L., Zhu L.H., Liang G.H. and Qian Q..Conditional and unconditional mapping of quantitative trait loci underlying plantheightand tiller number in rice (Oryza sativa L.) grown at two nitrogen. Progress inNatural Science,2008,18:1539-1547
    Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via intervalmapping[J]. Genetics,1994,136:1447-1455
    Keightley P. D., Blfield G.. Detection of quantitative trait loci from frequency changes ofmarker alleles under selection. Genetical Research,1993,62:195-203
    Korzun V., R der M. S., Ganal M. W., et al. Genetic analysis of the dwarfing gene(Rht8)inwheat. Part I. Molecular mapping of Rht8on the short arm of chromosome2D of breadwheat (Triticum aestivum L.). Theor Appl Genet,1998,96:1104-1109
    Kumar N., Kulwal P. L., Balyan H. S., Gupta P. K.. QTL mapping for yield and yieldcontributing traits in two mapping populations of bread wheat. Mol Breeding,2007,19:163-177
    Kristen L., Kump, Peter J., Bradbury.. Genome-wide association study of quantitativeresistance to southern leaf blight in the maize nested association mapping population [J].Nature Genetic,2011,43(2):163-168
    Kanazin V., Hope T., Deven S.. Discovery and assay of single-nucleotide polymorphisms inbarley (Hordeum ulgare). Plant Molecular Biology,2002,48(5):529-537
    Kaeppler S. M., Parke J. L., Mueller S. M. et al. Variat ion among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness toarbuscular mycorrhizal fungi. Crop Sci.,2000,40:358-3641
    Landjeva S., Neumann K., Lohwasser U., and Borner A. Molecular mapping of genomicregions associated with wheat seedling growth under osmotic stress. Biologia Plantarum.2008,52:259-266
    Liu X. L., Li R. Z., Chang X. P. and Jing R. L., Mapping QTL for seedling root traits in adoubled haploid wheat population under different water regimes. Euphytica,2013,189:51-66
    Li Y. J., Liu J. Z., Li B., Li J. Y., Yao S. J.,Li Z. S.. Chromosomal control of the tol erancephosphorus deficiency in genome of Triticum aestivum Chinese Spring. Acta GeneticaSinica,1999,26(5):529-538(in Chinese)
    Li, S.S., Jia, J.Z., Wei, X.Y., Zhang, X.C., Chen, H.M., Sun, H.Y., Fan, Y.D., Li, L.Z., Zhao,X.H., Lei,T.D., Xu, Y.F., Jiang, F.S., Wang, H.G., Li, L.H. A interval genetic map andQTL analysis for yield traits in wheat. Mol Breeding,2007,20:167-178
    Li Z. X., Ni Z. F., Peng H. R.,Liu Z. Y.,Nie X. L., Xu S. B.,Liu G.,Sun Q. X.. Molecularmapping of QTL for root response to phosphorus deficiency at seedling stage in wheat(Triticumaestivum L).Prog Nat Sci,2007b,17:1177-1184
    Luigi C., Paolo B., Cristina C., Natale D. F., Primetta F., Maria G. et al. Chromosome regionsand stress-related sequences involved in tolerance to abiotic stress in Triticeae. PlantMolecular Biology.2002,48:649-665.
    Liang D., Tang J. W., Pena R. J., Singh R., He X. Y., Shen X. Y., Yao D. N., Xia X. H., He Z.H.. Characterization of CIMMYT bread wheats for highand low-molecular weightglutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC andmolecular markers. Euphytica,2010,172:235-250
    Liu D. C., Gao M. Q., Guan R. X., Li R. Z., Cao S. H., Guo X. L., Zhang A. M. Mappingquantitative trait loci for plant height in wheat(Triticum aestivum L.) using a F2:3population. Acta Genet Sinic,2002,29:706-71
    Liu G. F., Yang J., Xu H. M., Hayat Y., Zhu J.. Genetic analysis of grain yield conditioned onits component traits in rice (Oryza sativa L.). Australian Journal of Agricultural Research,2008a,59:189-195
    Li W. L., Nelson J. C., Chu C. Y., et al. Chromosomal locations and genetic relationships oftiller and spike characters in wheat. Euphytica,2002,125:357-366
    Li H. H., Ye G., Wang J.. A modified algorithm for the improvement of composite intervalmapping. Genetics,2007,175:361-374
    Li H. H., Bradbury P., Buckler E. S., Wang J. K.. Joint QTL linkage mapping formultiple-cross mating design sharing one common parent. PloS One,2011,6(3). doi:10.1371|journal.pone.0017573
    Li H., Ribaut J. M., Li Z., Wang J.. Inclusive composite interval mapping (ICIM) for digenicepistasis of quantitative traits in biparental populations. Theor Appl Genet,2008,116:243-260
    Li G., Quiros C. F.. Sequence-related amplified polymorphism (SRAP), a new marker systembased on a simple PCR reaction: its application to mapping and gene tagging in Brassica.Theor Appl Genet,2001,103:455-461
    Li Y L., Dong Y. B., Cui D. Q., Wang Y. Z., Liu Y. Y., Wei M. G., Li X. H. The geneticrelationship between popping expansion volume and two yield components in popcornusing unconditional and conditional QTL analysis. Euphytica,2008,162:345-351
    Mares D. J, Campbell A. W.. Mapping components of flour and noodle colour in Australianwheat. Australian Journal of Agricultural research,2001,52(11):1297-1309
    Marza F, Bai G. H., Carver B. F., Zhou W. C.. Quantitative trait locus for yield and relatedtraits in the wheat population Ning7840×Clark. Theor Appl Genet,2006,112:688-698
    McCartney C. A., Somers D. J., Humphreys D. G., Lukow O., Ames N., Noll J., Cloutier S.,McCallum B. D. Mapping quantitative trait loci controlling agronomic traits in the springwheat cross RL4452בAC Domain’. Genome,2005,48:870-883
    Mei Y. J., Ye Z. H., Xu Z. Genetic impacts of fiber sugar content on fiber characters in SeaIsland cotton, Gossypium barbadense L. Euphytica,2007,154:29-39
    Michelmore R. M., Paran I., Kesseli R. V. Identification of markers linked todisease-resistance genes by bulked segregant regions by using segregating populations.Proceedings of the National Academy of Sciences of the United States of America,1991,88:9828-9832
    Moreno G. J.. Genetic models to estimate additive and non-additive effects ofmarker-assocoated QTL using mutiple regression techniques.Theoretical and AppliedGenetics,1992,85:435-444
    Matsui T., Inanaga S., Sugimoto Y., and Nakata N.. Chromosomal location of genescontrolling final coleoptile length in wheat using chromosome substitution lines. WheatInform Serv.1998,87:22-26
    Marshall E.. Snipping away at genome patenting. Science,1997,277:1752-1753.
    Mantovani P., Maccaferri M., Sanguineti M. C., Tuberosa R., Catizone I., Wenzl P., ThomsonB., Carling J., Huttner E., Ambrogio E. D., Kilian A.. An integrated DArT-SSR linkagemap of durum wheat. Mol Breeding,2008,22:629-648
    Nasu S., Suzuki J., Ohta R., et al. Search for and analysis of single nucleotide polymorphismsin rice and establishment of SNP markers [J]. DNA Res,2002,(9):163-171.
    Ni J. J., Wu P., Senadhira D., Huang N.. Mapping QTL for phosphorus deficiency tolerance inrice (Oryza sativa L.)[J]. Theor. Appl.Genet.1998,97:1361-1369
    Peleg Z., Saranga Y., Suprunova T., Ronin Y. W., R der M. S., Kilian A., Korol A. B.,Fahima T.. High-density genetic map of durum wheat×wild emmer wheat based on SSRand DArT markers. Theor Appl Genet,2008,117:103-115
    Penner. An AFLP based genome map of wheat (Triticum aestivum)[A]. US Department ofAgriculture. Plant and Animal Genome VI Conference [C]. San Diego CA January,1998.
    Parker G. D., Chalmers K. J., Rathjen A. J., Langridge P. Mapping loci associated with flourcolour in wheat (Triticum aestivum L.). Theor Appl Genet,1998,97:238-245
    Paran I., Michelmore R. W.. Development of reliable PCR based markers linked to downmildew resistance genes inlettuce. Theor Appl Genet,1993,85:985-993
    Perretant M. R., Cadalen T., Charmet G., Sourdille P., Nicolas P., Boeuf C., Tixier M. H.,Branlard G., Bernard S., Bernard M.. QTL analysis of bread-making quality in wheatusing a doubled haploid population. Theor Appl Genet,2000,100:1167-1175
    Prasad M., Varshney R K., Kumar A., Balyan H. S., Sharma P. C., Edwards K J., H-Singh D.,Haliwal H S., Roy J K., Gupta P K. A microsatellite marker associated with a QTL forgrain protein content on chromosome arm2DL of bread wheat. Theor Appl Genet,1999,99:341-345
    Quarrie S. A., Steed A., Calestani C., et al. A high-density genetic map of hexaploidwheat(Triticum aestivum L.)from the cross Chinese Spring×SQ1and its use to compareQTL for grain yield acrossa range of environments.Theor Appl Genet.,2005,10:865-880
    Ray J D., Yu L., McCouch S R., Champoux M C. Mapping quant it ative trait loci associat edwith root penetration ability in rice (Oryza sativa L.). Theor. Appl. Genet.,1996,92:627-636
    Raghothama K. G. Phosphat e acquisit ion. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1999,50:665-693
    Reiter R. S., Coors J. G., Sussman M. R., Gabelman W. H.. Genetic analysis of t olerance tolow-phosphorus stress in maize using restriction fragment length polymorphisms. Theor.Appl. Genet.,1991,82:561-568
    Ramya P., Chaubal A., Kulkarni K., Gupta L., Kadoo N., Dhaliwal H. S., Chhuneja P., LaguM., Gupta V. QTL mapping of1000-kernel weight, kernel length, and kernel width inbread wheat (Triticum aestivum L.). J Appl Genet,2010,51(4):421-429
    Rebetzke G. J., Ellis M. H., Bonnett D. G. R., et al. Molecular mapping of genes for coleoptilegrowth inbread wheat(Triticum aestivum L.). Theor Appl Genet,2007,114:1173-1183
    Rebetzke G. J., Richards R. A., Fischer V. M., et al. Breeding long coleoptile, reduced heightwheats [J].Euphytica,1999,106:159-168
    Rebetzke G. J., Appels R., Morrison A., et al. Quantitative trait loci on chromosome4B forcoleoptile length and early vigour in wheat(Triticum aestivum L.). Aust J Agric Res,2001,52:1221-1234
    Ruiz M., Rodringuez-Quijano M., Relaciones entre las subunidades de glutenidad de alto pesomolecular (HMW), distintas punctuaciones Glu-l y varios parametros de calidad en trigoharinero.Invest Agrar-Prod Prot Veg,1995,10:15-29
    Schlegel R., Meinel A.. A quantitative trait locus (QTL) on chromosome arm1RS of rye andits effect on yield performance of hexaploid wheat. Cereal Res. Commun.1994,22:7-13
    Schneider K. A., Brothers M. E., Kelly J. D.. Marker-assisted selection to improve droughtresistance in common bean. Crop Sci.,1997,37:51-60
    Sears E. R.. The aneuploids of common wheat. Univ M Res Bull,1954,572:1-58
    Shah M. M., Gil K. S., Baenziger P. S., et al. Molecular mapping of loci for agronomic traitson chromosome3A of breadwheat. Crop Sci,1999,39:1728-1732
    Smith A. B., Cullis B. R.. The statistical analysis of quality traits in plant improvementprograms with application to the mapping of milling yield in wheat. Auctralia Journal ofAgricultural Research,2001,52(11):1207-1219
    Sun X. Y., Wu K., Zhao Y., Kong F. M., Han G. Z., Jiang H. M., Huang X. J., Li R. J., Wang H.G., Li S. S.. QTL analysis of kernel shape and weight using recombinant inbred lines inwheat. Euphytica,2009,165:615-624
    Su J Y., XiaoY M., Li M., etal. Mapping QTL for phosphorus deficiency tolerance at wheatseedling stage. Plant and soil,2006,281:25-36
    Staub J E., Serquen F C., Gupta M. Genetic markers, map construction and their application inplant breeding. Hort Sciences,1996,31(5):729-741
    Stuber C. W. Mapping and maniqulating quantitative traits in maize [J].Trends Genet,1995,11:477-488
    Stephenson P., Bryan G., Kirby G., et al. Fifty new microsatellite loci for the wheat genetic
    map [J]. Theor. Appl. Genet.,1998,97:946-949
    Somers D. J., Isaac P. and Eduards K.. A high-density microsatellite consensusmap for breadwheat (Trrtrcurn aestivurn L.). Theor. Appl. Genet.2004,109:1105-1114
    Su J. Y., Xiao Y. M., Li M., Liu Q. Y., Li B., Tong Y. P., Jia J. Z., Li Z. S.. Mapping QTL forphosphorus-deficiency tolerance at wheat seedling stage. Plant Soil,2006,281:25-36
    Su J. Y., Zheng Q., Li H. W., Li B., Jing R. L., Tong Y. P., Li Z. S.. Detection of QTL forphosphorus use efficiency in relation to agronomic performance of wheat grown underphosphorus sufficient and limited conditions. Plant Sci,2009,176:824-836
    Torada A., Koike M., Mochida K., Ogihara Y.. SSR-based linkage map with new markersusing an intraspecific population of common wheat.Theor Appl Genet,2006,112:1042-1051.
    Trethowan R M., Singh R P., Espino J H., Crossaa J., van Ginkela M. Coleoptile lengthvariation of near-isogenic Rht lines of modern CIMMYT bread and durum wheats. FieldCrops Res,2001,70:167-176
    Varshney R K., Prasad M., Roy J K., Kumar N., Harjit S. Dhaliwal H. S., Balyan H. S., GuptaP. K.. Identification of eight chromosomes and a microsatellite marker on1AS associatedwith QTL for grain weight in bread wheat. Theor Appl Genet,2000,100:1290-1294
    Vos P., Hogers R., Bleeker M., Reijans M., Van der Lee T., Hornes M., Frijters A., Pot J.,Peleman J., Kuiper M., Zabeau M.. AFLP: a new technique for DNA fingerprinting.Nucleic Acids Res,1995,23:4407-4414
    Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A. and Tingey S.V.. DNApolymorphisms amplified by arbitrary primers are useful as genetic markers. NucleicAcids Res.,1990,18:6531-6535
    Wissuwa M., Yano M., Ae N.. Mapping of QTL for phosphorus-def-iciency tolerance in rice(Oryza sativa L.). Theor. Appl. Genet.,1998,97:777-7831
    Wang R. X., Hai L., Zhang X. Y., You G. X., Yan C. S., Xiao S. H.. QTL mapping for grainfilling rate and yield-related traits in RILs of the Chinese winter wheat populationHeshangmai×Yu8679. Theor Appl Genet,2009,118:313-325
    Wang J. S., Liu W. H., Wang H., Li L. H., Wu J., Yang X. M., Li X. Q., Gao A. N.. QTLmapping of yield-related traits in the wheat germplasm3228. Euphytica,2010,177:277-292
    Wang Z. H., Wu X. S., Ren Q., Chang X. P., Li R. Z., Jing R. L.. QTL mapping fordevelopmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica,2010,174:447-458
    Wang W., Zou Q., Yang X. H., Peng T., Li Y. Studies on the relativity among coleoptile length,osmotic adjustment and yield in wheat under water stress. Chin Bull Bot,1997,14(suppl):55-59
    Wen Y. X., Zhu J.. Multivariable conditional analysis for complex trait and its components.Acta Genet Sin,2005,32:289-296
    Williams J., Kubelik A., Livak K., Rafalski J., Tingey S.. DNA polymorphisms amplified byarbitrary primers are useful as genetic markers. Nucl Acid Res,1990,18:6531-6535
    Wu X. S., Wang Z. H., Chang X. P., Jing R. L.. Genetic dissection of the developmentalbehaviours of plant height in wheat under diverse water regimes. J Exp Bot,2010,61:2923-2937
    Xu J., Zhao Q., Du P., et al. Developing high through put genotyped chromosome segmentsubstistution lines based on population whole-genome re-sequencing in rice (Oryza sativaL.). BMC Genomics,2010,(11):625
    Yang G. H., Wang W. H., Song H. X., Li Y. Q., Qi H., Wang T. Y., Zhao J. R.. Analysis ofdrought resistance of maize hybrids in rain-fed farming.Crops,2009,(5):78-81
    Ye Z. H., Wang J., Liu Q., Zhang M. Z., Zou K. Q., Fu X. S.. Genetic relationships amongpanicle characteristics of Rice (Oryza sativa L.) using unconditional and conditional QTLanalyses. J. Plant Biol.,2009,52:259-267
    Yan J. Q., Zhu J., He C. X., Benmoussa M., Wu P.. Molecular dissection of developmentalbehavior of plant height in rice (Oryza sativa L.). Genetics Society of America,1998,150:1257-1265
    Yan X. L., Liao H., Beebe S. E. et al. QTL mapping of root hair and acid exudation traits andtheir relationship to phosphorus uptake in common bean. Plant Soil,2004,265:17-29
    Zhu J. M., Mickelson S. M., Kaeppler S. M., Lynch J. P.. Detect ion of quant it ative trait locifor seminal root traits in maize (Zea mays L.) seedlings grown under differentialphosphorus levels. Theor. Appl. Genet.,2006,113:1-10
    Zhu J. M., Kaeppler S. M., Lynch J. P.. Mapping of QTL controlling root hair length in maize(Zea mays L.) under phosphorus defi ciency. Plant Soil,2005,270:299-310
    Zeng Z. B.. Precision mapping of quantitative trait loci.Genetics,1994,136:1457-1468
    Zhang K. P., Fang Z. J., Liang Y., Tian J. C.. Genetic dissection of chlorophy Ⅱcontent atdifferent growth stages in common wheat. Journal of Genetics,2009,88:183-189
    Zhang K. P., Zhao L., Tian J. C., Chen G. F., Jiang X. L., Liu B.. A Genetic Map ConstructedUsing a Doubled Haploid Population Derived from Two Elite Chinese Common WheatVarieties. Journai of integrative plant biology,2008,50(8):941-950
    Zhao J Y., Becker H. C., Zhang D. Q., Zhang Y. F., Ecke W. G.. Conditional QTL mapping ofoil content in rapeseed with respect to13protein content and traits related to plantdevelopment and grain yield. Theor Appl Genet,2006,113:33-38
    Zhou X. G., Jing R. L., Hao Z. F., Chang X. P., Zhang Z. B.. Mapping QTL for seedling roottraits in common wheat. Sci Agric Sin,2005,38(10):1951-1957
    Zou Q., Wang W., Yang X. H.. Identification of drought resistance in winter wheat—the newmethod of the coleoptile length under water stress.Chin Agric Sci Bull,2000,16(15):23-25
    Zuo K., Dong Y., Xu J., Li Z., Luo L., Mei H. Molecular detection of quantitative trait loci forleaf chlorophy Ⅱ content at different growth-stages of rice (Oryza sativa L.), AsianJournal of Plant Sciences,2007,6(3):518-522
    Zhu J.. Analysis of conditional genetic effects and variance components in developmentalgenetics. Genetics,1995,141:1633-1639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700