用户名: 密码: 验证码:
微生物燃料电池中产电菌与电极的作用机制及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物燃料电池(Microbial fuel cell,MFC)是近年迅速发展起来的一种新型燃料电池技术,将之应用于污水处理领域,可以在降解污染物的同时回收电能,因此受到广泛的关注。
     现阶段制约MFC工程应用的关键问题主要是产能偏低和造价较高。随着反应器结构材料的优化,源于电极表面微生物催化反应的活化内阻逐渐成为制约功率的关键;造价偏高主要来自于阴极使用的贵金属催化剂,利用微生物代替金属催化剂形成生物阴极可有效降低造价。这两个问题的核心均涉及产电菌与电极的契合和相互影响,因此本论文的目的即研究产电菌与电极的作用机制,并对MFC面临的两个关键问题进行探索性研究。
     在产电菌与电极的作用机制研究部分,以产电模式菌Geobacter sulfurreducens为研究对象,利用生物量测定、生物膜观察、极化曲线、循环伏安曲线和电化学阻抗谱等分析手段,定量解析了产电菌能量代谢与MFC产电的相互关系。研究表明在生物膜发展初期产电菌生物量和MFC的极限电流呈相关关系。改变阳极电势调控产电菌能量代谢对MFC的启动过程、产电性能和产电菌的生长均有显著影响,并存在最佳的电势范围。
     本研究在阳极富集获得了一类高产电能力的光合产电菌,在两瓶型MFC中输出功率密度可达2650 mW m-2,是黑暗对照条件的8倍,在同类反应器中亦位居前茅。推测由于光合菌的特殊电子传递途径降低了电子供体的实际电势,从而促进产电菌的生长并提高了输出功率,本研究再次证明调控产电菌的能量代谢可影响MFC的活化内阻。研究表明本试验条件下光合产电菌的机理是介体传递型,气质联用和三维荧光光谱的结果显示该介体属于吲哚类物质。
     本研究首次实现了以二氧化碳作为电子受体的生物阴极过程,为降低MFC造价提供了一条新的思路。针对阴极产电菌的能量代谢需求,输入光能克服能量壁垒,实现了微生物催化的阴极产电和固碳过程。碳酸氢钠的去除和累积电量成明显的化学计量关系,为0.28±0.02 mol C mol-1 e。在两瓶型MFC中,使用该生物阴极,输出功率密度可达750 mW m-2,比空白对照提高了15倍。
Microbial fuel cell (MFC) is an emerging process that can generate electricity with simultaneous organic matter removal from domestic and industrial wastewaters. All such time serried contributions awakened the general interest in MFCs and triggered a spiral of research achievements that have steadily raised the performance levels by several orders of magnitude in less a decade.
     To effectively apply MFC in practice, challenges including low power output and high cost have to be tackled first. Along with the optimization of material and configuration, ohmic resistance was sharply decreased. As a result, activation resistance originated from the electrode reactions became the limiting factor of a higher power output. For the cost, using biocathode instead of noble metal cathode was one of the solutions. All these mentioned above urged the illustration of the interaction mechanism between exoelectrogen and electrodes. The objective of this work is: (i) to investigate the interaction mechanism between exoelectrogen and electrodes; (ii) to find strategies to improve power out of MFCs by decreasing the activation resistance; (iii) to develop biocathode using carbon dioxide as the electron acceptor.
     During investigation of the interaction mechanism between exoelectrogen and electrodes, a model strain Geobacter sulfurreducens was used. By using quantative analysis methods such as biomass determination, polarization curve, cyclic voltammetry and electrochemical impedance spectroscopy, it was shown that a strong relationship existed between the growth of exoelectricigen and performance of the MFC in the initial stage of biofilm formation. Furthermore, the effect of anode potential on the performance of MFC and growth of exoelectrogen was investigated. The anode potential regulated power generation and growth of exoelectrogen, also an optimal anode range was observed.
     Enhanced performance of MFC was achieved by applying the interaction mechanism. By using the specific electron transfer chain of phototrophic bacteria, here we enriched a phototrophic exoelectrogenic consortium that can produce electricity in an“H”typed MFC at a high power density (2650 mW m-2, normalized to membrane area) in light, which was 8 fold of that produced by non-enriched consortium in the same reactor. This power density was also the highest among the similar reactors. These results confirmed that regulating the growth of exoelectrogen can affect the MFC activation resistance. A microbial excreted mediator assisted the electron transfer to the electrode. During the experiment, the accumulation of the mediator over time enhanced the electron transfer rate. The HPLC, GC/MS and excitation-emission matrix fluorescence spectroscopy results indicated indole group containing compound representing the dominant mediator component.
     In this research, a novel biocathode was developed to show a solution for cutting off cost. It is shown here that by illuminating it is possible to develop a biocathode that uses dissolved carbon dioxide (bicarbonate) as acceptor. Bicarbonate was reduced in stoichiometric agreement with current generation, with 0.28±0.02 moles of bicarbonate reduced per mole of electrons. When this biocathode was used in a“H”typed MFC, a power density of 750 mW m-2 was produced. This was 15 fold higher than that achieved with a plain cathode.
引文
Aelterman P., Freguia S., Keller J., et al.. The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol, 2008, 78 (3): 409-418
    Allen R. M.,Bennetto H. P. Microbial Fuel-Cells - Electricity Production from Carbohydrates. Appl Biochem Biotechnol, 1993, 39 27-40
    Antonio Rinaldi B. M., Virgilio Garavaglia, Silvia Licoccia, Paolo Di Nardo and Enrico Traversa Engineering materials and biology to boost performance of microbial fuel cells. Energy Environ Sci, 2008, 1 417-429
    Bergel A., Feron D.,Mollica A. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun, 2005, 7 (9): 900-904
    Biffinger J. C., Ray R., Little B., et al.. Diversifying biological fuel cell designs by use of nanoporous filters. Environ Sci Technol, 2007, 41 (4): 1444-1449
    Bond D. R., Holmes D. E., Tender L. M., et al.. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, 295 (5554): 483-485
    Bond D. R.,Lovley D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol, 2003, 69 (3): 1548-1555
    Bond D. R.,Lovley D. R. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol, 2005, 71 (4): 2186-2189
    Busalmen J. P., Esteve-Nunez A., Berna A., et al.. C-type cytochromes wire electricity-producing bacteria to electrodes. Angew Chem Int Edit, 2008, 47 (26): 4874-4877
    Cao X. X., Huang X., Boon N., et al.. Electricity generation by an enriched phototrophic consortium in a microbial fuel cell. Electrochem Commun, 2008, 10 (9): 1392-1395
    Chang I. S., Moon H., Bretschger O., et al.. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol, 2006, 16 (2): 163-177
    Chaudhuri S. K.,Lovley D. R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol, 2003, 21 (10): 1229-1232
    Cheng H. F., Hu Y. A.,Hao J. F. Meeting China's Water Shortage Crisis: Current Practices and Challenges. Environ Sci Technol, 2009a, 43 (2): 240-244
    Cheng S., Xing D., Call D. F., et al.. Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environ Sci Technol, 2009b, 43 (ASAP):
    Cheng S. A.,Logan B. E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun, 2007, 9 (3): 492-496
    Cho E. J.,Ellington A. D. Optimization of the biological component of a bioelectrochemical cell. Bioelectrochemistry, 2007, 70 (1): 165-172
    Clauwaert P., Aelterman P., Pham T. H., et al.. Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol, 2008, 79 (6): 901-913
    Clauwaert P., Rabaey K., Aelterman P., et al.. Biological denitrification in microbial fuel cells. Environ Sci Technol, 2007a, 41 (9): 3354-3360
    Clauwaert P., Van der Ha D., Boon N., et al.. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol, 2007b, 41 (21): 7564-7569
    Dewan A., Beyenal H.,Lewandowski Z. Scaling up Microbial Fuel Cells. Environ Sci Technol, 2008, 42 (20): 7643-7648
    Dinh H. T., Kuever J., Mussmann M., et al.. Iron corrosion by novel anaerobic microorganisms. Nature, 2004, 427 (6977): 829-832
    Dumas C., Basseguy R.,Bergel A. Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim Acta, 2008, 53 (16): 5235-5241
    Eggleston C. M., Voros J., Shi L., et al.. Binding and direct electrochemistry of OmcA, an outer-membrane cytochrome from an iron reducing bacterium, with oxide electrodes: A candidate biofuel cell system. Inorg Chim Acta, 2008, 361 (3): 769-777
    Fan Y., Hu H.,Liu H. Sustainable Power Generation in Microbial Fuel Cells Using Bicarbonate Buffer and Proton Transfer Mechanisms. Environ Sci Technol, 2007, 41 (23): 8154-8158
    Fan Y., Sharbrough E.,Liu H. Quantification of the Internal Resistance Distribution of Microbial Fuel Cells. Environ Sci Technol, 2008, 42 (21): 8101-8107
    Finkelstein D. A., Tender L. M.,Zeikus J. G. Effect of electrode potential on electrode-reducing microbiota. Environ Sci Technol, 2006, 40 (22): 6990-6995
    Franks A. E., Nevin K. P., Jia H., et al.. Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ Sci, 2009, 2 (1): 113-119
    Freguia S., Rabaey K., Yuan Z., et al.. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim Acta, 2007, 53 (2): 598-603
    Freguia S., Rabaey K., Yuan Z. G., et al.. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res, 2008, 42 (6-7): 1387-1396
    Fricke K., Harnisch F.,Schroder U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energ Environ Sci, 2008, 1 (1): 144-147
    Gest H.,Kamen M. D. Photoproduction of Molecular Hydrogen by Rhodospirillum-Rubrum. Science, 1949, 109 (2840): 558-559
    Gil G. C., Chang I. S., Kim B. H., et al.. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron, 2003, 18 (4): 327-334
    Gorby Y. A., Yanina S., McLean J. S., et al.. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. P Natl Acad Sci USA, 2006, 103 (30): 11358-11363
    Gregory K. B., Bond D. R.,Lovley D. R. Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol, 2004, 6 (6): 596-604
    Guo B., Gu J., Ye Y. G., et al.. Marinobacter segnicrescens sp nov., a moderate halophile isolated from benthic sediment of the South China Sea. Int J Syst Evol Micr, 2007, 57 1970-1974
    HaoYu E., Cheng S., Scott K., et al.. Microbial fuel cell performance with non-Pt cathode catalysts. J Power Sources, 2007, 171 (2): 275-281
    Harnisch F., Schroder U.,Scholz F. The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells. Environ Sci Technol, 2008, 42 (5): 1740-1746
    He Z.,Angenent L. T. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis, 2006a, 18 (19-20): 2009-2015
    He Z.,Mansfeld F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energ Environ Sci, 2009, 2 (2): 215-219
    He Z., Wagner N., Minteer S. D., et al.. An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance Spectroscopy. Environ Sci Technol, 2006b, 40 (17): 5212-5217
    Hernandez M. E.,Newman D. K. Extracellular electron transfer. Cell. Mol. Life Sci., 2001, 58 (11): 1562-1571
    Holmes D. E., Bond D. R.,Lovley D. R. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol, 2004a, 70 (2): 1234-1237
    Holmes D. E., Chaudhuri S. K., Nevin K. P., et al.. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ Microbiol, 2006, 8 (10): 1805-1815
    Holmes D. E., Nicoll J. S., Bond D. R., et al.. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol, 2004b, 70 (10): 6023-6030
    Hudson N., Baker A.,Reynolds D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters - A review. River Res Appl, 2007, 23 (6): 631-649
    Ishii S. i., Watanabe K., Yabuki S., et al.. Bacterial electrode reducing activities of Geobacter sulfurreducens compared to an enriched consortium in an air-cathode microbial fuel cell. Appl Environ Microbiol, 2008 AEM.01639-01608
    Katz E.,Willner I. A Biofuel Cell with Electrochemically Switchable and Tunable Power Output. J Am Chem Soc, 2003, 125 (22): 6803-6813
    Kim B. C., Postier B. L., DiDonato R. J., et al.. Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant. Bioelectrochemistry, 2008, 73 (1): 70-75
    Kim B. H., Ikeda T., Park H. S., et al.. Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech, 1999a, 13 (7): 475-478
    Kim B. H., Kim H. J., Hyun M. S., et al.. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol, 1999b, 9 (2): 127-131
    Kim B. H., Park H. S., Kim H. J., et al.. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol, 2004, 63 (6): 672-681
    Kim H. J., Hyun M. S., Chang I. S., et al.. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol, 1999c, 9 (3): 365-367
    Kim H. J., Park H. S., Hyun M. S., et al.. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense. Enzyme Microb Technol, 2002, 30 (2): 145-152
    Kim J. R., Cheng S., Oh S. E., et al.. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol, 2007, 41 (3): 1004-1009
    Liang P., Huang X., Fan M. Z., et al.. Composition and distribution of internal resistance in three types of microbial fuel cells. Appl Microbiol Biot, 2007, 77 (3): 551-558
    Liu H., Cheng S. A.,Logan B. E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol, 2005a, 39 (14): 5488-5493
    Liu H., Grot S.,Logan B. E. Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol, 2005b, 39 (11): 4317-4320
    Liu H.,Logan B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol, 2004, 38 (14): 4040-4046
    Logan B., Cheng S., Watson V., et al.. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol, 2007, 41 (9): 3341-3346
    Logan B. E., Hamelers B., Rozendal R., et al.. Microbial fuel cells: Methodology and technology. Environ Sci Technol, 2006a, 40 (17): 5181-5192
    Logan B. E., Murano C., Scott K., et al.. Electricity generation from cysteine in a microbial fuel cell. Water Res, 2005, 39 (5): 942-952
    Logan B. E.,Regan J. M. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol, 2006b, 14 (12): 512-518
    Logan B. E.,Regan J. M. Microbial fuel cell- challenges and applications. Environ Sci Technol, 2006c, 40 (17): 5172-5180
    Lovley D. R. Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol, 2006, 4 (7): 497-508
    Lovley D. R.,Phillips E. J. P. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Appl Environ Microbiol, 1988, 54 (6): 1472-1480
    Marsili E., Baron D. B., Shikhare I. D., et al.. Shewanella Secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. U. S. A., 2008, 105 (10): 3968-3973
    Methe B. A., Nelson K. E., Eisen J. A., et al.. Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments. Science, 2003, 302 (5652): 1967-1969
    Morris J. M., Jin S., Wang J. Q., et al.. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochem Commun, 2007, 9 (7): 1730-1734
    Oh S., Min B.,Logan B. E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol, 2004, 38 (18): 4900-4904
    Park D. H., Laivenieks M., Guettler M. V., et al.. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol, 1999, 65 (7): 2912-2917
    Pham H. T., Boon N., Aelterman P., et al.. High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell. Microbial Biotechnology, 2008a, 1 487-496
    Pham T. H., Boon N., Aelterman P., et al.. Metabolites produced by Pseudomonas sp enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol, 2008b, 77 (5): 1119-1129
    Qiao Y., Li C. M., Bao S. J., et al.. Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem. Commun., 2008(11): 1290-1292
    Rabaey K., Boon N., Hofte M., et al.. Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol, 2005a, 39 (9): 3401-3408
    Rabaey K., Boon N., Siciliano S. D., et al.. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol, 2004, 70 (9): 5373-5382
    Rabaey K., Clauwaert P., Aelterman P., et al.. Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol, 2005b, 39 (20): 8077-8082
    Rabaey K., Read S. T., Clauwaert P., et al.. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J, 2008, 2 (5): 519-527
    Ramasamy R. P., Ren Z. Y., Mench M. M., et al.. Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnol Bioeng, 2008, 101 (1): 101-108
    Reguera G., Nevin K. P., Nicoll J. S., et al.. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol, 2006, 72 (11): 7345-7348
    Ren Z. Y., Ward T. E.,Regan J. M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol, 2007, 41 (13): 4781-4786
    Ringeisen B. R., Henderson E., Wu P. K., et al.. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol, 2006, 40 (8): 2629-2634
    Rosenbaum M., Schroder U.,Scholz F. In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environ Sci Technol, 2005, 39 (16): 6328-6333
    Rozendal R. A., Hamelers H. V. M.,Buisman C. J. N. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol, 2006, 40 (17): 5206-5211
    Rozendal R. A., Jeremiasse A. W., Hamelers H. V. M., et al.. Hydrogen production with a microbial biocathode. Environ Sci Technol, 2008, 42 (2): 629-634
    Schink B. Microbially driven redox reactions in anoxic environments: Pathways, energetics, and biochemical consequences. Eng Life Sci, 2006, 6 (3): 228-233
    Shizas I.,Bagley D. M. Experimental determination of energy content of unknown organics in municipal wastewater streams. J Energ Eng-Asce, 2004, 130 (2): 45-53
    Srikanth S., Marsili E., Flickinger M. C., et al.. Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnol Bioeng, 2008, 99 (5): 1065-1073
    Strycharz S. M., Woodard T. L., Johnson J. P., et al.. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol, 2008, 74 (19): 5943-5947
    Sund C. J., McMasters S., Crittenden S. R., et al.. Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl Microbiol Biotechnol, 2007, 76 (3): 561-568
    Thrash J. C., Van Trump J. I., Weber K. A., et al.. Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol, 2007, 41 (5): 1740-1746
    Torres C., Lee H.-S.,Rittmann B. E. Carbonate Species as OH Carriers for Decreasing the pH Gradient between Cathode and Anode in Biological Fuel Cells. Environ Sci Technol, 2008, 42 (23): 8773-8777
    Virdis B., Rabaey K., Yuan Z., et al.. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res, 2008, 42 (12): 3013-3024
    Von Canstein H., Ogawa J., Shimizu S., et al.. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol, 2008, 74 (3): 615-623
    Wang X., Feng Y. J., Ren N. Q., et al.. Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential. Electrochim Acta, 2009, 54 (3): 1109-1114
    Wrighton K. C., Agbo P., Warnecke F., et al.. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J, 2008, 2 (11): 1146-1156
    Xing D. F., Zuo Y., Cheng S. A., et al.. Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol, 2008, 42 (11): 4146-4151
    Xiong Y. J., Shi L., Chen B. W., et al.. High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. J Am Chem Soc, 2006, 128 (43): 13978-13979
    You S. J., Zhao Q. L., Zhang J., et al.. Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells. Biosens Bioelectron, 2008, 23 (7): 1157-1160
    You S. J., Zhao Q. L., Zhang J. N., et al.. A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources, 2006, 162 (2): 1409-1415
    Zhang L., Liu C., Zhuang L., et al.. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosens. Bioelectron., 2009, In Press, Corrected Proof
    Zhang L. X., Zhou S. G., Zhuang L., et al.. Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochem Commun, 2008, 10 (10): 1641-1643
    Zhao F., Harnisch F., Schrorder U., et al.. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol, 2006, 40 (17): 5193-5199
    Zuo Y., Xing D. F., Regan J. M., et al.. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol, 2008, 74 (10): 3130-3137
    巴德,福克纳.电化学方法原理与应用.北京:化学工业出版社, 2005.
    曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社, 2002.
    范明志.电极电势对生物阴极型微生物燃料电池产电性能的强化[硕士学位论文].北京:清华大学环境系, 2008.
    付宁,黄丽萍,葛林科.微生物燃料电池在污水处理中的研究进展.环境污染治理技术与设备, 2006, 7 (12): 10-14
    关毅,张鑫.微生物燃料电池.化学进展, 2007, 19 (1): 74-79
    国家环境保护总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社, 2002.
    洪义国,郭俊,孙国萍.产电微生物及微生物燃料电池最新研究进展.微生物学报, 2007, 47 (1): 173-177
    黄霞,曹效鑫,梁鹏,范明志.无介体微生物燃料电池研究进展.中国给水排水, 2007, 23 (4): 1-6
    江泽民.对中国能源问题的思考.上海交通大学学报, 2008, 42 (3): 345-359
    李登兰,许玫英,孙国萍.微生物燃料电池中脱色希瓦氏菌s12的产电特性研究.微生物学通报, 2008, 35 (5): 777-781
    李浩然,连静,冯雅丽.无介体微生物燃料电池性能研究.高校化学工程学报, 2008, 22 (4): 672-678
    连静,冯雅丽,李浩然.直接微生物燃料电池的构建及初步研究.过程工程学报, 2006, 6 (3): 408-412
    梁鹏,范明志,曹效鑫.微生物燃料电池表观内阻的构成和测量.环境科学, 2007, 28 (8): 1894-1898
    梁鹏,王慧勇,黄霞.环境因素对接种Shewanella baltica菌的微生物燃料电池产电能力的影响. 环境科学, 2009, 30 (8):已录用
    卢娜,周顺桂,倪晋仁.微生物燃料电池的产电机制.化学进展, 2008, 20 (7): 1233-1240
    姚璐,李正龙,刘红.低强度超声波改善微生物燃料电池产电效能.北京航空航天大学学报, 2006, 32 (12): 1472-1476
    尤世界,赵庆良,姜珺秋.电极构型对空气阴极生物燃料电池发电性能的影响.环境科学, 2006, 27 (11): 2159-2163
    于鑫,张晓键,王占生.饮用水生物处理中生物量的脂磷法测定.给水排水, 2002, 28 (5): 1-5
    左剑恶,崔龙涛,范明志.以模拟有机废水为基质的单池微生物燃料电池的产电性能.太阳能学报, 2007, 28 (3): 320-323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700