用户名: 密码: 验证码:
产电微生物菌种的筛选及其在微生物燃料电池中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于近年来全球范围的石油能源的短缺和全球变暖导致的极端天气带来的巨大影响,易获得的生物质作为可替代型能源越来越受到关注。微生物燃料电池作为利用电化学活性微生物作为催化剂的产电装置,能将生物质中有机物的化学能直接转化为电能。相比传统的间接能源转化形式,微生物燃料电池这种从原料直接转化电能的方式在理论上将会有更高的能量效率。然而,在实际应用中由于存在诸多限制因素微生物燃料电池产生的电功率输出还停留在较低的水平,有待进一步的优化以提高微生物燃料电池的整体性能。
     以乳酸盐作为电子供体和电极作为电子受体在微生物燃料电池内进行富集,从厦门近海样品中共筛选得到五株产电菌。通过在微生物燃料电池中的产电验证,所有的菌株均具有良好的产电性能。通过16S rRNA和gyrB基因序列的分析以及DNA-DNA杂交,将菌株S1、S5和EP1在种属上分别鉴定为Shewanella decolorationis, Shewanella aquimarina和Shewanella marisflavi。DNA-DNA杂交显示S2和S4属于同一种内两菌株,以S4作为模式菌株,综合系统发育分析和表型特征数据,将该菌分类鉴定为Shewanella属内的新种。此外,利用Fe(III)氧化物作为电子受体从温泉口样品中分离到一株超嗜热菌。
     EP1菌株由多相分析鉴定为属于Shewanella marisflavi,能在高达1488 mM的离子强度下利用乳酸盐作为电子供体还原Fe(III)和产电。利用该菌在MFC中产电,离子强度为291 mM下测量到的最大电功率为3.6 mW/m2,离子强度提高到1146 mM时,最大电功率增长到9.6 mW/m2,提高167%。然而,进一步提高离子强度到1488 mM,最大电功率下降到5.2 mW/m2。对内电阻的定量分析发现将电极液离子强度从291 mM增加到1488 mM电极液电阻从1178 ?减小到50 ?。这些结果表明分离特异的微生物菌种能有效地提高微生物燃料电池的性能。
Due to the recent woldwide shortage of fossil energy and significant impacts of global warming which often brings the extreme weather events, readily available biomass has attract much attention as an alternative energy source. Microbial fuel cells (MFCs) are devices that convert chemical energy directly from organic matter in the biomass using electrochemically active bacteria as catalysts to generate electrical energy. Compared to the traditional indirect transformation of energy, this direct conversion from primary fuel to electricity makes it theoretically possible to achieve a higher efficiency. In practice, however, the power output of MFC is still maintained at a comparatively lower level due to many constraints and need further optimization to increase the overall performance of MFCs.
     By enrichment with lactate as electon donor and electrode as electon accepter in MFCs, five current producing bacteria were isolated from the coastal samples collected in Xiamen. All of the isolated can generate considerable electricity current in MFCs. Sequnce analysis of 16S rRNA and gyrB gene and DNA-DNA hybridization identified strain S1, S5 and EP1 belong to Shewanella decolorationis, Shewanella aquimarina and Shewanella marisflavi, respectively. Using DNA-DNA hybridization, strain S2 and S4 were palced within one species. On the basis of phylogenetic and phenotypic characteristics, S4, choosen as type strain, was classified in the genus Shewanella as a distinct novel species. In addition, using Fe(III) oxide as electron acceptor one hyperthermophile was isolated from hot spring samples.
     Strain EP1, belonging to Shewanella marisflavi based on polyphasic analysis, which could reduce Fe(III) and generate power at a high ionic strength of up to 1488 mM (8% NaCl) using lactate as the electron donor. Using this bacterium, a measured maximum power density of 3.6 mW/m2 was achieved at an ionic strength of 291 mM. The maximum power density was increased by 167% to 9.6 mW/m2 when ionic strength was increased to 1146 mM. However, further increasing the ionic strength to 1488 mM resulted in a decrease in power density to 5.2 mW/m2. Quantification of the internal resistance distribution revealed that electrolyte resistance was greatly reduced from 1178 to 50 ? when ionic strength increased from 291 to 1488 mM. These results indicate that isolation of specific bacterial strains can effectively improve power generation in some MFC applications.
引文
Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: Synthesis Report. United Nations, New York.
    Achenbach LA, Woese C. 1995. 16S and 23S rRNA-like primers. In: Archaea: a Laboratory Manual: Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.; 201-203.
    Aelterman P, Rabaey K, Pham HT, et al. 2006. Continuous electricity generation at high voltages and currents in stacked microbial fuel cells[J]. Environ Sci Technol, 40:3388-3394.
    Allison LE, Scarseth GD. 1942. A biological reduction method for removing free iron oxides from soils and colloidal clays[J]. J Am Soc Agron, 34:616-623.
    Anderson RT, Lovley DR. 1997. Ecology and biogeochemistry of in situ groundwater bioremediation[J]. Adv Microb Ecol, 15:289-350.
    Anderson RT, Rooney-Varga J, Gaw CV, et al. 1998. Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers[J]. Environ Sci Technol, 32:1222-1229.
    Anderson RT, Vrionis HA, Ortiz-Bemad I, et al. 2003. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer[J]. Appl Environ Microbial, 69:5884-5891.
    Aulenta F, Catervi A, Majone M, et al. 2007. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE[J]. Environ Sci Technol, 41:2554-2559.
    Balashova VV, Zavarzin GA. 1980. Anaerobic reduction of ferric iron by hydrogen bacteria[J]. Microbiology, 48:635-639.
    Bergel A, Feron D, Mollica A. 2005. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm[J]. Electrochem Commun, 7:900-904.
    Bond DR, Holmes DE, Tender LM, et al. 2002. Electrode reducing microorganisms harvesting energy from marine sediments[J]. Science, 295:483-485.
    Bond DR, Lovley DR. 2002. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones[J]. Environ Microbial, 4:115-124.
    Bond DR, Lovley DR. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Appl Environ Microbial, 69:1548-1555.
    Bradley PM, Chapelle FH, Lovley DR. 1998. Humic acids as electron acceptors for anaerobic microbial oxidization of vinyl chloride and dichloroethane[J]. Appl Environ Microbial, 64:3102-3105.
    Brune A, Frenzel P, Cypionka H. 2000. Life at the oxic-anoxic interface: microbial activities and adaptations[J]. FEMS Microbiol Rev, 24:691-710.
    Bullen RA, Arnot TC, Lakeman IB, et al. 2006. Biofuel cells and their development[J]. Biosensors and Bioelectronics, 21:2015-2045.
    Caccavo F, Blakemore Jr. RP, Lovley DR. 1992. A hydrogen-oxidizing, Fe(III)-reducingmicroorganism from the Great Bay Estuary, New Hampshire[J]. Appl Environ Microbiol, 58:3211-3216.
    Chapelle FH, Lovley DR. 1992. Competitive exclusion of sulfate reduction by Fe(III)-reducing bacteria: a mechanism for producing discrete zones of high-iron ground water[J]. Ground Water, 30:29-36.
    Chaudhuri SK, Lovley DR. 2003a. Electricity from direct oxidation of glucose in mediator-less microbial fuel cells[J]. Nature Biotechnol, 21:1229-1232.
    Chaudhuri SK, Lovley DR. 2003b. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J]. Nat Biotechnol, 21:1229-1232.
    Chiaki K, Yuichi N. 2001. Correlation between phylogenetic structure and function: examples from deep-sea Shewanella[J]. FEMS Microbiol Ecol, 35:223-230.
    Childers SE, Ciufo S, Lovley DR. 2002. Geobacter metallireducens accesses Fe(III) oxide by chemotaxis[J]. Nature, 416:767-769.
    Choi Y, Jung E, Kim S, et al. 2003a. Membrane fluidity sensoring microbial fuel cell[J]. Bioelectrochemistry, 59:121-127.
    Choi Y, Kim N, Kim S, et al. 2003b. Dynamic behaviors of redox mediators within the hydrophobic layers as an important factor for effective microbial fuel cell operation[J]. B Kor Chem Soc, 24:437-440.
    Clauwaert P, Aelterman P, Pham T, et al. 2008. Minimizing losses in bio-electrochemical systems: the road to applications[J]. Appl Microbiol Biotechnol, 79:901-913.
    Clauwaert P, Rabaey K, Aelterman P, et al. 2007a. Biological denitrification in microbial fuel cells[J]. Environ Sci Technol, 41:3354-3360.
    Clauwaert P, Van der Ha D, Boon N, et al. 2007b. Open air biocathode enables effective electricity generation with microbial fuel cells[J]. Environ Sci Technol, 41:7564-7569.
    Coates J, Lonergan D, Philips E, et al. 1995a. Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids[J]. Arch Microbiol, 164:406-413.
    Coates JD, Bhupathiraju VK, Achenbach LA, et al. 2001. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers[J]. Int J Syst Evol Microbiol, 51:581-588.
    Coates JD, Ellis DJ, Lovley DR. 1999. Geothrix fermentans gen. novosp. nov., an acetate-oxidizing Fe(III) reducer capable of growth via fermentation[J]. Internat J Sys Bacteriol, 49:1615-1622.
    Coates JD, Lonergan DJ, Lovley DR. 1995b. Desulfuromonas palmitatis sp. nov., a long-chain fatty acid oxidizing Fe(III) reducer from marine sediments[J]. Arch Microbiol, 164:406-413. Coleman ML, Hedrick DB, Lovley DR, et al. 1993. Reduction of Fe(III) in sediments by sulphate-reducing bacteria[J]. Nature, 361:436-438.
    Coppi MV, Leang C, Sandler SJ, et al. 2001. Development of a genetic system for Geobacter sulfurreducens[J]. Appl Environ Microbial, 67:3180-3187.
    Debabov. 2008. Electricity from microorganisms[J]. Microbiology, 77:149-157.
    Dobbin PS, Powell AK, McEwan AG, et al. 1995. The influence of chelating agents upon the dissimilatory reduction of Fe(III) by Shewanella putrefaciens[J]. BioMetals, 8:163-173.
    Fan Y, Hu H, Liu H. 2007. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms[J]. Environ Sci Technol, 41:8154-8158.
    Fan Y, Sharbrough E, Liu H. 2008. Quantification of the internal resistance distribution of microbial fuel cells[J]. Environ Sci Technol, 42:8101-8107.
    Finneran KT, Anderson RT, Nevin KP, et al. 2002. Bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction[J]. Soil and Sediment Contamination, 11:339-357.
    Finneran KT, Lovley DR. 2000. Anaerobic degradation of methyl-tert-butyl ether (MTBE) and tert-butyl alcohol (TBA)[J]. Environ Sci Technol, 35:1785-1790.
    Fontecave M, Coves J, Pierre J-L. 1994. Ferric reductases or flavin reductases[J]. BioMetals, 7:3-8.
    Fox GE, Wisotzkey JD, Jurtshuk PJR. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity[J]. Int J Syst Bacteriol, 42:166-170.
    Gao H, Obraztova A, Stewart N, et al. 2006. Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean[J]. Int J Syst Evol Microbiol, 56:1911-1916.
    Gil GC, Chang IS, Kim BH, et al. 2003. Operational parameters affecting the performance of a mediatorless microbial fuel cell[J]. Biosens Bioelectron, 18:327-334.
    Glasauer S, Weidler PG, Langley S, et al. 2003. Controls on Fe reduction and mineral formation by a subsurface bacterium[J]. Geochem Cosmochim Acta, 67:1277-1288.
    Gold T. 1992. The deep, hot biosphere[J]. Proc Natl Acad Sci USA, 89:6045-6049.
    Gralnick JA, Newman DK. 2007. Extracellular respiration[J]. Mol Microbiol, 65:1-11.
    Greene AC, Patel BKC, Sheehy AJ. 1997. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir[J]. J System Bacteriol, 47:505-509.
    Gregory KB, Bond DR, Lovley DR. 2004. Graphite electrodes as electron donors for anaerobic respiration[J]. Environ Microbiol, 6:596-604.
    Gregory KB, Lovley DR. 2005. Remediation and recovery of uranium from contaminated subsurface environments with electrodes[J]. Environ Sci Technol, 39:8943-8947.
    Haas JR, DiChristina TJ. 2002. Effects of Fe(III) chemical speciation on dissimilatory Fe(III) reduction by Shewanella putrefaciens[J]. Environ Sci Technol, 36:373-380.
    Hafenbradl D, Keller M, Dirmeier R, et al. 1996. Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum[J]. Arch Microbiol, 166:308-314.
    Hau HH, Gralnick JA. 2007. Ecology and biotechnology of the genus Shewanella[J]. Annu Rev Microbiol, 61:237-258.
    He Z, Minteer SD, Angenent LT. 2005. Electricity generation from artificial wastewater using an upflow microbial fuel cell[J]. Environ Sci Technol, 39:5262-5267.
    Heidelberg JF, Paulsen LT, Nelson KE, et al. 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis[J]. Nature Biotechnol, 20:1093-1094.
    Hernandez ME, Kappler A, Newman DK. 2004. Phenazines and other redox-active antibiotics promote microbial mineral reduction[J]. Appl Environ Microbiol, 70:921-928.
    Hernandez ME, Newman DK. 2001. Extracellular electron transfer[J]. Cell Mol Life Sci, 58:1562-1571.
    Holmes DE, Bond DR, Tender LM, et al. 2004. Microbial communities associated withelectron-accepting and electron-donating electrodes in sediment[J]. Microbial Ecol, 48:178-190.
    Huber R, Huber H, Stetter KO. 2000. Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties[J]. FEMS Microbiol Rev, 24:615-623.
    Jang JK, Pham TH, Chang IS, et al. 2004. Construction and operation of a novel mediator-and membraneless microbial fuel cell[J]. Process Biochem, 39:1007-1012.
    Jong BC, Kim BH, Chang IS, et al. 2006. Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell[J]. Environ Sci Technol, 40:6449-6454.
    Kappler A, Brune A. 2002. Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites[J]. Soil Bioi Biochem, 34:221-227.
    Kashefi K, Holmes DE, Reysenbach A-L, et al. 2002a. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens, gen., nov., sp. nov.[J]. Appl Environ Microbial, 68:1735-1742.
    Kashefi K, Lovley DR. 2000. Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum[J]. Appl Environ Microbial, 66:1050-1056.
    Kashefi K, Lovley DR. 2003. Extending the upper temperature limit for life[J]. Science, 301:934.
    Kashefi K, Tor JM, Holmes DE, et al. 2002b. Geoglobus ahangari, gen. nov., sp. nov., a novel hyperthermophilic archaeum capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor[J]. Int J Syst Evol Microbiol, 52:719-728.
    Kim BH, Chang IS, Gadd GM. 2007. Challenges in microbial fuel cell development and operation[J]. Appl Microbiol Biotechnol, 76:485-494.
    Kim BH, Kim HJ, Hyum MS, et al. 1999. Direct electrode reaction of an Fe(III)-reducing bacterium, Shewanella putrefaciens[J]. J Microbiol Biotechnol, 9:127-131.
    Kim BH, Park HS, Kim HJ, et al. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell[J]. Appl Environ Microbiol, 63:672-681.
    Kim JR, Cheng S, Oh SE, et al. 2007b. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells[J]. Environ Sci Technol, 41:1004-1008.
    Kim JR, Min B, Logan BE. 2005. Evaluation of procedures to acclimate a microbial fuel cell for electricity production[J]. Appl Microbiol Biotechnol, 68:23-30.
    Kim TS, Kim BH. 1988. Modulation of Clostridium acetobutylicum fermentation by electrochemically supplied reducing equivalent[J]. Biotechnol Lett, 10:123-128.
    Kostka JE, Dalton DD, Skelton H, et al. 2002. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms[J]. Appl Environ Microbiol, 68:6256-6262.
    Krumholz LR. 1997. Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors[J]. Internat J Syst Bacteriol, 47:1262-1263.
    Kusel K, Wagner C, Trinkwalter T, et al. 2002. Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils[J]. FEMS Microbiol Ecol, 40:73-81.
    Lanthier M, Gregory KB, Lovley DR. 2008. Growth with high planktonic biomass in Shewanella oneidensis fuel cells[J]. FEMS Microbiol Lett, 278:29-35.
    Lee SA, Y C, S J, et al. 2002. Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans[J]. Bioelectrochemistry, 57:173-178.
    Lin WC, Coppi MV, Lovley DR. 2004. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor[J]. Appl Environ Microbiol, 70:2525-2528.
    Liu H, Cheng S, Logan BE. 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environ Sci Technol, 39:5488-5493.
    Liu H, Logan BE. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environ Sci Technol, 38:4040-4046.
    Lloyd JR, Blunt-Harris EL, Lovley DR. 1999. The periplasmic 9.6-kilodalton c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(III)[J]. J Bacteriol, 181:7647-7649.
    Loffler FE, Sun Q, Li J, et al. 2000. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species[J]. Appl Environ Microbial, 66:1369-1374.
    Logan BE. 2004. Extracting hydrogen electricity from renewable resources[J]. Environ Sci Technol, 38:160A-167A.
    Logan BE, Hamelers B, Rozendal R, et al. 2006. Microbial fuel cells: methodology and technology[J]. Environ Sci Technol, 40:5181-5192.
    Lovley DR. 1987. Organic matter mineralization with the reduction of ferric iron: A review[J]. Geomicrobiol J, 5:375-399.
    Lovley DR. 1991. Dissimilatory Fe(III) and Mn(IV) reduction [J]. Microbiol Mol Biol Rev, 55:259-287.
    Lovley DR. 1993. Dissimilatory metal reduction[J]. Ann Rev Microbiol, 47:263-290.
    Lovley DR. 1995a. Bioremediation of organic and metal contaminants with dissimilatory metal reduction[J]. J Industr Microbiol, 14:85-93.
    Lovley DR. 1995b. Microbial reduction of iron, manganese, and other metals[J]. Adv Agron, 54:175-231.
    Lovley DR. 1997. Microbial Fe(III) reduction in subsurface environments[J]. FEMS Microbiol Rev, 20:305-315.
    Lovley DR. 2003a. Analysis of the genetic potential and gene expression of microbial communities involved in the in situ bioremediation of uranium and harvesting electrical energy from organic matter[J]. Omics, 6:331-339.
    Lovley DR. 2003b. Cleaning up with genomics: applying molecular biology to bioremediation[J]. Nature Microbiol Rev, 1:35-44.
    Lovley DR. 2006. Bug juice: harvesting electricity with microorganisms[J]. Nat Rev Microbiol, 47:497-508.
    Lovley DR, Baedecker MJ, Lonergan DJ, et al. 1989a. Oxidation of aromatic contaminants coupled to microbial iron reduction[J]. Nature, 339:297-299.
    Lovley DR, Chapelle FH. 1995. Deep subsurface microbial processes[J]. Rev Geophsy, 33:365-381.
    Lovley DR, Coates JD, Blunt-Harris EL, et al. 1996a. Humic substances as electron acceptors for microbial respiration[J]. Nature, 382:445-448.
    Lovley DR, Holmes DE, Nevin KP, et al, 2004. Dissimilatory Fe(III) and Mn(IV) reduction. In: Advances in Microbial Physiology: Academic Press; 219-286.
    Lovley DR, Lonergan DJ. 1990. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism GS-15[J]. Appl Environ Microbial, 56:1858-1864.
    Lovley DR, Phillips EJP. 1987a. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments[J]. Appl Environ Microbial, 53:2636-2641.
    Lovley DR, Phillips EJP. 1987b. Rapid assay for microbially reducible ferric iron in aquatic sediments[J]. Appl Environ Microbial, 53:1536-1540.
    Lovley DR, Phillips EJP. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Appl Environ Microbial, 54:1472-1480.
    Lovley DR, Phillips EJP. 1989. Requirement for a microbial consortium to completely oxidize glucosein Fe(III)-reducing sediments[J]. Appl Environ Microbial, 55:3234-3236.
    Lovley DR, Phillips EJP. 1992. Bioremediation of uranium contamination with enzymatic uranium reduction[J]. Environ Sci Technol, 26:2228-2234.
    Lovley DR, Phillips EJP. 1994. Reduction of chromate by Desulfovibrio vulgaris (Hildenborough) and its C3 cytochrome[J]. Appl Environ Microbial, 60:726-728.
    Lovley DR, Phillips EJP, Lonergan DJ. 1989b. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganeseby Alterornonas putrefaciens[J]. Appl Environ Microbial, 55:700-706.
    Lovley DR, Roden EE, Phillips EJP, et al. 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria[J]. Marine Geol, 113:41-53.
    Lovley DR, Stolz JF, Nord GL, et al. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism[J]. Nature, 330:252-254.
    Lovley DR, Woodward JC, Chapelle FH. 1994. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands[J]. Nature, 370:128-131.
    Lovley DR, Woodward JC, Chapelle FH. 1996b. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms[J]. Appl Environ Microbial, 62:288-291.
    Magnuson TS, Hodges-Myerson AL, Lovley DR. 2000. Characterization of a membrane bound NADH-dependent Fe3+ reductase from the dissimilatory Fe3+ reducing bacterium Geobacter sulfurreducens[J]. FEMS Microbiol Lett, 185:205-211.
    Marsili E, Baron DB, Shikhare ID, et al. 2008. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proc Natl Acad Sci USA 105:3968-3973.
    McKinlay JB, Zeikus JG. 2004. Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli[J]. Appl Environ Microbiol, 70:3467-3474.
    Min B, Cheng S, Logan BE. 2005. Electricity generation using membrane and salt bridge microbial fuel cells[J]. Water Res, 39:1675-1686.
    Moon H, Chang IS, Kim BH. 2006. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell[J]. Bioresource Technol, 97:621-627.
    Munch JC, Ottow JCG. 1983. Reductive transfonnation mechanism of ferric oxides in hydromorphic soils[J]. Environ Biogeochem Ecol Bull, 35:383-394.
    Myers CR, Nealson KH. 1988. Bacterial manganese reduction and growth with manganeseoxide as the sole electron acceptor[J]. Science, 240:1319-1321.
    Nealson KH, Scott J, 2006. Ecophysiology of the genus Shewanella. In The Prokaryotes, ed. M Dworkin. New York: Springer-Verlag.
    Nevin KP, Lovley DR. 2000. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens[J]. Appl Environ Microbial, 66:2248-2251.
    Nevin KP, Lovley DR. 2002a. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans[J]. Appl Environ Microbial, 68.
    Nevin KP, Lovley DR. 2002b. Mechanisms for Fe(III) oxide reduction in sedimentary environment[J]. Geomicrobiol J, 19:141-159.
    Newman DK, Kolter. 2000. A role for excreted quinones in extracellular electron transfer[J]. Nature, 405:94-97.
    Niessen J, Schroder U, Scholz F. 2004. Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch[J]. Electrochem Commun, 6:955-958.
    Nozue H, Hayashi T, Hashimoto Y, et al. 1992. Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description of S. alga Simidu et al., 1990, 335[J]. Int J Syst Bacteriol, 42:628-634.
    Oh S-E, Logan BE. 2006. Proton exchange membrane and electrode surface areas as factors that effect power generation in microbial fuel cells[J]. Appl Microbiol Biotechnol, 70:162-169.
    Oh S, Min B, Logan BE. 2004. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environ Sci Technol, 38:4900-4904.
    Park, Park D, Zeikus, et al. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens[J]. Appl Microbiol Biotechnol, 59:58-61.
    Park DH, Kim BH, Moore B, et al. 1997. Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds[J]. Biotechnol Tech, 11:145-158.
    Park DH, Zeikus JG. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore[J]. Appl Environ Microbiol, 66:1292-1297.
    Park DH, Zeikus JG. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation[J]. Biotechnol Bioeng, 81:348-355.
    Park HS, Kim BH, Kim HS, et al. 2001. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell[J]. Anaerobe, 7:297-306.
    Pham CA, Jung SJ, Phung NT, et al. 2003. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell[J]. FEMS Microbiol Lett, 223:129-134.
    Pham TH, Jang JK, Chang IS, et al. 2004. Improvement of cathode reaction of a mediator-less microbial fuel cell[J]. J Microbiol Biotechnol, 14:324-329.
    Phillips EJP, Lovley DR. 1987. Determination of Fe(III) and Fe(II) in oxalate extracts ofsediment[J]. Soil Sci Soc Am J, 51:938-941.
    Potter MC. 1911. Electrical effects accompanying the decomposition of organic compounds[J]. Proc R Soc Lond B, 84:260-276.
    Prasad D, Arun S, Murugesan M, et al. 2007. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell[J]. Biosensors and Bioelectronics, 22:2604-2610.
    Rabaey K, Boon N, Siciliano SD, et al. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Appl Environ Microbiol, 70:5373-5382.
    Rabaey K, Lissens G, Siciliano S, et al. 2003. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency[J]. Biotechnol Lett 25:1531-1535.
    Rabaey K, Read ST, Clauwaert P, et al. 2008. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells[J]. ISME J, 2:519-527.
    Rabaey K, Rodriguez J, Blackall LL, et al. 2007. Microbial ecology meets electrochemistry: electricity-driven and driving communities[J]. ISME J, 1:9-18.
    Rabaey K, Verstraete W. 2005. Microbial fuel cells: novel biotechnology for energy generation[J]. Trends Biotechnol, 23:291-298.
    Ramon RM, Rudolf A. 2001. The species concept for prokaryotes[J]. FEMS Microbiol Rev, 25:39-67.
    Ren Z, Ward TE, Regan JM. 2007. Electricity production from cellulose in a microbial fuel cell using a defined binary culture[J]. Environ Sci Technol, 41:4781-4786.
    Rhoads A, Beyenal H, Lewandowski Z. 2005. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant[J]. Environ Sci Technol, 39:4666-4671.
    Richter H, McCarthy K, Nevin KP, et al, 2008. Electricity generation by Geobacter sulfurreducens attached to gold electrodes[J]. Langmuir, 24: 4376-4379.
    Ringeisen BR, Henderson E, Wu PK, et al, 2006. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol, 40:2629-2634.
    Rittmann BE. 2008. Opportunities for renewable bioenergy using microorganisms[J]. Biotechnol Bioeng, 100:203-212.
    Roling WFM, Van Breukelen BM, Braster M, et al. 2001. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer[J]. Appl Environ Microbial, 67:4619-4629.
    Roling WFM, Van Verseveld HW. 2002. Natural attenuation: what does the subsurface have in store?[J]. Biodegradation, 13:53-64.
    Rooney-Varga NJ, Anderson RT, Fraga JL, et al. 1999. Microbial communities associated with anaerobic benzene mineralization in a petroleum-contaminated aquifer[J]. Appl Environ Microbial, 65:3056-3063.
    Rosso KM, Stack AG, Hochella JMF. 2009. Long-range electron transfer across cytochrome-hematite (α-Fe2O3) interfaces[J]. J Phys Chem C, 113:2096-2103.
    Rosso KM, Zachara JM, Fredrickson JK, et al. 2003. Nonlocal bacterial electron transfer to hematite surfaces[J]. Geochem Cosmochim Acta, 67:1081-1087.
    Rozendal RA, Hamelers HVM, Buisman CJN. 2006. Effects of membrane cation transport on pHand microbial fuel cell performance[J]. Environ Sci Technol, 40:5206-5211.
    Rozendal RA, Jeremiasse AW, Hamelers HVM, et al. 2007. Hydrogen production with a microbial biocathode[J]. Environ Sci Technol, 42:629-634.
    Russell MJ, Hall AJ. 2002. Chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis[J]. Geochem News, 113:6-12.
    Satomi M, Oikawa H, Yano Y. 2003. Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines[J]. Int J Syst Evol Microbiol, 53:491-499.
    Satomi M, Vogel BF, Gram L, et al. 2006. Shewanella hafniensis sp. nov. and Shewanella morhuae sp. nov., isolated from marine fish of the Baltic Sea[J]. Int J Syst Evol Microbiol, 56:243-249.
    Satomi M, Vogel BF, Venkateswaran K, et al. 2007. Description of Shewanella glacialipiscicola sp. nov. and Shewanella algidipiscicola sp. nov., isolated from marine fish of the Danish Baltic Sea, and proposal that Shewanella affinis is a later heterotypic synonym of Shewanella colwelliana[J]. Int J Syst Evol Microbiol, 57:347-352.
    Schroder U, Nieben J, Scholz F. 2003. A generation of microbial fuel cells with current outputs boosted by more than on e order of magnitude[J]. Angew Chem Int Ed, 42:2880-2883.
    Scott JH, Nealson KH. 1994. A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens[J]. J Bacteriol, 176:3408-3411.
    Seeliger S, Cord-Ruwisch R, Schink B. 1998. A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria[J]. J Bacteriol, 180:3686-3691.
    Sibel DR, Bennetto HP, Gerard MD, et al. 1984. Electron-transfer coupling in microbial fuel cells: 1. comparison of redox-mediator reduction rates and respiratory rates of bacteria[J]. J Chem Technol Biotechnol B Biotechnol, 34:3-12.
    Siobodkin A, Jeanthon C, L'Haridon S, et al. 1999. Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs in Western Siberia[J]. Curr Microbiol, 39:99-102.
    Slobodkina G, Kolganova T, Querellou J, et al. 2009. Geoglobus acetivorans sp. nov., an iron(III)-reducing archaeon from a deep-sea hydrothermal vent[J]. Int J Syst Evol Microbiol:ijs.0.011080-011080.
    Snoeyenbos-West OL, Nevin KP, Lovley DR. 2000. Stimulation of dissimilatory Fe(III) reduction results in a predominance of Geobacter species in a variety of sandy aquifers[J]. Microbial Ecol, 39:153-167.
    Stein LY, La Duc MT, Grundl TJ, et al. 2001. Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments[J]. Environ Microbial, 3:10-18.
    Straub KL, Schink B. 2003. Evaluation of electron-shuttling compounds in microbial ferric iron reduction[J]. FEMS Microbiol Lett, 220:229-233.
    Sung Y, Ritalahti KM, Sanford RA, et al. 2003. Characterization of two tetrachloroethene-reducing, acetateoxidizing bacteria and their description as Desulfuromonas michiganensis sp. nov.[J]. Appl Environ Microbial, 69:2964-2974.
    Tamura K, Dudley J, Nei M, et al. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Mol Biol Evol, 24:1596-1599.
    Thamdrup B. 2000. Bacterial manganese and iron reduction in aquatic sediments[J]. Adv Microb Ecol, 16:41-48.
    Thauer RK, Jungermann K, Decker K. 1977. Energy conservation in chemotrophic anaerobic bacteria[J]. Bacteriological Reviews, 41:100-180.
    Thrash JC, Van Trump JI, Weber KA, et al. 2007. Electrochemical stimulation of microbial perchlorate reduction[J]. Environ Sci Technol, 41:1740-1746.
    Toffin L, Bidault A, Pignet P, et al. 2004. Shewanella profunda sp. nov., isolated from deep marine sediment of the Nankai Trough[J]. Int J Syst Evol Microbiol, 54:1943-1949.
    Tor JM, Kashefi K, Lovley DR. 2001. Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms[J]. Appl Environ Microbial, 67:1363-1365.
    Tor JM, Lovley DR. 2001. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus[J]. Environ Microbial, 3:281-287.
    Torres CI, Kato Marcus A, Rittmann BE. 2008. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria[J]. Biotechnol Bioeng, 100:872-881.
    Tugel JB, Hines ME, Jones GE. 1986. Microbial iron reduction by enrichment cultures isolated from estuarine sediments[J]. Appl Environ Microbial, 52:1167-1172.
    Turick CE, Caccavo Jr. F, Tisa LS. 2003. Electron transfer from Shewanella algae BrY to hydrous ferric oxide is mediated by cell-associated melanin[J]. FEMS Microbiol Lett, 220:99-104.
    Turick CE, Tisa LS, Caccavo Jr. F. 2002. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY.[J]. Appl Environ Microbial, 68:2436-2444.
    Vargas M, Kashefi K, Blunt-Harris EL, et al. 1998. Microbiological evidence for Fe(III) reduction on early earth[J]. Nature, 395:65-67.
    Vega CA, Fernandez I. 1987. Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens[J]. Bioelectrochem Bioenerg, 17:217-222.
    Venkateswaran K, Moser DP, Dollhopf ME, et al. 1999. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov[J]. Int J Syst Bacteriol, 49:705-724.
    Vogel BF, Venkateswaran K, Satomi M, et al. 2005. Identification of Shewanella baltica as the most important H2S-producing species during iced storage of danish marine fish[J]. Appl Environ Microbiol, 71:6689-6697.
    Walker JCG. 1987. Was the archaean biosphere upside down?[J]. Nature, 329:710-712.
    Watanabe K. 2008. Recent developments in microbial fuel cell technologies for sustainable bioenergy[J]. J Biosci Bioeng, 106:528-536.
    Xing D, Zuo Y, Cheng S, et al. 2008. Electricity generation by Rhodopseudomonas palustris DX-1[J]. Environ Sci Technol, 42:4146-4151.
    Xu M, Guo J, Cen Y, et al. 2005. Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant[J]. Int J Syst Evol Microbiol, 55:363-368.
    Yamamoto S, Harayama S. 1995. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis ofPseudomonas putida strains.[J]. Appl Environ Microbiol, 61:1104-1109.
    Ziemke F, Hofle MG, Lalucat J, et al. 1998. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov[J]. Int J Syst Bacteriol, 48:179-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700