用户名: 密码: 验证码:
环碳酸酯的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今化学研究领域,二氧化碳作为原料合成的环碳酸酯是一类极其重要的化合物,其可以作为极性非质子溶剂、有机合成的中间体以及聚合物的前体等。本论文以环碳酸酯的不对称合成及多组分合成为研究内容,包括以下四章:
     第一章:综述了环碳酸酯的应用及合成方法,并对二氧化碳与环氧化合物偶联反应合成环碳酸酯的最新进展进行了简要介绍,本章最后简要介绍了聚合物催化剂在不对称反应中的设计及应用。
     第二章:基于“均相催化,两相分离”这样一个概念设计合成了四种多手性中心的聚BINOL-SalenCo化合物,并对合成过程中遇到的问题进行了详细的介绍和讨论。
     第三章:将设计合成的聚BINOL-SalenCo化合物应用到催化二氧化碳与环氧化合物的不对称环加成反应以及环氧丙烷的动力学水解拆分反应,同时研究了不同手性催化剂、共催化剂、抗衡离子、反应温度对生成光活性环碳酸酯的ee值的影响,研究显示手性的Binol片段对于聚合物催化剂的光学选择性有着重要的影响,最后我们还对催化剂的循环使用进行了考察,结果显示该类催化剂在没有观察到活性及光学选择性明显降低的情况下,可以重复使用十次。
     第四章:在对二氧化碳与环氧化合物环加成反应机理理解的基础上,我们由Darzens缩合反应出发,在反应过程中引入二氧化碳气体,合成得到了环碳酸酯,从而将该合成反应设计成为由醛类衍生物,α-溴代苯乙酮衍生物,二氧化碳多组分一锅法反应合成多取代的环碳酸酯,同时研究了不同的碱、有机溶剂、反应温度、底物对产物选择性及产率的影响。结果显示该合成方法的优点在于该反应可以在非常温和的条件下(1 atm CO2,35℃),在非常短的反应时间内(10 min)得到环碳酸酯产物。
Cyclic carbonates, as one of products of CO2 chemistry, are attractive and important compounds in a variety of chemical research fields, such as polar aprotic solvent, intermediate in organic synthesis, precursors for polymeric materials such as polycarbonates。This thesis aims at the studies on the asymmetric synthesis and multi-component synthesis of cyclic carbonate, which consists of the following four chapters.
     Chapter 1:The application and synthesis of cyclic carbonate are reviewed, and the development in the green synthesis of cyclic carbonate via CO2 cycloaddition to epoxide is briefly introducted. The design and application of polymer catalyst on the asymmetric synthesis also are concluded in this chapter.
     Chapter 2:Based on the concept of "one-phase catalysis and two-phase separation", we developed four new polymer BINOL-Salen-Co (III)X catalysts with an auxiliary chiral site, and problems encountered in the synthesis of the catalyst are presented and discussed in detail.
     Chapter 3:Four new chiral polymers of BINOL-Salen-cobalt (III) salt complexes have been applied to the direct fabrication of chiral propylene carbonate from racemic propylene oxide and the hydrolytic kinetic resolution of racemic propylene. The experiment investigated the effect of different chiral catalyst, co-catalyst, counterious, reaction temperature in chiral cyclic carbonate formation. The chirality of the BINOL fragment has an important influence on the optical selectivity of Salen-Co(III)X complexes. The catalysts could be readily recovered and be repeatedly used without loss of either activity or enantioselectivity.
     Chapter 4:Inspired by the mechanism of the Darzens reaction and based on mechanism considerations of cyclic carbonate synthesis, we design a three-component cyclization reaction for polysubstituted cyclic carbonate synthesis in a single operation from phenacyl bromide, CO2, and aldehyde using LDA as a base. The experiment investigated the effect of base, solvent, reaction temperature, substrate on the selection and yield of cyclic carbonate formation. This novel, efficient synthesis of polysubstituted cyclic carbonates was achieved under mild conditions (1 atm,35℃) in reasonable yields with a reaction time of only ten minutes.
引文
[1]D. H. Gibson. The organometallic chemistry of carbon dioxide. Chem. Rev.,1996, 96,2063-2095.
    [2]D. B. Dell'Amico, F. Calderazzo, L. Labella, F. Marchetti, G. Pampaloni Converting carbon dioxide into carbamato derivatives. Chem. Rev.,2003,103, 3857-3897.
    [3]T. Sakara, J. C. Chio, H. Yasuda. Transformation of carbon dioxide. Chem. Rev., 2007,107,2365-2387.
    [4]D. J. Darensbourg. Making plastics from carbon dioxide:Salen metal complexes as catalysts for the Production of Polycarbonates from Epoxides and CO2. Chem. Rev., 2007,107,2388-2410.
    [5]P. G Jessop, F Joo, C. C. Tai. Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord. Chem. Rev.,2004,248,2425-2442.
    [6]W. Leitner. Supercritical carbon dioxide as a green reaction medium for catalysis. Acc. Chem. Res.,2002,35(9),746-756.
    [7]周之荣,徐琼.超临界CO2流体及离子液体中过渡金属有机催化反应研究进展.华东地质学院学报,2003,26(1),60-69.
    [8]P. G. Jessop, T. Ikariya, R. Noyori. Homogeneous catalysis in supercritical fluids. Chem. Rev.,1999,99(2),475-493.
    [9]宋瑞琦,曾健青,钟炳.超临界二氧化碳介质中过渡金属催化反应研究进展.有机化学,2002,22(4),248-253.
    [10]何涛,胡红旗,陈鸣才等.超临界二氧化碳—高分子化学中的绿色介质.功能高分子学报,2003,16(2),281-286.
    [11]T. Sakakura, K. Kohno. The synthesis of organic carbonates from carbon dioxide Chem. Commun.,2009,1312-1330.
    [12]M. North, R. Pasquale. Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew. Chem., Int. Ed.,2009,48,2946-2948. Angew. Chem.,2009,121, 2990-2992.
    [13]F. Shi, Y. Q. Deng, T. Sima, J. Peng, Y. Gu, B. Qiao. Alternatives to phosgene and carbon monoxide:substitution of phosgene and carbon monoxide:synthesis of symmetric ureas with carbon dioxide in ionic liquids. Angew. Chem. Int. Ed.,2003,42, 3257-3260.
    [14]Y. Du, Y. Wu, A. H. Liu, L. N. He. Quaternary ammonium bromide functionalized polyethylene glycol:a highly efficient and recyclable catalyst for selective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. J. Org. Chem.,2008,73,4709-4712.
    [15]J. Louie, J. E. Gibby, M. V. Farnworth, T. N. Tekavec. Efficient nickel-catalyzed [2+2+2] cycloaddition of CO2 and diynes.J. Am. Chem. Soc.,2002,124, 15188-15189.
    [16]Z. F. Zhang, Y. Xie, W. J. Li, S. Q. Hu, J. L. Song, T. Jiang, B. X. Han. Hydrogenation of carbon dioxide is promoted by a task-specific ionic liquid. Angew. Chem. Int. Ed.,2008,47,1127-1129.
    [17]M. Yoshida, Y. Ohsawa, K. Sugimoto, H. Tokuyama, M. Ihara. Synthesis of vinyloxazolidinones by palladium-catalyzed CO2-recycling reaction of 4-(benzylamino)-2-butenyl carbonates. Tetrahedron Lett,2007,48,8678-8682.
    [18]M. Zerella, S. Mukhopadhyay, A. T. Bell. Synthesis of mixed acid anhydrides from methane and carbon dioxide in acid solvents. Org. Lett.,2003,5,3193-3196.
    [19]P. Yan, H. W. Jing. Catalytic asymmetric cycloaddition of carbon dioxide and propylene oxide using novel chiral polymers of binol-Salen-Cobalt(Ⅲ) salts. Adv. Synth. Catal.,2009,351,1325-1332.
    [20]L. Jin, Y. Huang, H. Jing, T. Chang, P. Yan. Chiral catalysts for the asymmetric cycloaddition of carbon dioxide with epoxides. Tetrahedron:Asymmetry,2008,19, 1947-1953.
    [21]D. J. Darensbourg, M. W. Holtcamp. Catalysts for the reactions of epoxides and carbon dioxide. Coord. Chem. Rev.,1996,153-155.
    [22]M. Yoshida, M. Ihara. Novel methodologies for the synthesis of cyclic carbonates. Chem. Eur. J.,2004,10,2886-2893.
    [23]N. Eghbali, C. J. Li. Conversion of carbon dioxide and olefins into cyclic carbonates in water. Green Chem.,2007,9,213-215.
    [24]T. W. Greene, P. G. M. Wuts. Protective groups in organic synthesis. Wiley-VCH. Weinheim,1999, p241.
    [25]M. C. Willis, G. A. Cutting, M. P. John. A direct catalytic and diastereoselective aldol route to protected α,β-Dihydroxyketones. Synlett.,2004,1195-1198.
    [26]J. E. P. Davidson, E. A. Anderson, W. Buhr, J. R. Harrison, P. T. O'Sullivan, I. Collins, R. H. Green, A. B. Holmes. Synthesis of medium-ring lactones via tandem methylenation/Claisen rearrangement of cyclic carbonates. Chem. Commun.,2000, 629-630.
    [27]W. Alicja, C. Lech. A comparison of acid-base properties of substituted pyridines and their N-oxides in propylene carbonate. J. Chem. Thermodynamics.,1998,30(6), 713-722.
    [28]陈卫祥,杨兰生,单志强,邹建梅,刘黎.全固态锂电池用聚合物电解质的研究.电源技术,1996,20(2).,50-54.
    [29]J. Wolfenstine, M. Shietman, J. Read, D.Foster, W. Behl. The effect of the Mn-ion oxidation state on propylene carbonate decomposition. J. Power Sources,2000, 91(2),118-121.
    [30]M. Aresta, A. Dibenedetto, I. Tommasi. Direct synthesis of organic carbonates by oxidative carboxylation of olefins catalyzed by metal oxides:developing green chemistry based on carbon dioxide. Appl. Organomet. Chem.,2000,14,799-802.
    [31]J. L. Wang, J. Q. Wang, L. N. He, X. Y. Dou, F. Wu. A CO2/H2O2-tunable reaction: direct conversion of styrene into styene carbonate catalyzed by sodium phosphotungstate/n-Bu4NBr. Green Chem.2008,10,1218-1223.
    [32]D. Xiang, X. F. Liu, J. S. Sun, F. S. Xiao, J. M. Sun. A novel route for synthesis of styrene carbonate using styrene and CO2 as substrates over basic resin R201 supported Au catalyst. Catal. Today.,2009,148,383-388.
    [33]Y. Du, D. L. Kong, H. Y Wang, F. Cai, H. S. Tian, J. Q. Wang, L. N. He. Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO2 under supercritical conditions. J. Mol. Catal. A:Chem.,2005,241,233-237.
    [34]S. Y. Huang, S. G Liu, J. P. Li, N. Zhao, W. Wei,Y. H. Sun. Modified zinc oxide for the direct synthesis of propylene carbonate from propylene glycol and carbon dioxide. Catal. Lett.,2007,118,290-294.
    [35]S. Y. Huang, J. Ma, J. P. Li, N. Zhao, W. Wei, Y. H. Sun. Efficient propylene carbonate synthesis from propylene glycol and carbon dioxide via organic bases. Catal. Commun.,2008,9,276-280.
    [36]M. Aresta, A. Dibenedetto, C. Dileo, I. Tommasi, E. Amodio. The first synthesis of a cyclic carbonate from a ketal in SC-CO2. J. Supercrit. Fluids,2003,25,177-182.
    [37]K. Uemura, T. Kawaguchi, H. Takayama, A. Nakamura, Y. Inoue. Preparation of alkylidene cyclic carbonates via cyclization of propargylic carbonates. J. Mol. Catal. A:. Chem.,1999,139,1-9.
    [38]W. Yamada, Y. Sugawara, H. M. Cheng, T. Ikeno, T. Yamada. Silver-catalyzed incorporation of carbon dioxide into propargylic alcohols. Eur. J. Org. Chem.,2007, 2604-2607.
    [39]Y. Kayaki, M. Yamamoto, T. Ikariya. Stereoselective formation of a-alkylidene cyclic carbonates via carboxylative cyclization of propargyl alcohols in supercritical carbon dioxide. J. Org. Chem.,2007,72,647-649.
    [40]H. F. Jiang, J. W. Zhao, A. H. Wang. An efficient and eco-friendly process for the conversion of carbon dioxide into oxazolones and oxazolidinones under supercritical conditions. Synthesis,2008,763-769.
    [41]D. J. Darensbourg, M.W. Holtcamp. Catalysts for the reactions of epoxides and carbon dioxide. Coord. Chem. Rev.,1996,153,155-174.
    [42]M. L. Man, K. C. Lam, W. N. Sit, S. M. Ng, Z. Y. Zhou, Z. Y. Lin, C. P. Lau. Synthesis of heterobimetallic Ru-Mn complexes and the coupling reactions of epoxides with carbon dioxide catalyzed by these complexes. Chemistry-A European Journal, 2006,12,1004-1015.
    [43]J. Sun, W. G Cheng, W. Fan, Y. H. Wang, Z. Y. Meng, S. J. Zhang. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catal. Today,2009,148,361-367.
    [44]T. Chang, L. L. Jin, H. W. Jing. Bifunctional chiral catalyst for the synthesis of chiral cyclic carbonates from carbon dioxide and epoxides. ChemCatChem.,2009,1, 379-383.
    [45]X. L. Zhang, D. F. Wang, N. Zhao, A. S. N. Al-Arifi, T. Aouak, Z. A. Al-Othman, W. Wei, Y. H. Sun. Grafted ionic liquid:catalyst for solventless cycloaddition of carbon dioxide and propylene oxide. Catal. Commun.,2009,11,43-46.
    [46]J. J. Peng, Y. Q. Deng. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New. J. Chem.,2001,25,639-641.
    [47]V. Calo, A. Nacci, A. Monopoli, A. Fanizzi. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Org. Lett.,2002,4,2561-2563.
    [48]J. L. Anthony, E. J. Maginn, J. F. Brennecke. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B.,2002,106,7315-7320.
    [49]A. Corma, H. Garcia. Lewis acids:from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem. Rev.,2003,103,4307-4366.
    [50]D. W. Park, J. Y. Moon, J. G Yang, S. M. Jung, J. K. Lee, C. S. Ha. Catalytic conversion of carbon dioxide to polymer blends via cyclic carbonates. Stud. Surf. Sci. Catal.,1998,114,403-406.
    [51]H. Kawanami, A. Sasaki, K. Matsui, Y. Ikushima. A rapid and efficient synthesis of propylene carbonate under supercritical CO2-inoic liquid system. Chem. Commun., 2003,896-897.
    [52]W. N. Sit, S. M. Ng, K. Y. Kwong, C.P. Lau. Coupling reactions of CO2 with neat epoxides catalyzed by PPN salts to yield cyclic carbonates. J. Org. Chem.,2005,70, 8583-8586.
    [53]H. S. Kim, J. J. Kim, H. Kim, H. G. Jang. Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. J. Catal.,2003,220, 44-46.
    [54]J. Palgunadi, O. S. Kwon, H. Lee, J. Y. Bae, B. S. Ahn, N. Y. Min, H. S. Kim. Ionic liquid-derived zinc tetrahalide complexes:structure and application to the coupling reactions of alkylene oxides and CO2. Catal. Today.,2004,98,511-514.
    [55]J. M. Sun, S. I. Fujita, F. Y. Zhao, M. Arai. Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions. Green. Chem.,2004,6,613-616.
    [56]F. W. Li, L. F. Xiao, C. G Xia, B. Hu. Chemical fixation of CO2 with highly efficient ZnCl2/[BMIM]Br catalyst system. Tetrahedron Lett.,2004,45,8307-8310.
    [57]T. Chang, H. W. Jing, L. L. Jin, W. Y. Qiu. Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides. J. Mol. Catal. A:Chem., 2006,264,241-247.
    [58]常涛,吴梅,靳丽丽,景欢旺,邱文元.溴化锌-季(鎓)三溴盐催化二氧化碳和环氧化合物偶联反应.催化学报.,2007,28,404-406.
    [59]H. Schiff. Ann. Suppl.,1864,3,343.
    [60]R. L. Paddock, S. T. Nguyen. Chemical CO2 fixation:Cr(Ⅲ) Salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J. Am. Chem. Soc. 2001,123,11498-11499.
    [61]K. Yamaguchi, K. Ebitani, T. Yoshida, T. Yoshida, H. Yoshida, K. Kaneda. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc.,1999,121,4526-4527.
    [62]M. Tokunaga, J. F. Larrow, F. Kakiuchi, E. N. Jacobsen. Asymmetric catalysis with water:efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science,1997,277,936-938.
    [63]L. E. Martinez, J. L. Leighton, D. H. Carsten, E. N. Jacobsen. Highly enantioselective ring opening of epoxides catalyzed by (Salen)Cr(Ⅲ) complexes. J. Am. Chem. Soc.,1995,117,5897-5898.
    [64]K. B. Hansen, J. L. Leighton, E. N. Jacobsen. On the mechanism of asymmetric nucleophilic ring-opening of epoxides catalyzed by (Salen)Cr(Ⅲ) complexes. J. Am. Chem. Soc.,1996,118,10924-10925.
    [65]D. J. Darensbourg, C. C. Fang, J. L. Rodgers. Catalytic coupling of carbon dioxide and 2,3-epoxy-1,2,3,4-tetrahydronaphthalene in the presence of a (Salen)CrⅢCl derivative. Organometallics,2004,23,924-927.
    [66]X. B. Lu, R. He, C. Bai. Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst. J. Mol. Catal. A:Chem.,2002,186,1-11.
    [67]X. B. Lu, X. J. Feng, R. He. Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate Schiff-base complexes as catalyst. Appl. Catal. A:Gen.,2002,234,25-33.
    [68]X. B. Lu, Y. J. Zhang, B. Liang, X. Li, H. Wang. Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts. J. Mol. Catal. A:Chem.,2004,210,31-34.
    [69]X. B. Lu, Y. J. Zhang, K. Jin, L. M. Luo, H. Wang. Highly active electrophile-nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperature. J. Catal.,2004,227,537-541.
    [70]Y. M. Shen, W. L. Duan, M. Shi. Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co Salen-type complexes. J. Org. Chem.,2003,68, 1559-1562.
    [71]J. Mele'ndez, M. North, P. Villuendas. One-component catalysts for cyclic carbonate synthesis. Chem. Commun.,2009,2577-2579.
    [72]F. Jutz, J. D. Grunwaldt, A. Baiker. Mn(III)(Salen)-catalyzed synthesis of cyclic organic carbonates from propylene and styrene oxide in "supercritical" CO2. J. Mol. Catal. A:Chem.,2008,279,94-103.
    [73]H. W. Jing, S. K. Edulji, J. M. Gibbs, C. L. Stern, H. Y. Zhou, S. T. Nguyen. (Salen)Tin complexes:syntheses, characterization, crystal structures, and catalytic activity in the formation of propylene carbonate from CO2 and propylene oxide. Inorg. Chem.,2004,43,4315-4327.
    [74]H. W. Jing, T. Chang, L. L. Jin, M. Wu, W. Y. Qiu. Ruthenium Salen/phenyltrimethylammonium tribromide catalyzed coupling reaction of carbon dioxide and epoxides. Catalysis Communications,2007,8,1630-1634.
    [75]N. Takeda, S. Inoue. Activition of carbon dioxide by tetraphenyl porphinatoaluminium methoxide reaetion with epoxide. Bull. Chem. Soc. Jpn.,1978, 51,3564-3567.
    [76]T. Aidi, S. Inoue. Synthesis of polyether-polycarbonate block copolymer from carbon dioxide and epoxide using a metalloporphyrin catalyst system. Macromolecules, 1982,15,682-684.
    [77]T. Aida, M. Ishikawa, S. Inoue. Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin quaternary organic salt or triphenylphosphine system synthesis of polycarbonate with well-controlled molecular Weight. Macromolecules,1986,19,8-13.
    [78]T. Aida, S. Inoue. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. studies on (tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group.J. Am. Chem. Soc.,1983,105, 1304-1309.
    [79]W. J. Kruper, D. V. Dellar. Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates. J Org Chem.,1995,60,725-727.
    [80]R. L. Paddock, Y. Hiyama, J. M. McKay, S. T. Nguyen. Co(Ⅱ)porphyrin/DMAP: an efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett.,2004,45,2023-2026.
    [81]季东锋,吕小兵,何仁.碱性配体对氯铝酞菁催化CO2与环氧烷烃合成烷撑碳酸酯的促进作用.催化学报.,1999,20,675-679.
    [82]张英菊,梁斌,潘玉珍,何仁.四叔丁基金属酞菁催化活化C02与环氧丙烷的环加成反应.催化学报.,2003,24,765-768.
    [83]D. F. Ji, X. B. Lu, R. He. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst. Appl. Catal. A:Gen.,2000,203, 329-333.
    [84]L. L. Jin, H. W. Jing, T. Chang, X. L. Bu, L. Wang, Z. L. Liu. Metal porphyrin/phenyltrimethylammonium tribromide:high effieient catalysts for coupling reaction of CO2 and epoxides. J. Mol. Catal. A:Chem.,2007,261,262-266.
    [85]L. L. Jin, T. Chang, H. W. Jing. Coupling of epoxides with carbon dioxide catalyzed by ruthenium porphyrin complex. Chin. J. Catal.,2007,28,287-288.
    [86]C. R. Qi, H. F. Jiang, Z. Y. Wang, B. Zou, S. R. Yang. Naturally occurring a-amino acids catalyzed coupling of carbon dioxide with epoxides to afford cyclic carbonates. Synlett.,2007,255-258.
    [87]C. X. Miao, J. Q. Wang, Y. Wu, Y. Du, L. N. He. Bifunctional metal-Salen complexes as efficient catalysts for the fixation of CO2 with epoxides under solvent-free conditions. ChemSusChem.,2008,1,236-241.
    [88]X. Zhang, Y B. Jia, X. B. Lu, B. Li, H. Wang, L. C. Sun. Intramolecularly two-centered cooperation catalysis for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett.,2008,49,6589-6592.
    [89]B. M. Bhanage, S. I. Fujita, Y Ikushima, M. Arai. Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Appl. Catal. A:Gen.,2001, 219,259-266.
    [90]T. Yano, H. Matsui, T. Koike, H. Ishiguro, H. Fujihara, M. Yoshihara, T. Maeshima. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chem. Commun.,1997,1129-1130.
    [91]M. Aresta, A. Dibenedetto, L. Gianfrate, C. Pastore, Nb(V) compounds as epoxides carboxylation catalysts:the role of the solvent. J. Mol. Catal. A:Chem.,2003, 204-205,245-252.
    [92]H. Kawanami, Y. Ikushima. Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts. Chem. Commun.,2000,2089-2090.
    [93]M. Ramin, N. V. Vegten, J. D. Grunwaldt, A. Baiker. Simple preparation routes towards novel Zn-based catalysts for the solventless synthesis of propylene carbonate using dense carbon dioxide.J. Mol. Catal. A:Chem.,2006,258,165-171.
    [94]H. Yasuda, L. N. He, T. Takahashi, T. Sakakura. Non-halogen catalysts for propylene carbonate synthesis from CO2 under supercritical conditions. Appl. Catal. A: Gen.,2006,298,177-180.
    [95]S. S. Wu, X. W. Zhang, W. L. Dai, S. F. Yin, W. S. Li, Y Q. Ren, C. T. Au. ZnBr2-Ph4PI as highly efficient catalyst for cyclic carbonates synthesis from terminal epoxides and carbon dioxide. Appl. Catal. A:Gen.,2008,341,106-111.
    [96]M. Sankar, N. H. Tarte, P. Manikandan. Effective catalytic system of zinc-substituted polyoxometalate for cycloaddition of CO2 to epoxides. Appl. Catal. A: Gen.,2004,276,217-222.
    [97]K. Mori, Y. Mitani, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda. A single-site hydroxyapatite-bound Zinc catalyst for highly efficient chemical fixation of carbon dioxide with epoxides. Chem. Commun.,2005,3331-3333.
    [98]S. F. Yin, W. L. Dai, S. L. Luo, S. S. Wu, X. W. Zhang, W. S. Li. CN 101265253 (patent).
    [99]E. J. Doskocil, S. V. Bordawekar, B. G. Kaye, R. J. Davis. UV-Vis spectroscopy of iodine adsorbed on alkali-modified zeolite catalysts for addition of carbon dioxide to ethylene oxide. J. Phys. Chem. B.,1999,103,6277-6282.
    [100]R. J. Davis, E. J. Doskocil, S. Bordawekar. Structure/function relationships for absic zeolite catalysts containing occluded alkali species. Catal. Today,2000,62, 241-247.
    [101]E. J. Doskocil. Effect of water and alkali modifications on ETS-10 for the cycloaddition of CO2 to propylene oxide. J. Phys. Chem. B.,2005,109,2315-2320.
    [102]J. Sun, J. Y. Ren, S. J. Zhang, W. G. Cheng. Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron Lett.,2009,50,423-426.
    [103]M. Tu, R. J. Davis. Cyclo-addition of CO2 to epoxides over solid base catalysts. J. Catal.,2001,199,85-91.
    [104]E. J. Doskocil. Ion-exchanged ETS-10 catalysts for the cycloaddition of carbon dioxide to propylene oxide. Micropor Mesopor Mat.,2004,76,177-183.
    [105]R. Srivastava, D. Srinivas, P. Ratnasamy. Synthesis of polycarbonate precursors over titanosilicate molecular sieves. Catal. Lett.,2003,91,133-139.
    [106]S. Fujita, B. M. Bhanage, Y. Ikushima, M. Shirai, K. Torii, M. Arai. Chemical fixation of carbon dioxide to propylene carbonate using smectite catalysts with high activity and selectivity. Catal. Lett.,2002,79,95-98.
    [107]R. Srivastava, D. Srinivas, P. Ratnasamy. CO2 activation and synthesis of cyclic carbonates and alkyl/aryl carbamates over adenine-modified Ti-SBA-15 solid catalysts. J. Catal.,2005,233,1-15.
    [108]D. Srinivas, P. Ratnasamy. Spectroscopic and catalytic properties of SBA-15 molecular sieves functionalized with acidic and basic moieties. Micropor Mesopor Mat.,2007,105,170-180.
    [109]A. Barbarini, R. Maggi, A. Mazzacani, G. Mori, G. Sartori, R. Sartorio. Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron. Lett.,2003,44,2931-2934.
    [110]X. H. Zhang, N. Zhao, W. Wei, Y. H. Sun. Chemical fixation of carbon dioxide to propylene carbonate over amine-functionalized silica catalysts. Catal. Today.,2006, 115,102-106.
    [111]C. Baleizao, B. Gigante, M. J. Sabater, H. Garcia, A. Corma. On the activity of chiral chromium Salen complexes covalently bound to solid silicates for the enantioselective epoxide ring opening. Appl. Catal. A:Gen.,2002,228,279-288.
    [112]M. Alvaro, C. Baleizao, D. Das, E. Carbonell, H. Garcia. CO2 fixation using recoverable chromium Salen catalysts:use of ionic liquids as cosolvent or high-surface-area silicates as supports. J. Catal.,2004,228,254-258.
    [113]M. Ramin, F. Jutz, J. D. Grunwaldt, A. Baiker. Solventless synthesis of propylene carbonate catalysed by chromium-Salen complexes:Bridging homogeneous and heterogeneous catalysis. J. Mol. Catal. A:Chem.,2005,242,32-39.
    [114]R. Srivastava, D. Srinivas, P. Ratnasamy. Synthesis of cyclic carbonates from olefins and carbon dioxide over zeolite-based catalysts. Catal. Lett.,2003,89,81-85.
    [115]M. Alvaro, C. Baleizao, E. Carbonell, M. E. Ghoul, H. Garcia, B. Gigante. Polymer-bound aluminium Salen complex as reusable catalysts for CO2 insertion into epoxides. Tetrahedron.,2005,61,12131-12139.
    [116]X. B. Lu, J. H. Xiu, R. He, K. Jin, L. M. Luo, X. J. Feng. Chemical fixation of CO2 to ethylene carbonate under supercritical conditions:continuous and seleetive. Appl. Catal. A:Gen.,2005,275,73-78.
    [117]W. L. Wong, K. C. Cheung, P. H. Chan, Z. Y. Zhou, K. H. Lee, K. Y. Wong. A tricarbonyl ruthenium(I) complex with a pendant pyrrolidinium moiety as a robust and recyclable catalyst for chemical fixation of carbon dioxide in ionic liquid. Chem. Commun.,2007,2175-2177.
    [118]L. F. Xiao, F. W. Li, J. J. Peng, C. G. Xia. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. J. Mol. Catal. A:Chem.,2006,253,265-269.
    [119]J. Q. Wang, D. L. Kong, J. Y. Chen, F. Cai, L. N. He. Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. J. Mol. Catal. A:Chem.,2006,249, 143-148.
    [120]J. Q. Wang, X. D. Yue, F. Cai, L. N. He. Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silica-supported ionic liquids under supercritical conditions. Catal. Commun.,2007,8,167-172.
    [121]Y. Zhao, J. S. Tian, X. H. Qi, Z. N. Han, Y Y Zhuang, L. N. He. Quaternary ammonium salt-functionalized chitosan:An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Mol. Catal. A: Chem.,2007,271,284-289.
    [122]T. Takahashi, T. Watahiki, S. Kitazume, H. Yasuda, T. Sakakura. Synergistic hybrid catalyst for cyclic carbonate synthesis:Remarkable acceleration caused by immobilization of homogeneous catalyst on silica. Chem. Commun.,2006,1664-1666.
    [123]T. Sakai, Y. Tsutsumi, T. Ema. Highly active and robust organic-inorganic hybrid catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Green Chem.,2008,10,337-341.
    [124]H. L. Shim, S. Udayakumar, J. I. Yu, I. Kim, D. W. Park. Synthesis of cyclic carbonate from allyl glycidyl ether and carbon dioxide using ionic liquid-functionalized amorphous silica. Catal. Today.,2009,148,350-354.
    [125]S. Udayakumar, V. Raman, H. L. Shim, D. W. Park. Cycloaddition of carbon dioxide for commercially-imperative cyclic carbonates using ionic liquid-functionalized porous amorphous silica. Appl. Catal. A:Gen.,2009,368, 97-104.
    [126]J. L. Song, Z. F. Zhang, S. Q. Hu, T. B. Wu, T. Jiang, B. X. Han. MOF-5/n-Bu4NBr:an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem.,2009,11,1031-1036.
    [127]A. L. Zhu, T. Jiang, B. X. Han, J. C. Zhang, Y. Xie, X. M. Ma. Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. Green Chem.,2007,9,169-172.
    [128]B. Ochial, T. Endo. Polymer-supported pyridinium catalysts for synthesis of cyclic carbonate by reaction of carbon dioxide and oxirane. JPolym Sci Part A:Polym Chem.,2007,45,5673-5678.
    [129]L. Sorana, W. Katherine, P. Mandelin, A. Benny, W. Rick. Geometric requirements for the photolysis of aryloxiranes and cyclic carbonateesters. Tetrahedron Lett.,2002,43,1169-1170.
    [130]U. Hiroyuki, K. Motomu, S. Masakatsu. Studies toward the total synthesis of garsubellin A:synthesis of 8-deprenyl-garsubellin A. Tetrahedron Lett.,2002,43, 3621-3624.
    [131]V. Calo, A. Nacci, A. Monopoli, A. Fanizzi. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Org. Lett.,2002,4,2561-2563.
    [132]H. Yang, Y. Gu, Y. Deng, F. Shi. Electrochemical activation of carbon dioxide in ionic liquid:synthesis of cyclic carbonates at mild reaction conditions. Chem. Commun.,2002,274-275.
    [133]K. Matsumoto, S. Fuwa, H. Kitajima. Enzyme-mediated enantioselective hydrolysis of cyclic carbonates. Tetrahedron Lett.,1995,36,6499-6502.
    [134]M. Shimojo, K. Matsumoto, M. Hatanaka. Enzyme-mediated preparation of optically active 1,2-diols bearing a long chain:enantioselective hydrolysis of cyclic carbonates. Tetrahedron.,2000,56,9281-9288.
    [135]R. M. Burk, M. B. Roof. A safe and efficient method for conversion of 1,2-and 1,3-diols to cyclic carbonates utilizing triphosgene. Tetrahedron Lett.,1993,34, 395-398.
    [136]S. K. Kang, J. H. Jeon, K. S. Nam, C. H. Park, H. W. Lee. Regioselective protection of triols to cyclic carbonates. Synth. Commun.,1994,24,305-312.
    [137]X.-B. Lu, B. Liang, Y.-J. Zhang, Y.-Z. Tian, Y.-M. Wang, C.-X. Bai, H. Wang, R. Zhang. Asymmetric catalysis with CO2:Direct synthesis of optically active propylene carbonate from racemic epoxides.J. Am. Chem. Soc.,2004,126,3732-3733.
    [138]R. L. Paddock, S. T. Nguyen. Chiral (Salen)CoⅢ catalyst for the synthesis of cyclic carbonates. Chem. Commun.,2004,1622-1623.
    [139]A. Berkessel, M. Brandenburg. Catalytic asymmetric addition of carbon dioxide to propylene oxide with unprecedented enantioselectivity. Org. Lett.,2006,8, 4401-4404.
    [140]S.-W. Chen, R. B. Kawthekar, G.-J. Kim. Efficient catalytic synthesis of optically active cyclic carbonates via coupling reaction of epoxides and carbon dioxide. Tetrahedron Lett.,2007,48,297-300.
    [141]W. Yamada, Y. Kitaichi, H. Tanaka, T. Kojima, M. Sato, T. Ikeno, T. Yamada. Enantioselective incorporation of carbon dioxide into epoxides catalyzed by optically active cobalt(II) complexes. Bull. Chem. Soc. Jpn.,2007,80,1391-1401.
    [142]S. L. Zhang, Y. Z. Huang, H. W. Jing, W. X. Yao, P. Yan. Chiral ionic liquids improved the asymmetric cycloaddition of CO2 to epoxides. Green Chem.,2009,11, 935-938.
    [143]Q. H. Fan, C. Y. Ren, C. H. Yeung, W. H. Hu, A. S. C. Chan. Highly effective soluble polymer-supported catalysts for asymmetric hydrogenation. J. Am. Chem. Soc., 1999,121,7407-7408.
    [144]F. Locatelli, P. Gamez, M. Lemaire. Molecular imprinting of polymerised catalytic complexes in asymmetric catalysis. J. Mol. Catal. A:Chem.,1998,135, 89-98.
    [145]Q. S. Hu, W. S. Huang, L. Pu. A new approach to highly enantioselective polymeric chiral catalysts. J. Org. Chem.,1998,63,2798-2799.
    [146]W. S. Huang, Q. S. Hu, L. Pu. From highly enantioselective monomeric catalysts to highly enantioselective polymeric catalysts:Application of rigid and sterically regular chiral binaphthyl polymers to the asymmetric synthesis of chiral secondary alcohols. J. Org. Chem.,1999,64,7940-7956.
    [147]X. Q. Yao, H. L. Chen, W. R. Lu, G. Z. Pan, X. Q. Hu, Z. Zheng. Enantioselective epoxidation of olefins catalyzed by two novel chiral poly-Salen-Mn(III) complexes. Tetrahedron Lett.,2000,41,10267-10271.
    [148]Y. M. Song, X. Q. Yao, H. L. Chen, G. Z. Pan, X. Q. Hu, Z. Zheng. Highly enantioselective epoxidation of unfunctionalized olefins catalyzed by a novel recyclable chiral poly-Salen-Mn(III) complex. J. Chem, Soc., Perkin Trans.1.,2002, 870-873.
    [149]Y. M. Song, X. Q. Yao, H. L. Chen, C. M. Bai, X. Q. Hu, Z. Zheng. Highly enantioselective resolution of terminal epoxides using polymeric catalysts. Tetrahedron Lett.,2002,43,6625-6627.
    [150]Y. M. Song, H. L. Chen, X. Q. Hu, C. M. Bai, Z. Zheng. Highly enantioselective resolution of terminal epoxides with cross-linked polymeric Salen-Co(III) complexes. Tetrahedron Lett.,2003,44,7081-7085.
    [151]R. I. Kureshy, N. H. Khan, S. H. R. Abdi, S. Singh, I. Ahmed, R. V. Jasra. Catalytic asymmetric epoxidation of non-functionalised alkenes using polymeric Mn(III) Salen as catalysts and NaOCl as oxidant. J. Mol. Catal. A:Chem.,2004,218, 141-146.
    [152]R. Tan, D.-H. Yin, N.-Y. Yu, L. Tao, Z.-H. Fu, D.-L. Yin. A novel polymeric chiral Salen Mn(Ⅲ) complex as solvent-regulated phase transfer catalyst in the asymmetric epoxidation of styrene. J. Mol. Catal. A:Chem.,2006,259,125-132.
    [153]K. Qiao, F. Ono, Q. Bao, D. Tomida, C. Yokoyama. Efficient synthesis of styrene carbonate from CO2 and styrene oxide using zinc catalysts immobilized on soluble imidazolium-styrene copolymers. J. Mol. Catal. A:Chem.,2009,303,30-34.
    [154]D. E. Bergbreiter, S. D. Sung. liquid/liquid biphasic recovery/reuse of soluble polymer-supported catalysts. Adv. Synth. Catal.,2006,348,1352-1366.
    [1]Q. H. Fan, C. Y. Ren, C. H. Yeung, W. H. Hu, A. S. C. Chan. Highly effective soluble polymer-supported catalysts for asymmetric hydrogenation. J. Am. Chem. Soc., 1999,121,7407-7408.
    [2]Y. M. Song, X. Q. Yao, H. L. Chen, G Z. Pan, X. Q. Hu, Z. Zheng. Highly enantioselective epoxidation of unfunctionalized olefins catalyzed by a novel recyclable chiral poly-Salen-Mn(Ⅲ) complex. J. Chem. Soc, Perkin Trans.1.,2002, 870-873.
    [3]Y. M. Song, X. Q. Yao, H. L. Chen, C. M. Bai, X. Q. Hu, Z. Zheng. Highly enantioselective resolution of terminal epoxides using polymeric catalysts. Tetrahedron Lett.,2002,43,6625-6627.
    [4]Y. M. Song, H. L. Chen, X. Q. Hu, C. M. Bai, Z. Zheng. Highly enantioselective resolution of terminal epoxides with cross-linked polymeric Salen-Co(Ⅲ) complexes. Tetrahedron Lett.,2003,44,7081-7085.
    [5]R. I. Kureshy, N. H. Khan, S. H. R. Abdi, S. Singh, I. Ahmed, R. V. Jasra. Catalytic asymmetric epoxidation of non-functionalised alkenes using polymeric Mn(III) Salen as catalysts and NaOCl as oxidant. J. Mol. Catal. A:Chem.,2004,218, 141-146.
    [6]R. Tan, D.-H. Yin, N.-Y. Yu, L. Tao, Z.-H. Fu, D.-L. Yin. A novel polymeric chiral Salen Mn(III) complex as solvent-regulated phase transfer catalyst in the asymmetric epoxidation of styrene. J. Mol. Catal. A:Chem.,2006,259,125-132.
    [7]K. Qiao, F. Ono, Q. Bao, D. Tomida, C. Yokoyama. Efficient synthesis of styrene carbonate from CO2 and styrene oxide using zinc catalysts immobilized on soluble imidazolium-styrene copolymers. J. Mol. Catal. A:Chem.,2009,303,30-34.
    [8]D. E. Bergbreiter, S. D. Sung. liquid/liquid biphasic recovery/reuse of soluble polymer-supported catalysts. Adv. Synth. Catal.,2006,348,1352-1366.
    [9]X.-B. Lu, B. Liang, Y.-J. Zhang, Y.-Z. Tian, Y.-M. Wang, C.-X. Bai, H. Wang, R. Zhang. Asymmetric catalysis with CO2:Direct synthesis of optically active propylene carbonate from racemic epoxides.J. Am. Chem. Soc.,2004,126,3732-3733.
    [10]R. L. Paddock, S. T. Nguyen. Chiral (Salen)CoⅢ catalyst for the synthesis of cyclic carbonates. Chem. Commun,2004,1622-1623.
    [11]A. Berkessel, M. Brandenburg. Catalytic asymmetric addition of carbon dioxide to propylene oxide with unprecedented enantioselectivity. Org. Lett.,2006,8,4401-4404.
    [12]S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow, E. N. Jacobsen. Highly selective hydrolytic kinetic resolution of terminal epoxides catalyzed by chiral(Salen)CoⅢ complexes. J. Am. Chem. Soc.,2002, 124,1307-1315.
    [13]L.-L. Jin, Y.Z. Huang, H.W. Jing, T. Chang, P. Yan. Chiral catalysts for the asymmetric cycloaddition of carbon dioxide with epoxides. Tetrahedron:Asymmetry. 2008,19,1947-1953.
    [14]S.-I. Murahashi, S. Noji, N. Komiya. Oxidation of alkanes and alkenes using (Salen)Manganese complexes bearing a chiral binaphthyl strapped unit. Adv. Synth. Catal.,2004,346,195-198.
    [15]T. Maeda, T. Takeuchi, Y. Furusho, T. Takata. Design and synthesis of chiral poly(binaphthyl Salen zinc complex) and application of the asymmetric field based on its helical conformation to a catalytic asymmetric reaction. J. Polym. Sci. Part. A: Polym. Chem.2004,42,4693-4703.
    [16]M. Cavazzini, A. Manfredi, F. Montanari, S. Quici, G. Pozzi. Asymmetric epoxidation of alkenes in fluorinated media, catalyzed by second-generation fluorous chiral (Salen)manganese complexes. Eur. J. Org. Chem.,2001,4639-4649.
    [17]J. F. Larrow, E. N. Jacobsen, Y. Gao, Y. Hong, X. Nie, C. M. Zepp. A practical method for the large-scale preparation of [N,N'-Bis(3,5-di-tertbutylsalicylidene)-1,2-cyclohexanediaminato(2-)]manganese(Ⅲ) chloride, a hghly enantioselective epoxidation catalyst. J. Org. Chem.,1994, 1939-1942.
    [18]Y. Chen, S. Yekta, A. K. Yudin. Modified binol ligands in asymmetric catalysis. Chem. Rev.,2003,103,3155-3211.
    [1]A. Behr. Carbon dioxide as an alternative C1 synthetic unit:activation by transition-metal complexes. Angew. Chem.1988,100,681-698; Angew. Chem. Int. Ed. Engl.,1988,27,661-678.
    [2]X.-L. Yin, J. R. Moss. Recent developments in the activation of carbon dioxide by metal complexes. Coord. Chem. Rev.,1999,181,27-59.
    [3]D. Walther, M. Ruben, S. Rau. Carbon dioxide and metal centres:from reactions inspired by nature to reactions in compressed carbon dioxide as solvent. Coord. Chem. Rev.,1999,182,67-100.
    [4]D. H. Gibson. The organometallic chemistry of carbon dioxide. Chem. Rev.,1996, 96,2063-2095.
    [5]K. Nakano, T. Kamada, K. Nozaki. Selective formation of polycarbonate over cyclic carbonate:copolymerization of epoxides with carbon dioxide catalyzed by a Cobalt(Ⅲ) complex with a piperidinium end-capping arm. Angew. Chem.,2006,118, 7432-7435; Angew. Chem. Int. Ed.,2006,45,7274-7277.
    [6]R. L. Paddock, S. T. Nguyen. Chemical CO2 Fixation:Cr(Ⅲ) Salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J. Am. Chem. Soc. 2001,123,11498-11499.
    [7]H. Jing, K. E. Smita, J. Gibbs, C. Stern, H. Zhou, S. T. Nguyen. (Salen)Tin complexes:syntheses, characterization, crystal structures, and catalytic activity in the formation of propylene carbonate from CO2 and propylene oxide. Inorg. Chem.,2004, 43,4315-4327.
    [8]F. Shi, Q. Zhang, Y. Ma, Y. He, Y. Deng. From CO oxidation to CO2 activation: an unexpected catalytic activity of polymer-supported nanogold. J. Am. Chem. Soc., 2005,127,4182-4183.
    [9]F. Li, C. Xia, L. Xu, W. Sun, G. Chen. A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides. Chem. Commun., 2003,2042-2043.
    [10]W. J. Kruper, D. D. Dellar. Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates.J. Org. Chem.,1995,60,725-727.
    [11]Y. Xie, Z.-F. Zhang, T. Jiang, J.-L. He, B.-X. Han, T.-B. Wu, K.-L. Ding. CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix. Angew. Chem.,2007,119,7393-7396; Angew. Chem. Int. Ed.,2007, 46,7255-7258.
    [12]Y. Shen, W.-L. Duan, M. Shi. Phenol and organic bases Co-catalyzed chemical fixation of carbon dioxide with terminal epoxides to form cyclic carbonates. Adv. Synth. Catal.,2003,345,337-340.
    [13]T. Chang, H. Jing, L. Jin, W. Qiu. Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides.J. Mo J. Catal. A:Chem.,2007, 264,241-247.
    [14]K. C. Nicolaou, Z. Yang, J.-J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannanand, E. J. Sorensen. Total synthesis of Taxol. Nature,1994,367,630-634.
    [15]T. Takata, Y. Furusho, K. Murakawa, T. Endo, H. Matsuoka, T. Hirasa, J. Matsuo, M. Sisido. Optically active poly(aryl carbonates) consisting of axially chiral units. chiral binaphthyl group induced helical polymer. J. Am. Chem. Soc.,1998,120, 4530-4531.
    [16]J. H. Clements. Reactive applications of cyclic alkylene carbonates. Ind. Eng. Chem. Res.,2003,42,663-674.
    [17]R. M. Burk, M. B. Roof. A safe and efficient method for conversion of 1,2-and 1,3-diols to cyclic carbonates utilizing triphosgene. Tetrahedron Lett.,1993,34, 395-398.
    [18]S. K. Kang, J. H. Jeon, K. S. Nam, C. H. Park, H. W. Lee. Regioselective protection of triol to cyclic carbonates. Synth. Commun.,1994,24,305-312.
    [19]K. Matsumoto, S. Fuwa, H. Kitajima. Enzyme-mediated enantioselective hydrolysis of cyclic carbonates. Tetrahedron Lett.,1995,36,6499-6502.
    [20]M. Shimojo, K. Matsumoto, M. Hatanaka. Enzyme-mediated preparation of optically active 1,2-diols bearing a long chain:enantioselective hydrolysis of cyclic carbonates. Tetrahedron.,2000,56,9281-9288.
    [21]H. Hisch, R. Millini, I.-J. Wang. Bifunctional catalysts for the synthesis of cyclic carbonates from oxiranes and carbon dioxide. Chem. Ber.,1986,119,1090-1094.
    [22]B. M. Trost, S. R. Angle. Palladium-mediated vicinal cleavage of allyl epoxides with retention of stereochemistry:a cis hydroxylation equivalent. J. Am. Chem. Soc., 1985,107,6123-6124.
    [23]M. Tokunaga, J. F. Larrow, F. Kakiuchi, E. N. Jacobsen. Asymmetric catalysis with water:efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science.,1997,277,936-938.
    [24]X.-B. Lu, B. Liang, Y.-J. Zhang, Y.-Z. Tian, Y.-M. Wang, C.-X. Bai, H. Wang, R. Zhang. Asymmetric catalysis with CO2:Direct synthesis of optically active propylene carbonate from racemic epoxides. J. Am. Chem. Soc.,2004,126,3732-3733.
    [25]A. Berkessel, M. Brandenburg. Catalytic asymmetric addition of carbon dioxide to propylene oxide with unprecedented enantioselectivity. Org. Lett.,2006,8,4401-4404.
    [26]S.-W. Chen, R. B. Kawthekar, G.-J. Kim. Efficient catalytic synthesis of optically active cyclic carbonates via coupling reaction of epoxides and carbon dioxide. Tetrahedron Lett.,2007,48,297-300.
    [27]W. Yamada, Y. Kitaichi, H. Tanaka, T. Kojima, M. Sato, T. Ikeno, T. Yamada. Enantioselective incorporation of carbon dioxide into epoxides catalyzed by optically active cobalt(Ⅱ) complexes. Bull. Chem. Soc. Jpn.,2007,80,1391-1401.
    [28]L. Jin, Y. Huang, H. Jing, T. Chang, P. Yan. Chiral catalysts for the asymmetric cycloaddition of carbon dioxide with epoxides. Tetrahedron:Asymmetry,2008,19, 1947-1953.
    [29]Tao Chang, Lili Jin, and Huanwang Jing Bifunctional Chiral Catalyst for the Synthesis of Chiral Cyclic Carbonates from Carbon Dioxide and Epoxides ChemCatChem 2009,1,379-383.
    [30]S. L. Zhang, Y. Y.Song, H. W. Jing, P. Yan, Q. Cai. Cinchona-cerived quaternary ammonium salts-improved asymmetric cycloaddition of CO2 to epoxides Dioxide Catalyzed by Ruthenium Porphyrin Complex. Chinese Journal of Catalysis,2009,30, 1255-1260.
    [31]L. P. C. Nielsen, C. P. Stevenson, D. G. Blackmond, E. N. Jacobsen. Mechanistic investigation leads to a synthetic improvement in the hydrolytic kinetic resolution of terminal epoxides. J. Am. Chem. Soc.,2004,126,1360-1362.
    [32]J. M. Ready, E. N. Jacobsen. Highly active oligomeric (Salen)Co catalysts for asymmetric epoxide ring-opening eeactions. J. Am. Chem. Soc.,2001,123,2687-2688.
    [33]D. Allen Annis, E. N. Jacobsen. Polymer-supported chiral Co(Salen) complexes: synthetic applications and mechanistic investigations in the hydrolytic kinetic resolution of terminal epoxides. J. Am. Chem. Soc.,1999,121,4147-4154.
    [1]D. J. Darensbourg, M. W. Holtcamp. Catalysts for the reactions of epoxides and carbon dioxide. Coord. Chem. Rev.1996,153,155-174.
    [2]M. Yoshida, M. Ihara. Novel methodologies for the synthesis of cyclic carbonates. Chem. Eur. J.2004,10,2886-2893
    [3]T. W. Greene, P. G. M. Wuts. Protective Groups in Organic Synthesis, Wiley-VCH, Weinheim,1999, p.241.
    [4]M. C. Willis, G. A. Cutting, M. P. John. A direct catalytic and diastereoselective aldol route to protected α,β-dihydroxyketones. Synlett 2004,1195-1198.
    [5]J. E. P. Davidson, E. A. Anderson, W. Buhr, J. R. Harrison, P. T. O'Sullivan, I. Collins, R. H. Green, A. B. Holmes. Synthesis of medium-ring lactones via tandem methylenation/Claisen rearrangement of cyclic carbonates. Chem. Commun.2000, 629-630.
    [6]S. Mizobuchi, J. Mochizuki, H. Soga, H. Tanba, H. Inoue. Aldgamycin G, a new macrolide anti-biotic. J. Antibiot.1986,39,1776-1778.
    [7]S. Chatterjee, G C. S. Reddy, C. M. M. Franco, R. H. Rupp, B. N. Ganguli, H. W. Fehlhaber, W. Hans, H. Kogler. Swalpamycin, a new macrolide antibiotic. II. Structure elucidation. J. Antibiot.1987,40,1368-1374.
    [8]M. Patel, M. Conover, A. Horan, D. Loebenberg, J. Marquez, R. Mierzwa, M. S. Puar, R. Yarborough, J. A. Waitz. A novel antibiotic from a Microbispora sp.:taxonomy, fermentation, isolation and biological properties. J. Antibiot.1988,41,794-797.
    [9]J. Maa, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, Y. Sun. A short review of catalysis for CO2 conversion. Catal. Today.,2009,148,221-231.
    [10]T. Sakakura, J. C. Choi, H. Yasuda. Transformation of carbon dioxide. Chem. Rev., 2007,107,2365-2387.
    [11]A.-A. G. Shaikh, S. Sivaram. Organic carbonates. Chem. Rev.,1996,96,951-976.
    [12]T. Sakakura, K. Kohno. The synthesis of organic carbonates from carbon dioxide. Chem. Commun.,2009,1312-1330.
    [13]R. N. Salvatore, S. I. Shin, A. S. Nagle, K. W. Jung. Efficient carbamate synthesis via a three-component coupling of an amine, CO2, and alkyl halides in the presence of CS2CO3 and tetrabutylammonium iodide. J. Org. Chem.,2001,66,1035-1037.
    [14]M. North, R. Pasquale. Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew. Chem. Int. Ed.,2009,48,2946-2948.
    [15]N. Eghbali, C. J. Li. Conversion of carbon dioxide and olefins into cyclic carbonates in water. Green Chem.,2007,9,213-215.
    [16]J. L. Wang, J. Q. Wang, L. N. He, X. Y. Dou, F. Wu. A CO2/H2O2-tunable reaction: direct conversion of styrene into styrene carbonate catalyzed by sodium phosphotungstate/n-Bu4NBr. Green Chem.2008,10,1218-1223.
    [17]J. Melendez, M. North, P. Villuendas. One-component catalysts for cyclic carbonate synthesis. Chem. Commun.,2009,2577-2579.
    [18]X.-B. Lu, B. Liang, Y.-J. Zhang, Y.-Z. Tian, Y.-M. Wang, C.-X. Bai, H. Wang, R. Zhang. Asymmetric catalysis with CO2:direct synthesis of optically active propylene carbonate from racemic epoxides.J. Am. Chem. Soc.2004,126,3732-3733.
    [19]A. Berkessel, M. Brandenburg. Catalytic asymmetric addition of carbon dioxide to propylene oxide with unprecedented enantioselectivity. Org. Lett.,2006,8,4401-4404.
    [20]T. Chang, H. Jing, L. Jin, W. Qiu. Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides. J. Mol. Catal. A:Chem.2007, 264,241-247.
    [21]K. Tanaka, R. Shiraishi. Darzens condensation reaction in water. Green Chemistry., 2001,3,135-136.
    [22]T. Akiyama, T. Suzuki, K. Mori. Enantioselective aza darzens reaction catalyzed by a chiral phosphoric acid. Org. Lett.,2009,11,2445-2447.
    [23]A. K. Ghosh, J.-H. Kim. Stereoselective chloroacetate aldol reactions:syntheses of acetate aldol equivalents and darzens glycidic esters. Org. Lett.,2004,6,2725-2728.
    [24]G. H. Posner, C. M. Lentz. A directing effect of neighboring aromatic groups on the regiochemistry of formation and stereochemistry of alkylation and bromination of ketone lithium enolates. Evidence for lithium-arene coordination and dramatic effect of copper(Ⅰ) in controlling stereochemistry and limiting polyalkylation. J. Am. Chem. Soc. 1979,101,934-946.
    [25]R. N. Salvatore, F. X. Chu, A. S. Nagle, E. A. Kapxhiu, R. M. Cross, K. W. Jung. Efficient Cs2CO3-promoted solution and solid phase synthesis of carbonates and carbamates in the presence of TBAI. Tetrahedron,2002,58,3329-3347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700