用户名: 密码: 验证码:
微乳液浸渍—破乳技术制备钯整体式催化剂及其催化加氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多相催化选择加氢是石油化工、精细化学品合成中的重要反应。对于保持高催化活性的同时,也具有更高中间产物选择性的催化剂的研究,具有重大的工业应用价值。整体式催化剂由于其载体的结构化、相间传质效率高、孔内扩散路径短的特点,与传统的颗粒催化剂相比,在提高串联反应选择性方面表现出巨大潜力。本研究以整体式催化剂的特点为基础,探讨了以W/O微乳液合成的Pd纳米微粒为前驱物的Pd负载技术,实现了Pd纳米微粒在具有微米级孔径的多孔α-Al_2O_3陶瓷管上的直接负载,发展出了新型Pd整体式催化剂制备技术。以此为基础,将新型Pd整体式催化剂,应用于1,5-环辛二烯选择加氢制备环辛烯的研究,并考察了反应动力学。
     (1)微乳液体系与Pd纳米微粒的合成研究。考察了表面活性剂HLB值、含量、温度对Tween80-Span80及O13/80微乳液体系W/O相区的影响及微乳液稳定性随时间的变化,利用稳定的W/O微乳液合成并表征了Pd纳米微粒。结果表明,表面活性剂HLB为13、含量γ为0.20、水与表面活性剂的摩尔比ω_0为3-8、完全混合3小时之后,两种微乳液体系均为稳定的W/O微乳液。在反应温度30℃条件下,两种稳定的W/O微乳液中合成的Pd纳米微粒,粒径为3-10 nm,呈球形或近似球形,高度分散。O13/80微乳液采用含还原剂微乳液还原的方式,3分钟内即可反应完全;而Tween80-Span80微乳液则需采用还原剂水溶液还原的方式,才能实现较完全、快速的反应。
     (2)微乳液中Pd纳米微粒的化学破乳沉积研究。对Tween80-Span80、O13/80两种含Pd微乳液体系的化学破乳过程的研究表明,具有短链、强亲水性的甲醇、乙醇、四氢呋喃、丙酮,都可以使两种含Pd微乳液体系破乳,从而使Pd纳米微粒沉积。对Tween80-Span80微乳液体系而言,随着破乳剂用量的增大,混合体系依次呈现均相、分层及再均相的变化。破乳剂能显著降低内聚能比(R),使W/O微乳液向双连续型微乳液转变。破乳剂使R降低的幅度顺序为:甲醇>乙醇>THF>丙酮。对O13/80微乳液体系而言,随着破乳剂用量的增大,混合体系一直为均相体系。不同破乳剂使Pd沉积速率顺序为:THF>丙酮>甲醇>乙醇。破乳剂作用下O13/80微乳液的两亲因子(f_α)逐渐降低,微乳液向无序混合物转变。
     与Tween80-Span80微乳液相比,O13/80微乳液体系合成Pd纳米微粒,是微乳液之间的还原反应,有利于保持整个体系的稳定性;化学破乳无明显相变,从高度有序的微乳液结构到无序混合物呈渐变过程,使得Pd微粒的沉积速率易于控制,为实现后续研究中Pd微粒在载体表面的均匀负载提供了条件。
     (3)Pd纳米微粒在载体上的负载研究。将含Pd纳米微粒的O13/80微乳液,对多孔α-Al_2O_3陶瓷管载体同时进行循环浸渍与化学破乳,实现了Pd纳米微粒在多孔α-Al_2O_3陶瓷管上的负载,制备了新型Pd整体式催化剂。考察了浸渍-破乳过程载体通量的下降与恢复,以及浸渍-破乳方式、焙烧温度对整体式催化剂上Pd形态、分布及负载量的影响。结果表明,乙醇与水交替洗涤、400℃焙烧,可以使由于浸渍-破乳造成的多孔载体下降的通量恢复95%。结合粉状α-Al_2O_3载体上负载的Pd微粒的TEM、XPS表征结果,对Pd整体式催化剂的SEM、XRD、AAS分析表明,负载后的Pd虽形成团簇,团簇中的Pd微粒还是基本保持了其在微乳液中的原始粒径;以Pd单质晶体形态均匀分布于载体孔结构中。微乳液浸渍-破乳技术制备的整体式催化剂上Pd负载量可达0.312%,10次负载量的方差小于0.06844。
     (4)Pd整体式反应器中的1,5-COD加氢反应研究。为便于比较,首先通过浆态床反应器优化了反应条件:正辛烷作溶剂、搅拌速率1600min~(-1)、反应压力1.0MPa、反应温度47℃、1,5-COD初始浓度0.4kmol.m~(-3)。接着重点考察了Pd整体式催化剂的制备条件与整体式反应器操作条件对催化活性与选择性的影响。结果表明,当载体孔径1.9μm、循环浸渍的同时缓慢递加乙醇使微乳液破乳、400℃焙烧、Pd负载量0.151%、流量420 ml/min条件下,Pd整体式催化剂具有最高的催化活性与选择性。
     进一步将Pd整体式反应器与浆态床、固定床反应器中的1,5-COD加氢反应效果进行了比较。结果表明,当1,5-COD完全转化时,整体式反应器与浆态床反应器中的COE选择性很接近(94.08%、95.10%),都远远高于固定床反应器(70.04%)。这表明,与固定床反应器相比,Pd整体式反应器在提高选择性方面效果显著。理论分析显示,中间产物选择性的提高,源于整体式催化剂Pd分布层中停留时间及中间产物局部浓度的降低,从而使表观两步反应速率常数之比k_(1eff)/k_(2eff)著提高。
     (5)1,5-COD加氢反应动力学研究。针对浆态床反应器与整体式反应器中1,5-COD加氢反应实验结果,借鉴Santacesaria E的间接处理方法,提出了包含内、外效率因子的反应速率方程式模型很好地拟和了实验数据。采用空间自适应性粒子群优化算法(LAPSO)估算出了模型参数:k_(10)=14729.05; k_(20)=84.248; E_1=33.7 kJ.mol~(-1);E_2=31.438 kJ.mol~(-1)。
The multiphase selective hydrogenation is widely used in petrochemical and fine chemical industries. An important aim is to achieve high selectivity of intermediate product with an accepteable conversion rate. The monolithic catalyst shows great potential on the improvement of selectivity of series reactions campared with tranditional pellet catalyst in view of the structured support, high efficiency of intra-phase mass transfer and short diffusion path. Based on the feature of monolithic catalyst, the Pd immobilization technique with Pd nano particles synthesized by W/O microemulsion as precursor was investigated. The direct immobilization of Pd nano particles in porousα-Al_2O_3 ceramic tube was realized and a new preparation technique of Pd monolithic catalyst was developed in this study. In addition, the selective hydrogenation of 1,5-cyclooctadiene to cyclooctene was performed over the Pd monolithic catalyst.
     (1) Microemulsion systems and the synthesis of Pd nano particles therein. The effects on the W/O phase region of HLB value, content of surfactants and temperature as well as the stability of Tween80-Span80 and O13/80 microemulsion syetems were investigated. Then the Pd nano particles were synthesized in the stable W/O microemulsion. The results show that the stable W/O microemulsion can be obtained with the HLB value 13 and content 0.20 of surfactant, the mole ratio of water to surfactant 3 to 8 and 3 hours after completely mixing. The spherical or near spherical, with size 3-10 nm, well dispersed Pd nano particles can be synthesized at 30℃in the two types of microemulsion. To make reaction proceed rapidly and completely, the reductant-contaning microemulsion is adopted for O13/80 microemulsion. whereas the reductant solution must be adopted for Tween80-Span80 microemulsion.
     (2) Deposition of Pd nano particles in microemulsion by chemical-demulsifying. The chemical-demulsifying processes of Tween80-Span80 and O13/80 microemulsion systems contaning Pd nano particles were investigated. The results show that such agents as methanol, ethanol, THF and acetone can demulsify microemulsion and make Pd nano particles deposite because of their short chain structure and high hydrophilicity. As for Tween80-Span80 microemulsion system, the above demulsifying agents can greatly decrease the cohesion energy ratio(R) of microemulsion and lead to the transition to co-continuous structure in a sequence of methanol>ethanol>THF>acetone. As for O13/80 microemulsion system, the mixture of microemulsion and demulsifying agent remains homogeneous with the increase of the amount of demulsifying agents. The sequence of deposition rate of Pd nano particles from microemulsion is: THF>acetone>methanol>ethanol. The amphilicity of O13/80 microemulsion decreases gradually and is transformed into disordered mixture under the action of demulsifying agents.
     Compared with Tween80-Span80 microemulsion, during the process of Pd synthesis, it is more beneficial to maintain the stability of microemulsion in view of the reducing pattern. Meanwhile, no obvious phase transition is observed during the demulsifying process and it is a gradual process from highly ordered microemulsion to disordered mixture in O13/80 microemulsion Therefore it is easy to control the deposition rate of Pd particles, and more beneficial to the follwing Pd immobilization step on the support.
     (3) Immobilization of Pd nano particles in porousα-Al_2O_3 ceramic tube. To prepare Pd monolithic catalyst, the Pd nano particles were immobilized in porousα-Al_2O_3 ceramic tube by cycle-impregnating and chemical-demulsifying simultaneously. The decrease and recover of support flux during impregnation-demulsifying process as well as the effects on the phase, distribution and Pd loading amount of demulsifying pattern, and calcination temperature were investigated. The results show that the support flux can be recoved 95% through washing by water and ethanol alternatively and calcination at temperature 400℃. Combined with the results of TEM and XPS of Pd onα-Al_2O_3 powder and the results of SEM, XRD and AAS of Pd onα-Al_2O_3 monolithic support, it is demonstrated that, on the monolithic support, Pd nano particles form clusters which is composed of nano particles with original size in microemulsion. And Pd particles are well distributed in Pd crystalline phase in the pore structure of support. The Pd loading amount of monolithic catalyst can reach 0.312% and the square difference of ten times loading amount is lower than 0.06844.
     (4) Hydrogenation reaction of 1,5-COD over Pd monolithic catalyst. Firstly the optimized reaction conditions were obtained in SR(slurry reactor): n-heptane as solvent, agitating rate 1600min~(-1), reaction pressure 1.0MPa, reaction temperature 47℃and initial concentration 0.4 kmol.m~(-3). The effects on activity and selectivity of preparation parameters and operating parameters were investigated. The results show that Pd monolithic catalyst exhibites the highest activity and selectivity with Pd loading amount 0.151%, dripping ethanol slowly at the same time cycle impregnation, calcination temperature 400℃, support with pore size 1.9μm and flow rate 420 ml/min.
     Comparing the catalytic performance in MR(monolithic reactor), SR and FBR(fixed bed reactor) shows that the selectivity for COE in MR(94.08%) is near to that in SR(95.10%) and much higher than that in FBR(70.04%). The theoretical analysis shows that the improvement of selectivity can be contributed to the decrease of staying time and the local concentration of intermediate product in active layer. Therefore the ratio of two step apparent reaction constants k_(1,(eff))/k_(2,(eff)) is fairly increased.
     (5) Kinetics of hydrogenation reaction of 1,5-COD. The model of reaction rate equation including the intra- and inter-porous efficiencies was presented based on the experimental data in SR and MR and using the indirect method from Santacersaria E for reference. The model(?) can fitthe expenmental data well, The parameters in model were evaluated byLandscape adaptive particle swarm optimization(LAPSO) method k_(10)=14729.05; k_(20)=84.248; E_1=33.7 kJ.mol~(-1);E_2=31.438 kJ.mol~(-1).
引文
[1] Paul T, Anastas a, Mary M. et al. Catalysis as a foundational pillar of green chemistry[J]. Applied Catalysis A: General, 2001,221 (1-2): 3-13
    [2] Hagen J. Technische Katalyse[M]. VCH, Weinheim, 1996
    [3] 陈慕华,秦晓静,储伟,等.载体对钯基选择加氢催化剂性能的影响[J].石油学报(石油加工),2006,22(2):20-26
    [4] 张玉军,陈杰瑢.油脂加氢催化剂研究现状及发展趋势[J].工业催化,2002,10(6):23-27
    [5] Dobrovoln(?) Z, Kacer P, Cerven(?) L. Competitive hydrogenation in alkene-alkyne-diene systems with palladium and platinum catalysts[J]. Journal of Molecular Catalysis A: Chemical, 1998,130(3), 279-284
    [6] 陈海,严彬.部分中毒Pd/C催化剂上环戊二烯的加氢反应[J].燃料化学学报,1993,21(2):135-138
    [7] 黄小军,李和兴,戴魏林.铅修饰Pd/Al_2O_3催化剂上环戊二烯的选择加氢反应[J].催化学报,1997,18(5);418-420
    [8] 于岚,王华,张风英,等.食用油脂稀土催化剂的研制[J].中国油脂,1993,2:14-15
    [9] Huang D C, Chang K H, Pong W F, et al. Synergetic effect of Pd and Ag dispersed on Al_2O_3 in the selective hydrogenation of acetylene[J]. Cataysis Letters, 1998,53(3-4), 155-159
    [10] Robert N, Ngamsom L B, Trimm D L, et al. Surface characterisation of Pd-Ag/ Al_2O_3 catalysts for acetylene hydrogenation using an improved XPS procedure[J].Applied Catalysis A: General, 2004,268(1-2): 43-50
    [11] 徐海升,李谦定.C4馏分选择加氢脱除丁二烯研究[J].石化技术与应用,2004,22(4):249-252
    [12] Borgna A, Moraweck B, Massardier J. et al. New supported palladium-chromium catalysts: characterization and catalytic properties[J]. Journal of Catalysis., 1991, 128(1): 99-112
    [13] Boitiaux J P, Cosyns J, Derrien M, et al. Description of bimetallic catalysts for selective hydrogenations of C2-,C3-,C4-,C5- and C5+-hydrocarbon streams[J]. Hydrocarbon Proces, 1985, 64(3): 51-59
    [14] Miegge P, Rousset J L, Tardy B, et al. Pd_1Ni_(99) and Pd_5Ni_(95): Pd Surface Segregation and Reactivity for the Hydrogenation of 1,3-Butadiene[J]. Journal of Catalysis, 1994,149(2): 404-413
    [15] Shin E W, Kang J H, Kim W J, et al. Perfonnance of Si-modified Pd catalyst in acetylene hydrogenation: the origin of the ethylene selectivity improvement[J]. Applied Catalysis A: General, 2002,223(1-2): 161-172
    [16] Leviness S, Nair V, Weiss A. et al. Acetylene Hydrogenation Selectivity Control on PdCu/Al_2O_3. Catalysts[J]. Journal of Molecular Catalyst, 1984,25(1-3): 131-140
    [17] Guczi L, Schaya Z, Steflera Gy, et al. Pumice-Supported Cu-Pd Catalysts: Influence of Copper on the Activity and Selectivity of Palladium in the Hydrogenation of Phenylacetylene and l-Butene[J]. Journal of Catalysis, 1999,182(2): 456-462
    [18] 朱俊华,丁洁莲,曾崇余.载体对钯催化剂催化苯酚加氢制环己酮性能的影响[J].催化学报,2007,28(5):441-445
    [19] 段启伟,达志坚,郝小明,等.第九届全国催化学术会议论文集[C].北京:海潮出版社,1998,361,481,663
    [20] Scire S, Minico S, Crisafulli C. Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts: an investigation on the influence of different supports and Pd precursors[J]. Applied Catalysis A.General,2002,235(1): 21-31
    [21] 郭耘,李树本,张兵.BaO对Pd/Al_2O_3催化性能的影响[J].分子催化,2001,14(1):41-45
    [22] 刘希尧,王淑菊,郭俐聪.氧化铝基表层镁铝尖晶石的研究—Ⅰ.表层镁铝尖晶石的相结构、孔结构、表面酸性及负载钯的化学状态[J].催化学报,1994,15(1):1-7
    [23] Kang J H, Shin E W, Kim W J, et al. Selective hydrogenation of acetylene on TiO_2 added Pd catalysts[J]. Journal of Catalysis, 2002,208(2): 310-320
    [24] Panpranot J, Nakkararuang L, Ngamsom B, et al. Synthesis, characterization, and catalytic properties of Pd and Pd-Ag catalysts supported on nanocrystalline TiO_2 prepared by the solvothermal method[J]. Catalysis Letters, 2005,103(1-2): 53-58
    [25] 顾虹,许波连,周静,等.负载型Pd/TiO_2和Pd-Ag/TiO_2催化剂的乙炔选择性加氢催化性能[J].物理化学学报,2006,22(6):712-715
    [26] 江琦.负载钴催化剂作用下的二氧化碳加氢甲烷化[J].煤炭转化,2000,23(4):87-91
    [27] 江琦.负载镍催化剂作用上CO_2加氢甲烷化研究[J].天然气化工,2000,25(4):9-14
    [28] S(?)rk(?)ny A, Beck A, Horv(?)th A, et al. Acetylene hydrogenation on sol-derived Pd/SiO_2 [J]. Applied Catalysis A: General, 2003,253(1): 283-292
    [29] 尹静波,陈学思,张龙,等.钯-高分子载体催化剂对糠醛加氢液相反应的研究[J].高等学校化学学报,2002,29(2):7-11
    [30] Ga(?)parovi(?)ov(?) D, Kralik M, Hronec M, et al. Supported Pd-Cu catalysts in the water phase reduction of nitrates: Functional resin versus alumina[J]. Journal of Molecular Catalysis A: Chemical, 2007,264(1-2): 93-102
    [31] Shen J H, Chen Y W. Catalytic properties of bimetallic NiCoB nanoalloy catalysts for hydrogenation of p-chloronitrobenzene[J]. Journal of Molecular Catalysis A: Chemical, 2007,273(1-2): 265-276
    [32] Yoshida S, Yamashita H, Funabike T, et al .Catalysis by amormetal alloys[J]. Journal of Catalysis, 1986, 99: 375-382
    [33] Yokoyama A, Komiyame H, Inoue H, et al. The hydrogenation of carbon monoxide by amorphous ribbons[J]. Journal of Catalysis, 1981,68(2): 355-361
    [34] 马爱增,陆婉珍,闵恩泽.一种镍硼非晶态合金催化剂制备方法及应用,CN961200545,1996
    [35] Men E Z, Deng J F, Lu W Z. An amorphous alloy catalyst containing, its preparation and use, US 01090078,1998
    [36] 唐忠,张帆,陶庭树,等.Ni-Cu-B非晶态合金催化剂对双烯选择性加氢性能的研究[J].石油化工,2000,29(10):754-756
    [37] 马爱增,陆婉珍,闵愚泽.非晶态合金催化剂对乙烯中微量乙炔的选择加氢[J].石油学报(石油加工),1996,12(2):29-37
    [38] 合金,庞宏,南军.纳米材料及其在催化领域中的应用前景[J].沈阳化工,2000,29(2):97-102
    [39] 邱广敏,吕仁庆,唐博合金.负载型纳米镍铈催化剂的表征及其选择性催化加氢活性[J].化学研究,2005,16(3):90-94
    [40] Stitt E H, Fishwick R P, Natividad R, et al. Multiphase hydrogenation reactors -past, present and future[J]. Catalysis in Application, The Royal Society of Chemistry, London, 2003
    [41] Dudukovic M P, Larachi F, Mills P L. Multiphase catalytic reactors: A Perspective on current knowledge and future trends[J]. Catalysis Review, 2002,44(1): 123-246
    [42] Bergaulta I, Vuilleminb C J, Fouillouxb P, et al. Modeling of acetophenone hydrogenation over a Rh/C catalyst in a slurry airlift reacto[J]. Catalysis Today, 1999, 48(1-4): 161-174
    [43] Mathew S P, Rajasekharam M V, Chaudhari R V. Hydrogenation of p-isobutyl acetophenone using a RU/Al_2O_3 catalyst: reaction kinetics and modelling of a semi-batch slurry reactor[J]. Catalysis Today, 1999,49(1-3): 49-56
    [44] Glavanovic T, Zrncevic S. Mass transfer resistances in the palladium-catalysed hydrogenation of l-methoxy-2,4-(nitrophenyl)-ethane to 1-methoxy-2,4-(aminophenyl)-ethane (MAPE) over Pd/C catalyst[J]. Catalysis Today, 1999,48(1-4): 119-124
    [45] Tiainen L-P, Paivi M-A, Salmi T. Modelling of citral hydrogenation kinetics on an Ni/Al_2O_3 catalyst[J]. Catalysis Today, 1999,48(1-4): 57-63
    [46]. Rode C V, Telkar M M, Jaganathan R, et al. Reaction kinetics of the selective liquid phase hydrogenation of styrene oxide to β-phenethyl alcohol[J]. Journal of Molecular Catalysis A: Chemical, 2003,200(1-2): 279-290
    [47] Rode C V, Vaidya M J, Jaganathan R, et al. Hydrogenation of nitrobenzene to p-aminophenol in a four-phase reactor: reaction kinetics and mass transfer effects[J]. Chemical Engineering Science, 2001, 56(4): 1299-1304
    [48] Ronchin L, Toniolo L. Selective hydrogenation of benzene to cyclohexene using a Ru catalyst suspended in an aqueous solution in a mechanically agitated tetraphase reactor: a study of the influence of the catalyst preparation on the hydrogenation kinetics of benzene and of cyclohexene [J]. Applied Catalysis A: General, 2001, 208(1-2): 77-89
    [49] RonchiL, Toniolo L. Selective hydrogenation of benzene to cyclohexene catalyzed by Ru supported catalysts: Influence of the alkali promoters on kinetics, selectivity and yield[J]. Catalysis Today, 2001,66(2-4): 363-369
    [50] Stu¨ber F, Wilhelm A M, Delmas H. Modelling of three phase catalytic upflow reactor: A significant chemical determination of liquid-solid and gas-liquid mass transfer coefficients[J]. Chemical Engineering Science, 1996, 51 (10): 2161 -2167
    [51] Vergel C, Euzen J P, Trambouze P, et al.Two-phase flow catalytic reactor, influence of hydrodynamics on selectivity[J]. Chemical Engineering Science, 1995,50(20), 3303-3312
    [52] Huang T C, Kang B C. Kinetic Study of Naphthalene Hydrogenation over. Pt/Al_2O_3 Catalyst[J]. Industrial and Engineering Chemistry Research, 1995, 34, 1140-1148
    [53] Valerius G, Zhu X, Hofmann H, et al. Modelling of a trickle-bed reactor Ⅱ: The hydrogenation of 3-hydroxypropanal to 1,3-propanediol[J]. Chemical Engineering Process. 1996,35(1): 11-19
    [54] Bergault I, Rajashekharam M V, Chaudhari R V, et al. Modeling and comparison of acetophenone hydrogenation in trickle-bed and slurry airlift reactors[J]. Chemical Engineering Science, 1997, 52(21-22), 4033-4043
    [55] Herrmann U, Emig G, Liquid Phase Hydrogenation of Maleic Anhydride to 1, 4-Butanediol in a Packed Bubble Column Reactor[J]. Industrial and Engineering Chemistry Research, 1998, 37: 759-769
    [56] Khadilkar M R, Jiang Y, Al-Dahhan M, et al. Investigation of a complex reaction network: Ⅰ. Experiments in a high-pressure trickle-bed reactor[J]. AIChE Journal, 1998,44(4): 912-920
    [57] Rajashekharam M V, Jaganathan R, Chaudhari R V. A trickle-bed reactor model for hydrogenation of 2,4 dinitrotoluene: experimental verification[J]. Chemical Engineering Science, 1998, 53(4): 787-805
    [58] Liu G Z, Zhang X W, Wang L, et al. Unsteady-state operation of trickle-bed reactor for dicyclopentadiene hydrogenation[J]. Chemical Engineering Science, In Press, Corrected Proof, Available online 18 March 2008
    [59] Liu G Z, Zhang X W, Wang Li, et al. Unsteady-state operation of trickle-bed reactor for dicyclopentadiene hydrogenation[J]. Chemical Engineering Science, In Press, Corrected Proof, Available online 18 March 2008
    [60] Tukac V. Glucose Hydrogenation in a Trickle-Bed Reactor[J]. Collection of Czechoslovak Chemical Communications, 1997,62(9): 1423-1428
    [61] Westerterp, K.R, Molga, E.J, Gelder van K B. Gas-Liquid Interfacial Area and Holdup in a Cocurrent Upflow Packed Bed Bubble Column Reactor at Elevated Pressures[J]. Industrial and Engineering Chemistry Research, 1997,36: 17-27
    [62] McManus R L, Funk G A, Harold M P. Experimental study of reaction in trickle-bed reactors with liquid maldistribution[J]. Industrial & Engineering Chemistry Research, 1993,32(3): 570-574
    [63] Lange R, Hanika J, Stradiotto D, et al. Investigations of periodically operated trickle-bed reactors[J]. Chemical Engineering Science, 1994,49(24), 5615-5621
    [64] Castellan A, Haure P M. Experimental Study of the Periodic Operation of a Trickle-Bed Reactor[J]. AIChE Journal, 1995,41(6): 1593-1597
    [65] Frank M J. Mass and Heat Transfer Phenomena in G-L(-S) Reactors Relevant for Reactive Distillation[D]. Twente University Enschede, The Netherlands
    [66] Liu G Z, Duan Y, Wang Y, et al. Periodically operated trickle-bed reactor for EAQs hydrogenation: Experiments and modeling[J]. Chemical Engineering Science, 60(22), 2005,6270-6278
    [67] Dittmeyer R, Hollein V, Daub K. Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium[J]. Journal of Molecular Catalysis A: Chemical, 2001,173(1-2): 135-184
    [68] Umemiya S, Sato N, Ando H, et al. The water gas shift reaction assisted by a palladium membrane reactor[J]. Industrial and Engineering Chemistry Research, 1991,30(1): 585-589
    [69] Daub K, Wunder V K, Dittmeyer R. CVD preparation of catalytic membranes for reduction of nitrates in water[J]. Catalysis Today, 2001,67(1-3): 257-272
    [70] 李雪辉,王乐夫,黄仲涛.钯基膜反应器研究进展[J].天然气化工,1997,24(3):40-44
    [71] Petrovich M A. Catalyst for hydrogen hydrogenation of carbon-carbon double bond, nitro and aldehyde groups in aliphatic and aromatic compounds. GB 2187759A, 1987.9.16
    [72] Gao H R, Xu Y, Liao S J, et al. Catalytic polymeric hollow-fiber reactors for the selective hydrogenation of conjugated dienes[J]. Journal of Membrane Science, 1995, 106(3): 213-219
    [73] Keith C, Kenah P, Bair D. A Catalyst for Oxidation of Auto-mobile and Industrial Fumer, US 3565830, 1971
    [74] Keith C ,Schreuders T ,Cunningham C.Purifying Exhaust Gases of an Internal Combustion Engine. US 3441381,1969
    [75] Said I, Bengt A. Monolithic catalysts for non-automobile applications [J].1988, 30(3):341-392.
    [76] Edvisson R A, Nystrom M, Sellin A, et al. Development of a Monolithic-Based Process for H_2O_2 Production: from Idea to Large-Scale Implementation [J]. Catalysis Today, 2001,69: 247-252
    [77] 龙军,邵潜,贺振富,等.规整结构催化剂及反应器研究进展[J].化学进展,2004,23(9):925-931.
    [78] Kapteijn F, Nijhuis T A, Heiszwolf J J, et al. New non-traditional multiphase catalytic reactors based on monolithic structures[J]. Catalysis Today, 2001, 660 133-144.
    [79] Nijhuis T A, Beers A E W, Vergunst T, Preparation of monolithic catalysts[J]. Catalysis Reviews, 2001,43(4): 345-380
    [80] Groppi G, Troneoni E. Honeyeomb supports with high thermal conductivity for gas/solid chemical lproeesses[J]. CatalysisToday, 2005,105(3-4): 297-304
    [81] 邵潜,龙军,贺振富.规整结构催化剂及反应器[M].北京:化学工业出版社,2005
    [82] Troneoni E, Groppi G. A study on the thermal behavior of structured plate-type catalysts with metallic Supports for gas/solid exothermic reactions[J]. Chemical Engineering Seience, 2000, 55(24): 6021-6036
    [83] Andrea Schmidt, Reinhard SchomScker. Partial hydrogenation of sunflower oil in a membrane reactor[J]. Journal of Molecular Catalysis A: Chemical, 2007,271(1-2): 192-199
    [84] Irandoust S, Gahne O. Competitive hydrodesulfurization and hydrogenation in a monolithic reactor[J]. AIChE Journal, 1990,36(5): 746-752
    [85] Irandoust S, Andersson B; Bengtsson E; et al. Scaling up of a monolithic catalyst reactor with two-phase flow[J]. Ind. Eng. Chem. Res. 1989,28(10): 1489-1493
    [86] Albers R E, Nystr(?)m M, Siverstr(?)m M, et al. Development of a monolith-based process for H_2O_2 production: from idea to large-scale implementation[J]. Catalysis Today, 2001,69(1-4): 247-252
    [87] Warna J, Turunen I, Salmi T, et al. Kinetics of nitrate reduction in monolith reactor[J]. Chemical Engineering Science, 1994,49(24 B): 5763-5773
    [88] Liu W, High-throughput selective hydrogenation process and apparatus, WO 079125 A1, 2002
    [89] Nijhuis T A, Kreutzer M T, Romijn A C J, et al. Monolithic catalysts as efficient three-phase reactors[J]. Chemical Engineering Science, 2001, 56(3): 823-829
    [90] Bauer T, Guettel R, Roy S, et al. Modelling and Simulation of the Monolithic Reactor for Gas-Liquid-Solid Reactions[J]. Chemical Engineering Research and Design, 2005, 83(7): 811-819
    [91] Fishwick R P, Natividad R, Kulkarni R,et al. Selective hydrogenation reactions: A comparative study of monolith CDC, stirred tank and trickle bed reactors[J]. Catalysis Today, 2007,128(1-2) 108-114
    [92] Kulkarni R, Natividad R, Wood J, et al. A comparative study of residence time distribution and selectivity in a monolith CDC reactor and a trickle bed reactor[J]. Catalysis Today, 2005,105(3-4): 455-463
    [93] Julcour C, Jaganathan R, Chaudhari R V, Selective hydrogenation of 1,5,9-cyclododecatriene in up- and down-flow fixed-bed reactors: experimental observations and modeling[J]. Chemical Engineering Science, 2001, 56(2): 557-564
    [94] 张益群,余立挺,马建新.构件化催化剂的研究现状与运用[J].工业催化,2003,11(1):1-7.
    [95] 孙红.蜂窝状金属丝网催化剂的制备及其贫燃条件下选择催化还原NO的x的研究[博士学位论文].大连:大连理工大学,2007
    [96] Semagina N, Grasemann M, Xanthopoulos N, et al. Structured catalyst of Pd/ZnO on sintered metal fibers for 2-methyl-3-butyn-2-ol selective hydrogenation[J]. Journal of Catalysis, 2007,251(1):213-222
    [97] 王春江,王强,赫冀成.液态金属铸造法制备金属基复合材料的研究现状[J].材料导报,2005,19(5):53-57
    [98] Shan Z, Kooten van W E J, O udshoorn O L, et al. Optimization of the Preparation of B inderless ZSM - 5 Coatings on Stainless Steel Monoliths by in S itu Hydrothermal Synthesis[J]. Microporous Mesoporous Mater, 2000,34( ): 81-91
    [99] Francis N A. Coated monolith substrate and catalyst comprising it as support, EP1254715 A2,2002.11.06
    [100] 郭耘,卢冠忠,张志刚,等.一种整体式催化剂涂层的制备方法,CN1954916 A,2007.5.2
    [101] Dirk A, Alan H. Monolith coating apparatus and method therefore, US 2004023799,2004.2.5
    [102] Ferrandon M, Berg M, Bjoernbom E. Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler[J]. Catalysis Today, 1999, 53(4):647-659
    [103] 王家明,袁芳芳,诸霞,等.金属载体催化剂的涂层研究[J].中国稀土学报,2004,22(4):579-584
    [104] Men Y, Gnaser H, Zapf R, et al. Steam reforming of methanod over Cu/CeO_2/γ-Al_2O_3: catalysts in a microchannel reactor[J]. Applied Catalysis A: General, 2004,277(2): 83-90
    [105] Agrafiotis C, Tsetsekou A. The effect of powder characteristics on washcoat quantity. Part 1: Alumina washcoats[J]. Journal of the European Ceramic Society, 2000,20(7): 815-824.
    [106] Agrafiotis C, Tsetsekou A, Stournaras C J, et al. Evaluation of sol-gel methods for the synthesis of doped-ceria environmental catalysis systems. part Ⅰ:preparation of coatings[J]. Journal of the European Ceramic Society, 2002,22(1):15-25
    [107] 田茂东,王立秋,张守臣,等.用溶胶凝胶法在烧结多孔金属基体上负载SiO_2膜[J].大连理大学学报,1999,39(1):49-52
    [108] Liu C J, Vissokov G P. Jang B W L. Catalyst preparation using plasma technologies[J]. Catalysis Today, 2002,72(3-4): 173-184
    [109] Ismagilov Z R, Pldyaeheva O Y, Solonenko O P, et al. Application of plasma spraying in the preparation of metal-supported catalysts[J]. Catalysis Today, 1999, 51(3-4): 411-417
    [110] Ahlstroem-Silversand A F, Odenbrand C U I.Thermally sprayed wire-mesh catalysts for the purification of flue gases from small-scale combustion of bio-fuel catalyst preparation and activity studies[J]. Applied Catalysis A: General, 1997, 153(1-2): 177-201
    [111] Ahlstroem-Silversand A F, Odenbrand C U I. Modeling catalytic combustion of carhon monoxide and hydrocarbons over catalytically active wire meshes[J]. Chemical Engineering Journal, 1999,73(3): 205-216
    [112] Schom(?)cker R, Schwuger M-J, Stickdorn K, Mikroemulsions in Technical Processes[J]. Chemical Reviews, 1995,95(4):849-864
    [113] Hoar T P, Schulman J H. Transparent Water-in-Oil Dispersions: the Oleopathic Hydro-Micelle[J]. Nature.1943,152(1):102-110
    [114] Schulman J H, Stoeckenius W, Prince L M. Mechanism of formation and structure of microemulsion by electron microscopy[J]. Journal of Physical Chemistry, 1959,63(10): 1677-1680
    [115] Prince L M. Microemulsion, Theory and Practice[M]. New York: Academic Press,1977
    [116] Shinoda K, Friberg S. Microemulsion: colloidal aspects[J]. Advances in Colloid and Interface Science, 1975,4(4): 281-300
    [117] Michell D J, Ninham B W. Micelles, vesicles and microemulsions[J]. Journal of the Chemical Society, Faraday Transactions, 1981,2(77): 601-629
    [118] 崔正刚,殷福珊.微乳液技术及应用[M].北京:中国轻工业出版社,1999:85-99
    [119] Husein M M, Rodil E, Vera J H. A novel method for the preparation of silver chloride nanoparticles starting from their solid powder using microemulsions [J]. Journal of Colloid and Interface Science, 2005,288 (2): 457-467
    [120] Monnoyer P, Fonseca A, Nagy J B. Preparation of colloidal AgBr particles from microemulsions[J], Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100: 233-243
    [121] 梁兵,孙小军.ZnS纳米微粒的微乳液合成研究及其结构表征[J].沈阳化工学院学报,2006,20(3):198-201
    [122] Pileni M P, Lisiecku L, Motte L. Sythesis "in situ" of nanoparticles in reverse micelles[J]. Progress in Colloid & Polymer Science, 1993,93(1): 1-9
    [123] Chen M, Feng Y G, Wang L Y, et al. Study of palladium nanoparticles prepared from water-in-oil microemulsion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006,281(1-3): 119-124.
    [124] Lade M, Mays H, Schmidt J, et al. On the nanoparticle synthesis in microemulsions:detailed characterization of an applied reaction mixture[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000,163(1): 3-7
    [125] 章莉娟,古国榜,邵庆辉.W/O微乳液法制备铂纳米微粒[J].华南理工大学学报(自然科学版),2002,30(6):9-13
    [126] Li F, Vipulanandan C, Mohanty K K. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003,223 (1-3): 103-112
    [127] Wu S-H, Chen D-H. Corresponding Author Contact Information Synthesis and characterization of nickel nanopartlcles by hydrazine reduction in ethylene glycol[J]. Journal of Colloid and Interface Science,2003,259(2), 282-286
    [128] 梁桂勇,翟学良.微乳液法制备纳米银微粒[J],功能材料,1999,30(5):484-486
    [129] 沈明,姚玉峰,杨功俊,等.憎水性纳米银粒的反相微乳液法制备与自组装[J].扬州大学学报(自然科学版),2006,9(4):23-28
    [130] Wang C C, Chen D H, Huang T C. Synthesis of palladium nanoparticles in water-in-oil microemulsions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001,189(1-3): 145-154
    [131] Matson D W. Formation of fine particles in supercritical fluid micelles systems [J]. Materials Letters, 1987,6(1-2): 31-34
    [132] Jada A, Lang J, Zana R. Ternary water in oil microemuisions made of cationic surfactants, water, and aromatic solvents.2.droplet sizes and interactions and exchange of material between droplets [J]. Journal of Physical Chemistry, 1990,94(1): 387-395
    [133] 赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1991.
    [134] Haram S K, Mahadeshwar A R, Dixit S G Synthesis and Characterization of Copper Sulfide Nanoparticles in Triton-Ⅹ 100 Water- in-Oil Microemulsions [J]. Journal of Physical Chemistry, 1996,100(14): 5868 5873.
    [135] 陈龙武,林扎华,岳天仪,等.微乳液反应法制备α-Fe_2O_3超微细微粒的研究[J].物理化学学报,1994,10(8):750-754
    [136] Eriksson S, Nylen U, Rojas S, et al.Preparation of catalysts from microemulsions and their appplications in heterogeneous catalysis[J].Applied Catalysis A: General, 2004,265(2):207-219
    [137] Bonini M, Bardi U, Berti D, et al. A new way to prepare nanostructured materials: Flame spraying of microemulsions [J]. Journal of Physical Chemistry B, 2002,106(24):6178-6183
    [138] Higgins R. J. An economical process for manufacture of nano-sized inorganic powders based on microemulsion-mediated synthesis. Proposal to NSF Program Solicitation, 1996. 96-100
    [139] Sun Y P, Atomgitjawat P, Meziani M J. Preparation of silver nanoparticles via rapid expansion of water in carbon dioxide microemulsion into reductant solute[J]. Langmuir, 2001,17(19): 5707.-5710
    [140] 敬登伟,李干佐,张剑.等.微乳液体系相行为的一种表达--鱼形相图[J].日用化学工业,2003,33(4):241-248
    [141] Schmidt J, Guesdon C, Schomaecker R. Engineering aspects of preparation of nanocrystalline particles in microemulsion[J]. Journal of Nanoparticle Research, 1999,1(2): 267-276
    [142] 于成峰,黑恩成,刘国杰.液体内聚能的统计热力学研究[J].化学学报,2001,59(1):146-149
    [143] Suryanarayana C V. Ultrasound as a probe for assessing the internal pressure and molar cohesive energy of a liquid system: A new model [J]. Ultrasonics, 1993, 31(4): 281-287
    [144] 王文科,戎宗明,英徐根.非离子表面活性剂两相分配系数的计算[J].华东理工大学学报,2002,28(2):204-215
    [145] Carpenter M. Phase Transitions, Landau Theory of[M]. Encyclopedia of Materials: Science and Technology, 2008,6891-6896
    [146] Chen K, Jayaprakash C, Pandit R, et al. Microemulsions: A Landau-Ginzburg Theory[J]. Physical Review Letters, 1990,65(21), 2736-2739
    [147] Gompper G, Schick M. Correlation between structural and interfacial properties of amphilic system [J]. Physical Review Letters, 1990,65(9): 1116-1119
    [148] Schubert K V, Strey R, Kline S R, et al. Small angle neutron scattering near Lifshitz lines: transition From weakly structured mixtures to microemulsion [J]. Journal of Chemical Physics, 1994,101(6): 5343-5354
    [149] Joseph D D, Kamp A M, Bai R. Modeling foamy oil flow in porous media[J]. International Journal of Multiphase Flow, 2002,28(10): 1659-1686
    [150] Chen H-I, Shiau J-D, Chu C-Y, Synthesis and characterization of palladium clusters dispersed alumina membranes[J]. Seperation and Purification Technology, 2003,32 (1-3): 247-254
    [151] Chen H-I, Shiau J-D, Chu C-Y. Synthesis and characterization of palladium clusters dispersed alumina membranes[J]. Separation and Purification Technology, 2003, 32(1-3): 247-254
    [152] Brunner E. Solubility of hydrogen in 10 organic solvents at 298.15, 323.15, and 373.15K[J]. Journal of Chemical Engineering Data, 1985,30(3): 269-273
    [153] Goto S, Lakota A, Levee J. Effectiveness factors of nth order kinetics in trickle-bed reactors[J]. Chemical Engineering Science, 1981, 36(1): 157-162
    [154] Pintar A, Besson M, Gallezot P. Catalytic wet air oxidation of Kraft bleach plant effluents in a trickle-bed reactor over a Ru/TiO_2 catalyst[J]. Applied Catalysis B: Environmental, 2001, 31(4): 275-290
    [155] Khadilkar M R, Wu Y X, Al-Dahhan M H. Comparison of trickle-bed and upflow reactor performance at high pressure: Model predictions and experimental observations[J]. Chemical Engineering Science, 1996,51(10): 2139-2148
    [156] 姚玉英,化工原理,天津大学出版社,1999
    [157] Birgersson H, Boutonnet M, Klingstedt F. An investigation of a new regeneration method of commercial aged three-way catalysts[J]. Applied Catalysis B: Environmental, 2006,65(1-2) 93-100
    [158] Hughmark G A. Mass transfer for suspended solid particles in agitated liquids [J]. Chemical Engineering Science, 1969,24(2): 291-297
    [159] Sherwood T.K., Pigford R L, Wilke C. R., Mass Transfer[M], Mc Graw-Hill, 1975
    [160] Kaerger J, Ruthven D M. Diffusion in Zeolites and Other Microporous Solids[M], Ruthven Wiley, New York, 1992
    [161] Hanika J, Sulc Z, Ruzicka V. Hydrogenation of 1,5,9-cyclododecatriene in a wetted reactor[J]. Chemicky Prumysl, 1981, 31(12): 634-637
    [162] Santacesaria E, Serio M. D, Iengo P, Examples of hydrogenation in semibatch and continuous slurry reactors[J]. Catalysis Today, 1999, 52(2-3): 363-376
    [163] Wuchter N, Schaefer P, Schueler C, et al. Comparison of Selective Gas Phaseand Liquid Phase Hydrogenation of (Cyclo-)Alkadienes towards Cycloalkenes on Pd/Alumina Egg-Shell Catalysts [J]. Chemical Engineering Technology, 2006,29(12): 1487-1495
    [164] Haidar R. Hydrierreaktionen in Katalytisch aktiven Porenmembrane in einem Schlaufenreaktor [Doctor dissertation]., Berlin: Technical University of Berlin, 2004
    [165] 宋怀俊,张海涛,应卫勇.H_2、N_2、CO和CO_2在液体石蜡中的溶解度和传质系数的研究[J].华东理工大学学报,2004,30(5):498-451
    [166] Poulios I, Micropoulou E, Panou R, et al. Promotion of the catalytic activity of a Ag/Al_2O_3 catalyst for the N_2O+CO reaction by the addition of Rh a comprative tests and kinetic study[J], Appllied Catalysis B Environment, 2003,41 (4): 345-355
    [167] 郭汉贤.应用化工动力学[M].北京:化学工业出版社,2003
    [168] Hughmark G A. Mass transfer for suspended solid particles in agitated liquids [J]. Chemical Engineering Science, 1969,24(2): 291-297
    [169] 贝伦斯M,霍夫曼H,林肯A.化学反应工程(Chemische Reaktionstechnik)(第二版)[M].北京:中国石化出版社,1994
    [170] 黄华江.实用化工计算机模拟[M].北京:化学工业出版社,2004,219-251
    [171] Shi Y, Eberhart R C.. Empirical study of particle swarm optimization [C]. Proceeding of Congress on Evolutionary Computation: Piscataway, Nj: IEEE Service Center. 1999,1945-1949
    [172] Clerc M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization[C]. Proceedings of the Congress of Evolutionary Computation, Washington, DC. 1999,1951-1957
    [173] 靳军,张小工,马红江.LY-9801加氢催化剂动力学研究[J].石化技术与应用,2004,22(6):414-419

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700