用户名: 密码: 验证码:
低温对沼气菌群产气能力的影响以及产甲烷菌的分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沼气发酵过程是一个由多种微生物联合,交替作用的复杂生化过程。在发酵过程中,不产甲烷细菌和产甲烷菌之间,相互依赖,又互相制约,在发酵过程中处于平衡状态。产甲烷菌是沼气发酵微生物的核心,同时也是自然界碳素循环中厌氧生物链的最后一个成员。甲烷的生物合成是沼气发酵过程的关键步骤,分离鉴定越冬沼气池中占优势的产甲烷菌及研究产甲烷菌群落结构的演替变化,将有利于更好的了解北方冬季条件下产甲烷菌群的活动。这对于有效地控制发酵过程,了解发酵进行的阶段,优化发酵条件,提高产气效率,具有十分重要的意义。
     国内对沼气池中产甲烷菌的研究由来已久,但是对低温条件下沼气池中产甲烷菌的研究却不多见。本论文就厌氧发酵过程中产沼气微生物菌群在不同的低温条件下产气能力及厌氧发酵过程中微生物菌群的变化进行了研究,以便为在低温条件下沼气的可控性发酵提供参考依据。并通过传统的Hungate厌氧技术从越冬沼气池中分离出产甲烷菌并进行了初步的鉴定。试验结果表明:
     1、通过对比不同温度条件下厌氧发酵的试验发现,在10-30℃温度范围内,产甲烷菌的产气能力随着温度的降低而减小;并且其日产气量的最高峰也随之往后推迟;而且温度在15℃以下时不适宜产甲烷菌的生长。
     2、通过对沼气发酵液的pH值测定及其上清液中微生物种类的观察,可以得出,沼气发酵菌群适宜生长的pH值在7.0-8.0之间;并且在沼气发酵过程中,微生物菌群的变化也比较明显,初期以球菌占优势,后期则转为杆菌类为优势菌。
     3、通过改进的Hungate厌氧技术从越冬沼气池中分离出一株产甲烷菌。该菌株呈球状,革兰氏染色为阴性,不运动,常单个或成对出现;不形成芽孢,菌落圆形,边缘完整,表面光滑,不透明,淡黄色,在紫外荧光显微镜下,发出蓝绿色荧光。
     4、该菌株能利用甲酸钠作为碳源,不能利用甲醇、乙酸钠、三甲胺、丙醇等。该菌株的生长条件温和,在20℃-50℃范围内均可生长,其最适的温度范围为25℃-35℃;其能在pH 5.5-8.0范围内生长产气,最适pH范围为6.0-7.0,高于8.0或低于5.5均不能产气。
The methane fermentation is a process that unites by the many kinds of microorganisms, with replacement complex biochemistry process in it. In the fermentation, the interdependence and restriction of no-produce-methane bacterium and methanogens makes a equilibrium in the fermentation. Methanogen is the core of the methane fermentation. And methanogen is the last member of the anaerobe chain in nature carbon cycle. One of the essential steps of methane fermentative process is the biosynthesis of methane, so the distribution of the superior methanogen species and its customs are widely studied. The study on changes of methanogen in the methane fermentation can make us realize fermentation degree, optimize the fermentation condition and enhance the methane output. And it will be benefited to improve the efficiency of methane fermentation.
     There is rare study on the conditions of low temperature in methanogen. This paper studied on the methane production in different low temperature, and microbial flora change during fermentation in order to give a reference for controllability of fermentation, and made preliminary identification of methane bacteria which separate from biogas pool in winter by Hungate anaerobic operation technique. The main conclusions were as follow:
     1、Compared different fermentation experiments in different temperature, Between 10-30℃, methane production reduced when the temperature decreased, the pink of daily methane production had delayed at the same time. It was not fit for methanogen growing when the temperature was below 15℃.
     2、By monitored pH value and variety of microorganism in the upper liquid of the fermentation, we can conclude that: the methanogen microb flora appropriate pH value is between 7.0-8.0, which is same as most single methanogen, and during fermentation, micro communicate has changed distinctly. At the initial stage methanococcus predominated, but methanobacterium become predominate in end stage.
     3、One methanogenic bacteria was isolated by the modified Hungate anaerobic techniques. The strain is curved, Gˉ, non-motile, often single or the doubling appeared, and didn’t form the bud-spore. The colony was circular, smooth, light-yellow, and emitted cyan color fluorescence under the ultraviolet fluorescence microscope.
     4、The strain can use formate but not methanol, acetic sodium and trimethylamine as the substrate. The optimal pH is 6.0-7.0, and the optimal temperature is 25-35℃.
引文
[1] 陈美慈,钱泽澍.嗜热甲烷杆菌 TH-6 菌株的特征[J].中国沼气,1988,2(3): 106.
    [2] 陈美慈,闵航,吴伟祥等.不同类型土壤中甲烷释放特性和产甲烷菌数量的研究[J].植物营养与肥料,1996,2(1): 79-83.
    [3] 陈世和,陈建华,王士芬.微生物生理学原理[M].上海:同济大学出版社,1992.
    [4] 陈秀兰,张玉忠,高培基,等.渤海湾浅表海水中低温蛋白酶适冷菌的筛选[J].海洋科学, 2000, 24(9):42-45.
    [5] 陈勇生,庄源益,戴树桂.氯代芳香化合物的微生物降解研究[J].环境科学进展,1997,5(2): l7-26.
    [6] 陈宇.厌氧发酵法生物制氢菌种的选育及发酵工艺的初步研究[J].天津:天津大学硕士学位论文, 2005, 8.
    [7] 单丽伟,冯贵颖,范三红.产甲烷菌研究进展[J].微生物学杂志, 2003, 23 (6) :42-46.
    [8] 邓晓,廖晓兰,黄璜.稻鸭复合生态系统产甲烷细菌数量[J].生态学报,2004,24(8):1696-1700.
    [9] 杜连祥,路福平.微生物学实验技术(第一版)[M].北京:中国轻工业出版社,2005,288-289.
    [10] 段学军,盛清涛,闵航.Cd 胁迫对淹水稻田土壤微生物种群数量的影响[J].农业环境科学学报, 2005, 24(3):432-437.
    [11] 冯树,周樱桥,张忠泽.微生物混合培养及其应用[J].微生物学通报,2001,28(3):92-95
    [12] 光南,傅世宗,蔡海洋.极端环境微生物研究概况[J].福建热作科技, 2000, (2): 12-I5.
    [13] 何绍江,冯新梅,龚小平等.奶牛粪沼气池中三株产甲烷菌的分离和基本特征[J].华中农业大报, 1994, 13(l):59-63.
    [14] 黄立南,周惠,陈月琴等.垃圾填埋场渗滤液中古细菌群落 16S rRNA 基因的 ARDRA 分析[J].生态学报, 2002, 22(7):1085-1090.
    [15] 黄莜萍,曹郁生,刘兰,等.利用微生物菌群提高沼气产气率研究简报[J].江西能源, 1999, (3): 42-43.
    [16] 冀滨弘,章非娟,穆军,等.厌氧处理硫酸盐有机废水的微生物学[J].中国给水排水, 2001, 17(3):70-73.
    [17] 焦瑞身,周德庆.微生物生理代谢实验技术[M].北京:科学出版社,1990,119-133.
    [18] 李广武,等.低温微生物[M].长沙:湖南科技出版社.1988.
    [19] 李兴杰.沼气发酵[J].生物学通报, 1999, 34(3):16-17.
    [20] 李亚新,杨建刚.微量金属元素对甲烷菌激活作用的动力学研究[J].中国沼气, 2000, 18(2):8-11,16.
    [21] 廖连华.一株厌氧中温纤维素分解菌的分离和鉴定[J].中国沼气,1986,3(11):211-216.
    [22] 林明,任南琪,马汐平,等.产氢发酵细菌培养基的选择和改进[J].哈尔滨工业大学学报, 2003, 35(4):398-402.
    [23] 刘光烨,赵一章.泸酒老窖泥中布氏甲烷杆菌的分离和特性[J].微生物学通报,1987,1(4): 45-52.
    [24] 刘金鑫,孙国朝.沼气发酵微生物代谢的相互关联初探:沼气新技术应用研究[M].成都:四川科学技术出版社,1988.
    [25] 刘荣厚,郝元元,武丽娟.温度条件对猪粪厌氧发酵沼气产气特性的影响[J].可再生能源, 2006, 5:32-35.
    [26] 刘树民,韩靖玉,岳海军.中国北方寒冷地区沼气的综合开发利用[J].内蒙古农业大学学报, 2002, 23 (4): 83-86.
    [27] 刘英,胡启春,宋平,等.中国沼气技术研究与开发进展情况综述[J].中国沼气,2003,21(增刊):76-80.
    [28] 刘聿太.沼气发酵微生物及厌氧技术[M].北京:科学出版社, 1990, 57-100.
    [29] 马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社,2005:3-5.
    [30] 闵航,陈美慈等.厌氧微生物学[M].浙江:浙江大学出版社,1991.
    [31] 闵航,钱泽澍.管道厌氧消化器处理柠檬酸生产废水中的微生物学特性 Ⅱ .产甲烷菌区系分析[J].中国沼气,1987,4(5):95.
    [32] 闵 航 . 嗜 热 氧 化 乙 酸 脱 硫 肠 状 菌 的 分 离 和 特 征 [J]. 浙 江 大 学 学 报 ( 农 业 与 生 命 科 学版),1990,18(3):259-266.
    [33] 闵航.一种降解苯甲酸为甲烷的嗜热性富集物的研究[J].中国沼气,1990,3(8): 1.
    [34] 钱泽澍,马晓航.丁酸盐降解菌和氢营养菌共培养物的研究(英文) [J].浙江大学学报(农业与生命科学版),1988,29(5):113-117.
    [35] 钱泽澍,闵航.沼气发酵微生物学[M].浙江:浙江科学技术出版社,1986.
    [36] 钱泽澍.从我国沼气池污泥中分离出两种产甲烷杆菌[J].中国沼气,1983,13(2):13.
    [37] 邱秀宝,李彤等.嗜冷性海洋微生物产蛋白酶的研究[J].微生物学通报, 1991, (3):138-141.
    [38] 沈萍,陈向东.微生物学(第二版)[M].北京:高等教育出版社,2006,368-420.
    [39] 史贤俊,林影.嗜冷酶及其工业应用[J].生命的化学, 2001, 3:248-249.
    [40] 孙进杰,赵丽兰.沼气正常发酵的工艺条件[J].Rural Energy,2000,92 (4 ):20 -22.
    [41] 孙晓东,李建宏,潘欣,等.低温菌株的筛选及酚降解能力的研究[J].南京师大学报(自然科学版),2001,24(2):83-86.
    [42] 孙 征 , 周 宇 光 , 东 秀 珠 . 一 个 甲 烷 杆 菌 新 种 的 描 述 和 系 统 分 类 学 研 究 [J]. 微 生 物 学报,2001,3(41):265-269.
    [43] 谭铁鹏译.低温甲烷发酵中厌氧菌的培养与驯化技术[J].国外环境科学技术,1993,1:19-23.
    [44] 田沈 , 赵军 , 曹亚莉 , 等 . 产甲烷菌固定化新方法及其甲烷化特性 [J]. 太阳能学报 , 2002, 23(6):778-781.
    [45] 王龙贵,张明旭,欧泽深,等.菌种的选育及用于煤炭降解转化试验研究[J].中国矿业大学学报, 2006, 35(4):504-509.
    [46] 王天光,李顺鹏.沼气发酵过程中主要微生物生理群的变化及物质转化对产气效率的影响[J].南京农学院学报,1984,2:47-54.
    [47] 吴斌,罗伟,齐震玉.冷冻食品中低温微生物的研究[J].中国微生态学杂志,2003,15(2):90-92
    [48] 徐曾符.沼气工艺学[M].北京:农业出版社,1981.
    [49] 杨苏生,周俊初.微生物生物学[M].北京: 科学出版社,2004:45-50.
    [50] 杨文博,刘方,李明春等.微生物生物学(第八版)[M].北京:科学出版社,2000:941-952.
    [51] 杨秀山,付连明.产甲烷菌的最新分类目录[J].微生物学通报,1991,18(3):187.
    [52] 曾润颖,赵晶.深海细菌的分子鉴定分类[J].徽生物学通报, 2002, 29(6):12-16.
    [53] 曾胤新,蔡明宏,俞勇,等.低温微生物及其酶类的研究概况[J].微生物学杂志,2004,5:83-88.
    [54] 曾胤新,陈波,俞勇,等.北极海冰细菌产胞外酶及主要环境因子的初步研究[J].极地研究, 2003, 15(4):303-309.
    [55] 曾胤新,陈波.南极低温微生物研究及其应用前景[J].极地研究, 1999, 11(2):143-152.
    [56] 张国政.产甲烷菌的一般特征探讨[J].中国沼气,1990,5(8):5-8.
    [57] 张辉,赵一章.嗜热产甲烷杆菌的分离和特征[J].中国沼气,1985,3(5):54-61.
    [58] 赵斌,何绍江.微生物学实验(第一版)[M].北京:科学出版社,2002:265-267.
    [59] 赵一章 . 产甲烷菌选择性连续富集的研究——青霉素对富集和分离的影响 [J]. 中国沼气,1984,3(2):31
    [60] 赵宇华、钱泽澍.硬脂酸降解菌与嗜氢产甲烷杆菌共培养物的研究[J].浙江大学学报(农业与生命科学版),1991,17(l):75-79.
    [61] 周大石.甲烷细菌与沼气发酵[J].生物学通报,1994,29(4):1-3.
    [62] 周孟津.沼气生产利用技术[M].北京:中国农业大学出版社,2005.
    [63] A.Aguilar.Extremophile research in the European union: from fundamental aspects to industrial expectations[J]. FEMS Microbiol Rev, 1996, 18: 89-92.
    [64] Jill, Yitai Liu, Mark Delwiehe, et.al. Isolation of a Methanogen from Deep Marine Sediments That Contain Methane Hydrates, and Description of Methanoeulleus submarinus sp.nov[J]. Applied and environmental microbiology, 2003, 6(69):3311-3316.
    [65] Kiener, and T.Leisinger. Oxygen sensitivity of methogenic bacteria.Syst[J]. Appl.Microbiol, 1983, 4:305-312.
    [66] B.K.Ahring.Methanogenesis in thermophilic biogas reactors [J]. Antonie Van Leeuwenhoek., 1995, 67(1): 91-102.
    [67] Bartlett, K.B.Harriss, Rouviere. Review and assessment of methane emissions from wetland[J]. Chemosphere, 1993, 26: 261-320.
    [68] Blotevogel, K.H.Fiseher. Methanobacterium thermoalcaliphilum, a new moderately alkaliphilic and thermophilic autotrophic methanogen[J]. Arch Microbiol, 1985, 14(1): 211-217.
    [69] D.Nichols, J.Bowman, K.Sanderson, et.a1. Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzmes[J].Current Opinion in Biotechnology, 1999, 10: 240-246.
    [70] D.R.Boone, W.B.Whitman.Proposal of Minimal Standards for Describing New Texa of Methanogenic Bacteria[J]. Int.J.Syst.Bact., 1988, 38(3): 212-219.
    [71] E.M.Rivkina, E.I.Friedmann, C.P.Mckay, et.a1. Metabolic activity of permafrost bacteria below the freezing point[J].Appl Environ Microbiol, 2000, 66: 3230-3233.
    [72] E.R.Master and W.W.Mohn.Psychrotolerant bacteria isolated from Arctic soil that degrade polychlotinated biphenyls at low temperatures[J].Appl Environm Microbiol, 1998, 64(12): 4823-4829.
    [73] I.M.Mathrani, R.Boone. Methanohalophilus zhilinae sp.nov., an alkaliphilic, halophilic, methylotrophic methanogen[J]. Int. J. Syst Bacteriol, 1988, 38(2): 139-142.
    [74] J.A.Romesser, R.S.Wolfe, F.Mayer, et.al. Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp.nov.and Methanogenium marisnigri sp.nov.[J]. Archives of Microbioligy, 1979, 121(2): 147-153.
    [75] J.G.Morris. The physiology of obligate anaerobiosis[J]. A dvances in Microbial physiology, 1975,21, 229-246.
    [76] J.G.Zeikus. The biology of methanogenic bacteria[M]. Bacteriological Reviews, 1977,41: 514 -541.
    [77] J.L.Garcia. Taxonomy and ecology of methanogens[J]. Microbiology Reviews,1990,8(7): 297-308.
    [78] J.W.Deming, AL.Hnston. An oceanographic perspective on microbial life at low temperature with implications for polar ecology, biotechnology and astrobiology[M].Cellular origins and life in Extreme Habitats, 2000, 149-160.
    [79] J.W.Deming. Psychrophiles and polar regions[J].Current opinion in Microbiology, 2002, 5: 301-309.
    [80] K.Junge, F.Imhoff , T.Staley, et.al. Phylogenetic diversity of numerically important bacteria in Arctic sea ice[J]. Microb Ecol, 2002,43(3): 315-328.
    [81] Kotsyurbenko, A.N.Nozhevnikova, T.I.Soloviova, et.al. Methanogenesis at low temperatures by microflora of tundra wetland soil[J].Antonie van Leeuwenhoek, 1996, 69: 75-86.
    [82] L.A.Jeroen, Pennings, J.Keltjens, et.al. Isolation and Characterization of Methanobacterium thermoautotrophicum DH Mutants Unable To Grow under Hydrogen-Deprived Conditions[J]. Journal of bacteriology, 1998, 10(180): 2676-2681.
    [83] L.M.Terry, M.J.Wolin. A Serum Bottle Modification of the Hungate Technique for Cultivation Obligate Anaerobes[J]. Appl Microbiol, 1974, 27(5): 985-987.
    [84] M.Raimbault, G.Rinaudo, J.L.Garcia, et.al. A device to study metabolic gases in the rice rhizosphere[J]. Soil. Biol. Biochem, 1977, 9: 193-196.
    [85] N.Belay, R.Tohnson, B.S.Rajagopal, et.al. Methanogenic bacteria From human dental plaque[J]. Appl. Environ. Microbiol, 1988, 54: 600-603.
    [86] P.H.Smith, R.E.Hungate. Isolation and characterization of Methanobacterium ruminantiumn. sp[J]. J Baeteriol, 1958, 75(6): 713-8.
    [87] P.N.Hobson and B.G.Shaw. The bacterial population of piggery waste anaerobic digesters[J]. Water Res, 1973, 8: 507-516.
    [88] R.A.Mah, D.M.Ward, L.Baresi, et.al. Biogenesis of methane[J]. Ann .Rev. Microbiol, 1977, 31,309-341.
    [89] R.Boopath. Isolation and characterization of a methanogenic bacterium from swine manure[J]. Biroes Technol, 1996, 55(3): 231-235.
    [90] R.E.Hungate. The anaerobic mesospheric cellulolytic bacteria[J]. Bacterial Revs, 1950, 14(1): l-49.
    [91] R.E.Hungate. Methods in Microbiology[M]. New York: Aeademic Press Inc, 1969: 117-132.
    [92] R.Smith. Functional analysis and comparative genomies[J]. Journal of baeterial, 1997, 179(1): 7135-7155.
    [93] S.Worakit, R.Boone. Methanobacterium alealiphilum, an H2-utilizing methanogen that grows at high pH values[J]. Int.J Syst.Bacterial, 1986, 36(4): 380-382.
    [94] Slesarev. The complete genome of hyperthermop Hile Methanopyrus kandleri AV19 and monopHyly of archaeal methanogens[J]. Appl Microbiol, 2002, 99(7): 4644-4649.
    [95] T.Brusa, R.Conca, A.Ferrara, and A.Pecchioni. Presence of Methanobacteria in human subgingival plaque[J]. J.Clin.Periodontol,1987, 14: 470-471.
    [96] T.C.Stadtman, H.A.Barker. Studies on the methane fermentation X: A new formate decomposing bacterium, methanococcus vannielii[J]. J.Baeteriol, 1951, 62(3): 269-280.
    [97] T.L.Miller, M.J.Wolin, Z.Hongxue, et.al. Characteristics of methanogens isolated from bovine rumen[J]. Appl. Environ. Microbiol, 1986, 51: 201-202.
    [98] T.N.Zhilin. Death of Methanosarcina in the air[J]. Microbiology, 1972, 41: 980-981.
    [99] U.Deppennleier. The unique biochemistry of methanogenesis[J]. Prog Nucleic Acid Mol Biol, 2002, 71: 223-243.
    [100] V.Maria, A.Sizova, S.Nieolai, et.al.Isolation and Characterization of oligotrophic acidotolerant methanogenic consortia from a Sphagnum peat bog[J], Microbiology Eeology, 2003, 5(45): 301-315.
    [101] V.Maria, O.R.Simankoval, L.Tillmann, et.al. Isolation and Characterization of New Strains of Methanogens from Cold Terrestrial Habitats[J]. System.Appl.Microbiol, 2003, 26(7): 312-318.
    [102] V.Maria, R.Oleg.Isolation and Characterization of New Strains of Methanogens from Cold Terrestrial Habitats[J]. System Appl Microbial, 2003, 26(3): 312-318.
    [103] W.E.Balch, G.E.Fox, L.J.Magrum, et.al. Methanogens: Reevalution of a unique biological group[J]. Microbiological Reviews, 1979, 43:260-296.
    [104] W.E.Balch, G.E.Fox, C.R.Woese, et.al. Methanogens: reevaluation of a unique biologieal group[J]. Microbiol Rev, 1979, 7(43): 260-296.
    [105] W.E.Balch, R.S.Wolfe. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere[J]. Applied and Environmental Microbiology, 1976, 32(6) : 781-791.
    [106] W.Merkel, W.Manz, U.Szewzyk, et.al. Population dynamics in anaerobic wastewater reactors: modeling and in situ characterlization[J]. Wat Res, 1999, 33: 2392-2402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700