用户名: 密码: 验证码:
基于机器视觉的稻飞虱现场识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对稻田合理喷药需要知道害虫密度的问题,研究了稻飞虱现场实时识别技术,包括稻田现场拍摄稻飞虱图像的方法,对拍摄的图像用不变矩提取形状特征值,用灰度共生矩阵提取纹理特征值,以及用仿生算法改进BP神经网络对稻飞虱进行识别并计数。具体研究是采用自行设计的拍摄装置采集稻飞虱图像,灰度化后用大津法二值化,再用数学形态学滤波;对二值图像采用Hu矩、改进Hu矩、Zernike矩和Krawtchouk矩四种不变矩分别提取特征值,再用BP神经网络进行训练和测试,以此检测四种矩的提取效果,具体操作是用Matlab2008运行算法,对白背飞虱、灰飞虱和褐飞虱共300个样本进行了训练和测试,结果表明Krawtchouk矩提取稻飞虱图像形状的6个特征值的识别率最高,其中对褐飞虱的识别率达到了100%,但是对白背飞虱和灰飞虱的误识别率较大。针对这一情况,进一步采用改进灰度共生矩阵提取背部纹理的4个特征值来识别三种稻飞虱,训练结果是白背飞虱和灰飞虱的识别率要高于Krawtchouk矩提取的特征值,而褐飞虱的识别率低于Krawtchouk矩提取的特征值,于是将这两种提取特征值的方法结合起来,这样最终确定了10个特征值。在此基础之上,采用遗传算法和参数选择改进粒子群算法优化神经网络分别训练和识别三种稻飞虱,通过对比和分析,遗传算法和粒子群算法各有优缺点,于是采用遗传算法改进粒子群算法优化BP神经网络,实验结果得到白背飞虱的正确识别率为90%,灰飞虱为95%,褐飞虱为100%,通过分析适应度曲线和训练误差曲线表明这一算法搜索效率高,求解速度快,训练时间比遗传算法的提高了52.7%,比粒子群算法的提高了24.1%,更加满足本文提出的实时性要求。按前面选择的算法编完软件后,现场实验的结果表明可以识别稻飞虱并计数,为适时适量的稻田喷药提供了依据。
     论文的主要研究内容及成果如下:
     (1)研究稻飞虱现场实时识别技术。使用移动小车,分别拍摄白背飞虱100个样本,灰飞虱100个样本,褐飞虱100个样本,拍摄其背部图像,无线传回远程PC机,由设计的软件实时识别。
     (2)设计现场稻飞虱活体图像采集装置。采集装置核心采用三星嵌入式处理器S3C2440,配备台湾显泰的USB接口工业相机,相机镜头变倍比15:1,采集图像大小定为640×480像素,通过嵌入式系统由USB无线网卡传回远程计算机。
     (3)预处理稻飞虱图像。对稻飞虱图像进行灰度化、二值化、数学形态学滤波、高斯滤波、平滑滤波等处理,得到质量比较好的去掉背景的二值图像;再通过二值图像的坐标计算得到去掉背景的灰度图像;最后采用改进的分水岭算法分割稻飞虱,将一幅图像中的多头稻飞虱分离到160×160像素的各子图像中,以便进一步处理。采用的算法计算简单,稳定有效,耗时最少,满足实时性的要求。
     (4)用四种不变矩提取稻飞虱形状特征值。用Hu矩、改进Hu矩、Zernike矩和Krawtchouk矩四种不变矩分别提取特征值,再用BP神经网络训练和测试,经过Matlab2008实验对比,Krawtchouk矩提取的6个特征值不仅反映出全局特征,而且展现了更好的局部性,对于稻飞虱的识别分类明显好于其它不变矩,其中对褐飞虱的识别率达到100%,但是对白背飞虱和灰飞虱误识别率较高。
     (5)采用改进灰度共生矩阵提取稻飞虱背部纹理特征值。找到稻飞虱的重心,以重心为中心,选取多重环形路线构建灰度共生矩阵,解决稻飞虱图像的方向性问题,再计算灰度共生矩阵的能量、熵、惯性矩和相关等4个特征,用神经网络训练和测试,白背飞虱的识别率达到80%,灰飞虱的识别率达到90%,这两种稻飞虱的识别率要高于Krawtchouk矩提取的特征值,而褐飞虱的识别率为95%,低于Krawtchouk矩提取的特征值,于是将这两种提取特征值的方法结合起来,最终确定了10个特征值。
     (6)优化神经网络识别稻飞虱。将上面确定的10个特征值结合起来作为BP神经网络的输入,再将遗传算法和粒子群算法相结合,把粒子群算法中的极值跟踪法改为遗传算法的交叉和变异操作,采用粒子分别与个体极值和群体极值进行交叉运算,粒子自己变异运算搜索最优解,以此保持个体之间信息交流和种群的多样性,提高搜索效率,加快求解速度,训练时间是0.4071秒,比遗传算法的0.86085秒提高了52.7%,比粒子群算法的0.53599秒提高了24.1%,更加满足本文提出的实时性要求。
     (7)设计稻飞虱识别软件。软件的流程是打开由无线采集小车实时传回的稻飞虱图像,经过一系列处理,提取不变矩特征值,最后通过GAIPSO神经网络识别稻飞虱并计数。
     (8)现场实验。在南京农业大学卫岗水稻试验站对系统进行现场测试,将采集幕布放置在田块之间的观测路上,小车放置在幕布前,远程控制其自由运行。将小车调整到最佳拍摄位置,通过工业相机拍摄稻飞虱图像,再通过无线网卡传回远程计算机进一步处理。现场实验表明系统可以正常工作,并能够实现实时识别并计数。
Aimed at the problems of excessive spraying pesticide in paddy, we studied on the field identification technology of rice planthopper with machine vision. In order to obtain images of rice planthopper, we designed an equipment which was controlled by a remote computer. After image acquisition, the first operation was image preprocessing. The shape features of rice planthoppers were extracted by Hu moment, Improved Hu moment, Zernike moment and Krawtchouk moment. Then, BP Neural Network was used to train and test in order to know which the best one of the four moments was. The experiment was used Matlab2008to verify algorithm. It trained and tested on300samples of sogatella furcifera, laodelphax and nilaparvata lugens. The result showed that the correct rate of the recognition was the highest one which features were extracted by Krawtchouk moment, but the error recognition ratio of sogatella furcifera and laodelphax was high. Aimed at this problem, gray level co-occurrence matrix was used to extract the value of the back texture feature to discriminate of the three rice planthoppers. On this basis, the paper further used genetic algorithm to optimize BP neural network and particle swarm optimize BP neural network. By contrast, genetic algorithm and particle swarm optimization algorithm have their own advantages and disadvantages. Experimental results showed that the recognition result using genetic algorithm to optimize particle swarm algorithm has a faster solution. It can satisfy real time.
     The main contents and results of the research:
     (1) The determination of research project
     This paper studied real-time identification for rice planthopper in the field. Image acquisition used a mobile vehicle. It shot300samples of Sogatella furcifera, Nilaparvata lugens and Laodelphax. It shot the back shape of rice planthoppers. They were sent back to the remote PC by wireless way and identified by software.
     (2) Mobile equipment design
     In order to obtain images of rice planthopper, I designed an equipment which was controlled by a remote computer. The image size was set to640*480pixels because of the wireless transmission. The vehicle had simple structure and low cost. The camera was less than600yuan. These laid the foundation for low cost recognition system of rice planthopper.
     (3) Image preprocessing
     The first operation was image preprocessing. Qality of image was not good in this condition of real-time system. It can not identify rice planthoppers by color. The best way was the shape. The commonly formula was used to get gray image, and OTSU algorithm was used to get binary image. In order to get better qualities of binary image, morphologic processing, Gauss filtering and median filtering were used.
     (4) Image feature extraction base on shape
     The shape features of rice planthoppers were extracted by Hu moment, Improved Hu moment, Zernike moment and Krawtchouk moment. After analysis and comparison, Krawtchouk moment not only reflected the global feature, but also exhibited better local feature. It was the highest correct recognition rate, but the error recognition ratio of sogatella furcifera and laodelphax was high.
     (5) Image feature extraction base on texture
     The center of gravity was found and used as the center to construct gray level co-occurrence matrix. It used multiple annular routes. The texture features of Energy, entropy, moment of inertia and the related of gray level co-occurrence matrix was extract. Then used neural network to train and recognize. The identification rate of sogatella reached80%, and the rate of laodelphax reached90%, and the rate of nilaparvata lugens reached95%. It created the condition combining the features extractted by moment invariant.
     (6) Image classification and recognition
     Genetic algorithm and particle swarm algorithm were used to optimize BP neural network. By contrast, genetic algorithm and particle swarm optimization algorithm have their own advantages and disadvantages. After analysis and comparison, GAIPSO Algorithm optimized BP Neural Network was better than genetic algorithm and IPSO Algorithm optimized BP Neural Network algorithm. It can realize satisfy real time.
     (7) Design the recognition system of rice planthopper
     The software was designed through the above algorithms. The final goal was to achieve recognition and counting of rice planthoppers.
     (8) Field experiment
     The system was tested in rice experiment stand of Nanjing Agricultural University. The curtain was placed on the observation road between the two fields, and the car was placed in front of the curtain. The car run to the best shooting position by remote control, and then used industrial camera to take pictures. The wireless network card transferred the images to the remote computer to further process. Field experiments showed that the system can work normally, and it can realize real-time recognition.
引文
[1]陈宇.稻飞虱的危害特点及其防治措施[J].现代农业科技.2008(04):74-75.
    [2]杨玲玲.水稻飞虱自动识别技术的研究[D].南京农业大学,2008.
    [3]宋凯.基于计算机视觉的农作物病害识别方法的研究[D].沈阳:沈阳农业大学,2008.
    [4]李清西.计算机在昆虫分类中的新用途[J].昆虫分类学报,2000,22(2):153-156.
    [5]谢春燕,吴达科.光谱技术在作物病虫害检测中的研究进展及展望[J].农机化研究,2009,9:10-13.
    [6]陈月华,胡晓光,张长利.基于机器视觉的小麦害虫分割算法研究[J].农业工程学报,2007,23(12):187-191.
    [7]Elizabeth B M, Dow ell F E, Baker J E, et al. Automated detect ion single w heat kernels containing live o r dead insects using near-infrared reflectance spectroscopy [J]. Transact ions of the A SAE,2003,46 (4):1277-1282.
    [8]张红涛,毛罕平.基于计算机视觉的粮粒内部害虫检测的研究进展[J].中国粮油学报,2008,23(5):209:213.
    [9]http://baike. baidu. com/view/45735. htm
    [10]http://baike. baidu. com/view/2205. htm
    [11]任东.基于支持向量机的植物病害识别研究[D].吉林:吉林大学,2007.
    [12]郝中华.基于图像模式识别技术的实蝇昆虫分类识别研究[D].昆明理工大学,2010.
    [13]谭林秋.基于VC++的数字图像处理系统的开发及算法研究[D].西安:西安理工大学,2008.
    [14]Milan, S., H. Vaclav, B. Roger. Image Processing, Analysis and Machine Vision, Second Edition. U.S.A:Thomson Brooks/Cole Press,2001.
    [15]贾云得.机器视觉[M].北京:科学出版社,2000.
    [16]李健,陈长明.基于计算机视觉的农作物害虫自动检测研究综述[J].微型电脑应用,2009,25(12):62-64.
    [17]Zayas I Y, Flinn P W. Detection of insects in bulk wheat samples with machine vision[J]. Transactions of the ASAE,1998,41(3):883-888.
    [18]Zayas I Y, Steele J L, Kateevich A. Wheat classification using image analysis and crush-force parameters[J]. Transaotions of the ASAE,1996,39(6):2199-2204.
    [19]Ridgway C, Davies R, Chambers J. Imaging for the high-speed detection of pest insects and other contaminants in cereal grain in transit[C]. ASAE Meeting Paper,2001.
    [20]Ridgway C, Davies E R, Chambers J. Rapid machine vision method for the detection of insects and other particulate biocontaminants of bulk grain in transit [J]. Biosystems Engineering,2002,83(1):21-30.
    [21]邱道尹,张红涛,陈铁军,等.基于机器视觉的储粮害虫智能检测系统硬件设计[J].农业机械学报,2003,34(1):86-87.
    [22]邱道尹,张红涛,陈铁军,等.基于机器视觉的储粮害虫智能检测系统软件设计[J].农业机械学报,2003,34(2):83-85.
    [23]张法全.基于机器视觉和小波分析的农田害虫识别系统[D].郑州大学,2003.
    [24]刘德营,丁为民,陈坤杰.野外环境昆虫图像自动采集装置[J].农业机械学报.2011,42(06):173,184-187.
    [25]刘德营,赵三琴,丁为民,等.基于图像频谱特征的稻飞虱识别方法[J].农业工程学报,2012,28(7):184-188.
    [26]刘德营,丁为民,赵三琴.稻飞虱图像形状和颜色特征提取的研究[J].江西农业学报,2009(05):101-102,105.
    [27]刘德营.稻飞虱自动识别关键技术的研究[D].南京农业大学,2010.
    [28]赵三琴,丁为民,刘德营.基于傅里叶描述子的稻飞虱形状识别[J].农业机械学报,2009,40(8):181-184.
    [29]赵三琴.稻飞虱前翅形状特征测量方法的研究[D].南京农业大学,2010.
    [30]Ridgway C, Chambers J. Detection of external and internal insect infestation in wheat by near-infrared reflectance spectroscopy[J]. Journal of the Science of Food and Agriculture,1996,71(2):251-264.
    [31]Ridgway C, Chambers J. Detection of insects inside wheat kernels by NIR imaging[J]. Journal of Near Infrared Spectroscopy,1998,6(2):115-119.
    [32]Ridgway C, Chambers J, Cowe I A. Detection of grain weevils inside single wheat kernels by a very near infrared two-wave-length model[J]. Journal of Near Infrared Spectroscopy,1999,7(4):213-221.
    [33]Ridgway C, Davies E R, Chambers J. Rapid machine vision method for the detection of insects and other particulate bio-contaminants'of bulk grain in transit[J]. Biosystems Engineering,2002,83(1):21-30
    [34]Davies E R, Ridgway C, Chambers J. NIR detection of grain weevils inside wheat kernels, [A]. International Conference on Visual Information Engineering [C], London: IEE,2003.173-176.
    [35]Perez-Mendoza J, Throne J E, Dowell F E, et al. Detect ion of insect fragments in w heat flour by near-infrared spectroscopy[J]. Journal of Stored Products Research,2003,39 (3):305-312.
    [36]Elizabeth B M, Dowell FE, Baker J E, et al. Automated detect ion single w heat kernels containing live o r dead insects using near-infrared reflectance spectroscopy [J]. Transact ions of the A SAE,2003,46 (4):1277-1282.
    [37]Melvin S, Karunakaran C, Jayas D S, et al. Design and development of a grain kernel singulation device [J].Canadian B io system s Engineering,2003,45 (3):1-3.
    [38]Karunakaran C, Jayas D S, White N D G. Soft X-ray inspect ion of w heat kernels infested by Sitophilus oryza[J]. T ransactions of the A SA E,2003,46 (3):739-745.
    [39]Karunakaran C, Jayas D S, White N D G. Detect ion of infestations by Crypto lasts ferruginous inside w heat kernels using a soft X2ray method [J]. Canadian Biosystems Engineering,2004,46:7.1-7.9.
    [40]Tom C. Pearson, Brabec D L. Automated detect ion of hidden internal insect infest at ions in w heat kernels using electrical conductance [C]. ASAE meeting Paper No, 023073, Chicago. USA,2002:1-10.
    [41]谭佐军,杨长举,张宏宇,等.近红外光谱检测技术在仓储害虫识别中的应用.2006,27(5):39-42.
    [42]张成花.基于图像识别的储粮害虫分类的研究[D].郑州大学,2002.
    [43]张红涛,毛罕平,韩绿化.近红外高光谱成像技术检测粮仓米象活虫[J].农业工程学报,2012,28(8):263-268.
    [44]张红涛,毛罕平.四种客观权重确定方法在粮虫可拓分类中的应用比较[J].农业工程学报,2009,25(1):132-136.
    [45]Gustafsson, A.& Simak, M., Congr. Un. Int. Rech. For. XII Congress, Oxford,1956,1-18.
    [46]Swaminathan, M. S.& Kamra, S.K., Indian. Journal of Genetics and Plant Breeding,21(1961),2:129-135.
    [47]土井弥太郎,X射线写真,共立出版株式会社出版,1963,107-108.
    [48]Keagy PM, Schatzki T E. Effect of image resolution on insect detection in wheat radiographs[J]. Cereal Chemistry,1991,68(4):339-343.
    [49]Keagy PM, Schatzki T E. Machine recognition of weevil damage in wheat radiographs[J]. Cereal Chemistry,1993,70(6):696-700.
    [50]Karunakaran C, Jayas D S, White ND G. Soft X-ray inspection of wheat kernels infested by Sitophilus oryzae[J]. Transactions of the ASAE,2003,46(3):739-745.
    [51]Karunakaran C, Jayas D S, White N D G. Identification of wheat kernels damaged by the red flour beetle using X-ray images[J]. Biosystems Engineering,2004,87 (3): 267-274.
    [52]Karunakaran C, Jayas D S, White ND G. Detection of internal wheat seed infestation by Rhyzopertha dominica using X-ray imaging [J]. Journal of Stored Products Research, 2004,40 (5):507-516.
    [53]Karunakaran C, Jayas D S, White N D G. X-ray image analysis to detect infestations caused by insects in grain[J]. Cereal Chemistry,2003,80(5):553-557.
    [54]Toews M D, PearsonTC, Campbell J F. Imaging and automated detection of Sitophilus oryzae (Coleoptera:Curculionidae)pupae in hard red winter wheat[J]. Journal of Economic Entomology,2006:99(2):583-592
    [55]徐国淦.植物检疫(浙农大汇编)[M].上海科学技术出版社,1078:485-488.
    [56]顾德法.软X射线检测隐蔽病虫的探讨[J].科学通报,1983,28(1):122-124.
    [57]缪恩雪,张焕新,陈福德.利用软x射线研究钻蛀性害虫[J].陕西林业科技,1980,1:35-36.
    [58]王立忠,维周民.利用软x射线检测林木种子害虫[J].山西林业科技,1988,8:27.
    [59]Park J J, Kim J K, Park H, Cho K. Development of time-efficient method for estimating aphid density using yellow sticky traps in cucumber greenhouses[J]. Journal of Asia-Pacific Entomol,2001,4(2):143-148.
    [60]Mayo M., Watson A. T. Automatic Species Identification of Live Moths[J]. Knowledge-Based Systems,2007,20(2):195-202.
    [61]Camargo A, Smith J S. Image pattern classification for the identification of disease causing agents in plants[J], Computers and Electronics in Agriculture,2009,66(2): 121-125.
    [62]张红涛,毛罕平,邱道尹.储粮害虫图像识别中的特征提取[J].农业工程学报,2009,25(2):126-130.
    [63]张红涛,胡玉霞,毛罕平.基于SVM的储粮害虫图像识别分类[J].农机化研究,2008(8):36-38.
    [64]张红涛,毛罕平,张晓东.基于人工鱼群算法的储粮害虫特征选择[J].江苏大学学报,2010,31(5):502-505.
    [65]陈月华,胡晓光,张长利.基于机器视觉的小麦害虫分割算法研究[J].农业工程学报,2007,23(12):187-191.
    [66]Gassoumi H, Prasad NR, Ellington JJ. Neural network-based approach for insect classification in cotton ecosystems. International Conference on Intelligent Technologies (InTech 2000), Bangkok, Thailand.7.
    [67]Habib G, Nadipuram R P, John J E, et, al. A neuro-fuzzy approach for insect classification [J]. World Automation Congress, Third International Symposium on Soft Computing for Industry, Maui, Hawaii,2000.
    [68]R J White, L Winokur. Quantitative description discrimination of butterfly wing patterns using moment invariant analysis [J]. Bulletin of Entomological Research, 2003,93:361-374.
    [69]梁曼军等,基于BP神经网络的棉花病虫害诊断系统.电脑与信息技术,1995,第一期
    [70]冯旭东,陈方,神经网络在病虫害诊断中的应用.电脑开发与应用,1997,第12卷第一期
    [71]邱道尹,张成花,张红涛.神经网络在储粮害虫识别中的应用[J].农业工程学报,2003,19(1):142-144.
    [72]李峥嵘,刘月娥,何东健,等.基于内容的小麦害虫图像检索系统研究与实现[J].农业工程学报,2007,23(11):210-215.
    [73]杨玲玲.水稻飞虱自动识别技术的研究[D].南京农业大学,2008.
    [74]杨玲玲,丁为民,刘德营等.水稻飞虱图像几何形状特征的提取[J].农机化研究,2008(6):180-183.
    [75]王艳青.近年来中国水稻害虫发生及趋势分析[J].中国农学通报,2006,22(2):343-347.
    [76]王克如.基于图像识别的作物病虫草害诊断研究[D].中国农业科学院,2005.
    [77]张家兴.可持续农业中21世纪初的IPM[J].植物保护,1998,24(6):38-40.
    [78]张法全,基于机器视觉和小波分析的农田害虫识别系统[D].郑州大学,2003.
    [79]Hu M K. Visual pattern recognition by moment invariants [J]. IEEE Transactions on Information Theory,1962,8:179-187.
    [80]Ashaghathra S, Weckler P, Solie J, Stone M, Wayadande A. Identifying pecan weevils through image processing techniques based on template matching. American Society of Agricultural and Biological Engineering,2007.
    [81]杨红珍,张建伟,李湘涛,等.基于图像的昆虫远程自动识别系统的研究[J].农业工程学报,2008,24(1):188-192.
    [82]邱道尹,张红涛,刘新宇,等.基于机器视觉的大田害虫检测系统[J].农业机械学报,2007,38(01):120-122.
    [83]毛文华,郑永军,苑严伟,。等.基于色度和形态特征的蝗虫信息提取技术[J].农业机械学报,2008,39(9):104-107.
    [84]刘占宇.水稻主要害虫胁迫遥感监测研究[D].浙江大学,2008.
    [85]章烈辉,刘占山,肖启明.我国水稻害虫综合防治技术研究现状及发展建议[J].中国稻米,2009,(1):6-9.
    [86]何忠全,张志涛,陈志谊.我国水稻害虫防治技术研究现状及发展策略[J].西南农业大学学报,2004,17(1):110-114.
    [87]史冰霞.机器视觉中字符实时识别技术的研究[D].河北工业大学,2008.
    [88]陈月华.基于机器视觉的小麦蚜虫自动检测技术研究[D].东北农业大学,2007.
    [89]王克如.基于图像识别的作物病虫草害诊断研究[D].中国农业科学院,2005.
    [90]包芳.基于智能算法的神经网络优化及其应用[D].江南大学,2008.
    [91]M. U. Ramos, Sanchez, J. Matas, and J. Kittler, Statistical chromaticity models for lip tracking with b-splines, in Int. Conf. on Audio and Video Based Biometric Person Authentication, CransMontana, Switzerland,1997.
    [1]于海业,马成林等.远程控制技术在温室环境控制中的应用现状分析[J].农业机械学报,2003,34(6):160-163.
    [2]赵立辉,霍春宝.基于ARM9的远程视频监控系统的设计与实现[J].沈阳大学学报,2009,21(3):108-110.
    [3]孙忠富,乔晓军,王迎春.信息技术在可控环境农业中的研究与应用[J].数字农业研究进展,2005:75-78.
    [4]奚强.温室大棚监测控制系统研究[D].中国农业大学,2005.
    [5]高建平,赵龙庆.温室计算机控制与管理技术的发展概况及在我国的应用前景[J].计算机与农业,2003(2):12-15.
    [6]田泽.嵌入式系统开发与应用[M].北京:北京航空航天大学出版社,2005.
    [7]田泽.嵌入式系统开发与应用实验教程(第2版)[M].北京:北京航空航天大学出版社,2006.
    [8]苏晓峰,孙忠富,张百海,杜克明,一种基于web的温室远程监控系统方案设计[J].农业网络信息,2006(1):18-21.
    [9]王培珍,徐俊生.基于ARM9的嵌入式Linux图像采集系统设计[J].智能控制、检测技术及应用,2007,36(19):89-92.
    [10]郭剑,赵建.嵌入式Linux的图像采集与显示[J].现代电子技术,2006(7):129-131.
    [11]白福铭,黄品文,郑丽敏,等.基于ARM9的电子鼻系统设计与应用[J].农业机械学报,2009,40(增刊):138-142.
    [12]张凯良,杨丽,张铁中.草莓收获机器人采摘执行机构设计与试验[J].农业机械学报,2011,42(9):154-161.
    [13]申长军,郑文刚,孙刚,等.低功耗无线直流电磁阀及其控制模块设计与应用[J].农业机械学报,2009,40(增刊):82-86.
    [14]王松德,朱小龙.对射式红外线计数器的设计[J].农业机械学报,2005,36(7):168-170.
    [15]http://baike.baidu.com/view/1015514.htm.
    [16]http://item.taobao.com/item.htm?id=15491392410&ali_refid=a3_420434_1006:1103718113:6:%B 9%A4%D2%B5%CF%E0%BB%FA:4702a90d817ca9119c2a681e6a8d73b7&ali_trackid=1_4702a 90d817ca9119c2a681e6a8d73b7
    [17]http://item.taobao.com/item.htm?spm=a230r.1.14.1.1yNHAN&id= 12486112473.
    [18]徐广毅,张晓林,崔迎炜,等.嵌入式Linux系统中GUI系统的研究与移植[J].单片机与嵌入式系统应用,2004(10):11-14.
    [19]Jean J Labrosse,邵贝贝译.嵌入式实时操作系统[M].北京航空航天大学出版社,2003.
    [20]陈岩,叶炜.基于ARM的远程控制系统的设计[J].自动化仪表,2005,26(1 1):5-11.
    [21]何珊Linux操作系统下USB工业相机高效软件构架的研究[D].西安电子科技大学,2008.
    [1]陈强.基于组合矩和神经网络的图像识别技术研究[D].南京理工大学,2007.
    [2]冈萨雷斯.数字图像处理(第三版)[M].电子工业出版社,2007:126-864.
    [3]孔彦龙,高晓阳,李红玲,等.基于机器视觉的马铃薯质量和形状分选方法[J].农业工程学报,2012,28(17):143-148.
    [4]赵吉文,魏正翠,汪洋,等.基于灰度带比例的优质西瓜子识别算法研究与实现[J].农业工程学报,2011,27(4):340-344.
    [5]蔡健荣,刘兵,李永平,等.X射线成像技术判别蚕茧性别[J].农业工程学报,2012,28(8):275-279.
    [6]R Willett,R Nowak.Fast multiresolution photon-limited image reconstruction[A]. Proc IEEE Int Sym Biomedical Imaging (ISBIc04)[C].Arlington:IEEE Press,2004.1192-1195.
    [7]杨玲玲.水稻飞虱自动识别技术的研究[D].南京农业大学,2008.
    [8]沈宝国.基于颜色特征的棉田杂草识别方法与定位技术研究[D].江苏大学,2009.
    [9]刘德营,丁为民,赵三琴.稻飞虱图像形状和颜色特征提取的研究[J].江西农业学报,2009(05):101-102,105.
    [10]刘德营.稻飞虱自动识别关键技术的研究[D].南京农业大学,2010.
    [11]吴兰兰.基于数字图像处理的玉米苗期田间杂草的识别研究[D].华中农业大学,2010.
    [12]胡晓峰,吴玲达,老松杨等.多媒体技术教程[M].人民邮电出版社,2002.
    [13]Lee J.H, Chang B.H, Kim S.D. Comparison of color transformations for image segmentation [J]. IEE Electronics Letters,1994,30(20):1660-1661.
    [14]Otsu. A threshold selection method from gray-level histogram. IEEE Trans on SMC29,1979,9(3): 62-66
    [15]江明,刘辉,黄欢.图像二值化技术的研究[J].软件导刊,2001(11):283-286.
    [16]张建华,祁力钧,冀荣华,等.基于粗糙集和BP神经网络的棉花病害识别[J].农业工程学报,2012,28(7):161-167.
    [17]任亚恒,温佩芝,黄文明等.一种改进的大鼠精子图像分割及计数算法[J].计算机工程,2011,(07):243-245,248.
    [18]杜鹏,高宏力,张磊,张永胜.小波变换和大津法在竹编工艺中的应用[J].测试技术学报,2011,(02):158-162.
    [19]许振伟.基于数学形态学滤波的储粮害虫图像二值分割研究[J].中国粮油学报,2008,(04):197-198.
    [20]闫海霞.基于数学形态学的图像边缘检测和增强算法的研究[D].吉林大学,2009.
    [21]周天娟,张铁中,杨丽,等.基于数学形态学的相接触草莓果实的分割方法及比较研究[J].农业工程学报,2007,23(9):164-168.
    [22]Hagstrum D W. Predicting insect density from probe trap catch in farm-stored wheat [J]. Stored Prod. Res,1998,34:251-262.
    [23]姚进.基于数学形态学的图像边缘检测研究[D].山东师范大学,2005.
    [24]范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
    [25]杨福增,王峥,杨青,等.基于小波变换的VWiener滤波方法在农产品图像去噪中的应用[J].农业工程学报,2007,23(2):145-150.
    [26]Gyu Hee Park, Hya-Hyun Cho, Myung-Ryul Choi. A contrast enhancement method using dynamic range separate histogram equalization [J]. IEEE Transactions on Consumer Electronics,2008,54(4): 1981-1987.
    [27]权贵秦,安毓英,王凤琴.双参考面FTP法测量弹痕轮廓[J].西安电子科技大学学报,2007,34(5):805-808.
    [28]Akkoul S, Ledee R, Leconge R, et al. A new adaptive switching median filter[J]. Signal Processing Letters, IEEE,2010,17(6):587-590.
    [29]贾渊,姬长英.采用改进的自适应模糊多级中值滤波算法去除牛肉图像斑点噪声[J].农业工程学报,2005,21(2):102-105.
    [30]Soini A. Machine vision technology take-up in industrial applications [J]. Image and Signal Processing and Analysis,2001 (2):32-38.
    [31]王凤娥.改进后的分水岭算法在图像分割中的应用研究[D].山东大学,2008.
    [32]徐曼.基于改进快速分水岭算法的图像分割技术研究[D].华中科技大学,2010.
    [33]任守纲,马超,谢忠红,等.基于分水岭和梯度的蝴蝶兰图像分割方法[J].农业工程学报,2012,28(9):125-129.
    [34]冯惠丽.一种新的不变矩在步态识别中的研究应用[D].太原理工大学,2010.
    [35]肖斌.基于不变矩的图像几何变换不变性识别研究[D].山西师范大学,2007.
    [36]边肇棋,张学工.模式识别[M].北京:清华大学出版社.2000:176-185,198-205.
    [37]毛文华,郑永军,苑严伟,等.基于色度和形态特征的蝗虫信息提取技术[J].农业机械学报,2008,39(9):104-107.
    [38]Ashaghathra S, Weckler P, Solie J, Stone M, Wayadande A. Identifying pecan weevils through image processing techniques based on template matching. American Society of Agricultural and Biological Engineering,2007.
    [39]杨红珍,张建伟,李湘涛,等.基于图像的昆虫远程自动识别系统的研究[J].农业工程学报,2008,24(1):188-192.
    [40]邱道尹,张红涛,刘新宇,等.基于机器视觉的大田害虫检测系统[J].农业机械学报,2007,38(01):120-122.
    [41]HU MING-KUET. Visual pattern recognition by moment invariants [J]. IRE Transactions on Information Theory,1962, IT-8(2):179-187.
    [42]王晓军.不变矩在图像特征提取及目标识别中的应用[J].机械工程与自动化.2011(01):52-53,56.
    [43]晏开华,苏真伟,黄明飞.支持向量机在机械零件识别中的应用[J].电子技术应用,2008(11):108-110,114.
    [44]Wong Y R. Scene Matching with Invariant Moments [J]. Computer Graphics and Image Processing, 1978,8:16-24.
    [45]李俊威.基于不变矩的人形识别技术研究[D].西安科技大学,2012.
    [46]张水发,王开义,王书锋,等.基于优化矩不变特征的鲜切菜在线分级技术[J].农业工程学报,2011,27(10):354-358.
    [47]张恒博,商周,李灵华.一种基于改进Hu矩的图像检索方法[J].大连民族学院学报,2011,13(5):499-501,506.
    [48]何阳清,葛元,王林泉.应用几何矩和边缘检测的手势识别算法[J].计算机工程,2005,31(15):165-174
    [49]刘晓丽.基于机器视觉的异常行为检测[D].辽宁科技大学,2012.
    [50]C. Hu, M. Q. Meng, X. W. P. Lliu. Visual gesture recognition for human-machine interface of robot teleoperation [C]. in Proc. IEEE Int'l Conf.on Intelligent Robots and Systems,2003:1560-1565.
    [51]王陈阳,周明全,耿国华.基于自适应背景模型运动目标检测[J].计算机技术与发展,2007,17(4):21-23.
    [52]应义斌,桂江生,饶秀勤.基于Zernike矩的水果形状分类[J].江苏大学学报(自然科学版).2007,28(01):1-3.
    [53]Liao S X, Pawlak M. On the Accuracy of Zernike Moments for Image Analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(12):1358-1364.
    [54]田秋红,刘成霞,杜晓.基于Zernike矩和BP网络的道路交通标志识别方法研究[J].浙江理工大学学报,2012,29(2):235-239.
    [55]商立群,杜亚娟.Hu矩和Zernike矩在图象识别中的应用[J].西安科技学院学报.2000,20(01):53-56.
    [56]杨迪.基于伪Zernike矩和BP网络的人脸识别算法研究[D].辽宁工程技术大学,2011.
    [57]刘文峰.基于Zernike矩的数字图像水印研究[D].华南理工大学,2012.
    [58]Yapp T, Raveendranp, Ongs H. Image analysis by Krawtchouk moments [J]. IEEE Transactions on Image Processing,2003,12 (11):1367-1377.
    [59]吴海勇.基于两变量Krawtchouk矩的图像重建[J].中国图象图形学报,2008,13(9):1645-1648.
    [60]吴一全,武燕燕,唐艳亮.利用Krawtchouk矩不变量实现基于形状的图像检索[J].光电工程,2010,37(5):97-103.
    [61]吴一全,郭建军.基于Krawtchouk矩的自适应门限四叉树分形编码[J].信号处理,2009,7:1033-1037.
    [62]张启东,吴建华,高立群.基于非下采样Contourlet变换和Ⅱ Zernike矩的医学图像检索[J].仪器仪表学报,2009,30(6):1275-1280.
    [1]Anctil Francois, Michel Claude, Perrin Charles, et al. A soil moisture index as an auxiliary ANN input for stream flow forecasting [J]. Journal of Hydrology,2004,286(4):155-167.
    [2]吴简彤,王建华.神经网络技术及其应用[M].哈尔滨:哈尔滨工程大学出版社,1998,10-20.
    [3]张宝光.人工神经网络在遥感图像分类处理中的应用[J].国土资源遥感,1998(1):21-27.
    [4]Qun Dai. Back-propagation with diversive curiosity:An automatic conversion from search stagnation to exploration[J]. Applied Soft Computing,2013,13(1):483-495.,
    [5]http://baike.baidu.com/view/19743.htm
    [6]林洁,陈效民,张勇,等.基于BP神经网络的太湖典型农田土壤水分动态模拟[J].南京农业大学学报,2012,35(4):140-144.
    [7]郑重,马富裕,李江全,等.基于BP神经网络的农田蒸散量预报模型[J].水利学报.2008(02):230-234.
    [8]王润涛,张长利,房俊龙,等.基于机器视觉的大豆籽粒精选技术[J].农业工程学报,2011, 27(8):355-359.
    [9]杨玲玲.水稻飞虱自动识别技术的研究[D].南京农业大学,2008.
    [10]刘天舒.BP神经网络的改进研究及应用[D].东北农业大学,2008.
    [11]何耀华,夏志忠.BP网络的快速自适应学习算法[J].系统工程理论与实践,2000(1):93-98.
    [12]宋振宇,王秋彦,丁小峰.BP神经网络训练中的实际问题研究[J].海军航空程学院学报,2009,24(6):704-720.
    [13]王吉权.BP神经网络的理论及其在农业机械化中的应用研究[D].沈阳农业大学,2011.
    [14]Debabrata Mandal, Surjya K.Pal, Partha Saha. Back propagation neural network based modeling of multi-response of an electrical discharge machining process [J]. International Journal of Knowledge-based and Intelligent Engineering Systems,2007,(11):105-113.
    [15]袁曾任.人工神经元网络及其应用[M].清华大学出版社,2003:1-121.
    [16]田秋红,刘成霞,杜晓.基于Zernike矩和BP网络的道路交通标志识别方法研究[J].浙江理工大学学报,2012,29(2):235-239.
    [17]史峰,王辉,郁磊等Matlab智能算法30个案例分析[M].北京航空航天大学出版社,2011:27-31.
    [18]Vila J P, Wagner V, Neveu P. Bayesian nonlinear model selection and neural network:A conjugate prior approach [J]. IEEE Trans on Neural Networks,2000,11(2):265-278.
    [19]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2006.
    [20]李焱.一种BP神经网络改进算法的研究[J].齐齐哈尔大学学报,2010,26(4):11-15.
    [21]李翱翔,陈健.BP神经网络参数改进方法综述[J].电子科技,2007,2:79-82.
    [22]冯建辉,杨玉静.基于灰度共生矩阵提取纹理特征图像的研究[J].北京测绘,2007(3):19-22.
    [23]Haralick R M, Shanmugam K, Dinstein I. Texture features for image classification[J]. IEEE Transactions on Systems, Man and Cybernetics,1973,3(6):610-621.
    [24]Li W, Canini M, Moore A W, etal. Efficientapplication identification and the temporal and spatial stability of classification schema [J]. Computer Networks,2009,53(6):790-809.
    [25]黄丽.BP神经网络算法改进及应用研究[D].重庆师范大学,2008.
    [26]B.S.Manjunath, W.Y.Ma. Texture feature for browsing and retrieval of image data [J]. IEEE Transaction on PAMI,1996,18 (8):837-842.
    [27]胡召玲,李海权,杜培军.SAR图像纹理特征提取与分类研究[J].中国矿业大学学报,2009,38(3):422-427.
    [28]胡广寰.基于内容图像检索中图像语义分类技术研究[D].浙江大学,2005:13-14.
    [29]谢元澄,徐焕良,谢庄.基于牛肉大理石花纹标准(BMS)图像的纹理特征分析[J].中国农业学报,2010,43(24):5121-5128.
    [30]刘鹏宇.基于内容的图像特征提取算法的研究[D].吉林大学,2004:28-46.
    [31]张建华,祁力钧,冀荣华,等.基于粗糙集和BP神经网络的棉花病害识别[J].农业工程学报,2012,28(7):161-167.
    [32]Wei Su, Jing Li, Yunhao Chen. Textural and local spatial statistics for the object-oriented classification of urban areas using high resolution imagery. International Journal of Remote Sensing[J].2008,29(11):3105-3117.
    [1]王银年.遗传算法的研究与应用[D].江南大学,2009.
    [2]Rajapakse M., Lin Feng. Predicting Peptide Binders of Flexible Lengths with Genetic Annealing Algorithm[J]. IEEE Trans on SMC.2007,5(4):262-267.
    [3]宋立新,王玉华,李玲远.基于遗传算法和神经网络优化的故障诊断专家系统[J].华中师范大学学报:自然科学版,2005,39(3):332-335.
    [4]国嘉,王瑞敏,王家海,等.基于遗传算法的神经网络学习方法[J].计算机与数字工程,2004,32(5):101.
    [5]张文修,梁怡.遗传算法的数学基础[M].西安交通大学出版社,1999:146-176.
    [6]杨玲玲.水稻飞虱自动识别技术的研究[D].南京农业大学,2008.
    [7]史峰,王辉,郁磊等Matlab智能算法30个案例分析[M].北京航空航天大学出版社,2011:27-31.
    [8]周明,孙树栋.遗传算法原理及应用[M].国防工业出版社,1998:18-65.
    [9]梅家斌.遗传算法在神经网络权值优化中的应用[J].武汉科技学院学报.2001(03)
    [10]郭晓婷,朱岩.基于遗传算法的进化神经网络[J].清华大学学报(自然科学版).2000(10)
    [11]邢贞相,付强,肖建红.灌区非均匀给水系统中分区给水优化的遗传算法[J].农业工程学报,2005,21(4):47-51.
    [12]邢贞相,付强,孙兵.实码加速遗传算法在天然河道水面线计算中的应用[J].灌溉排水学报,2003,(5):61-62.
    [13]刘素一,刘晶璟,章乐多.基于PSO-BP神经网络的织物疵点分类方法[J],毛纺科技,
    [14]Chen Minrong, Lu Yongzai, Luo Qi. A novel hybrid algorithm with marriage of particle swarm optinization and extremal optinizationl [J]. Optinization Community e-print, 2007-Optiniization-online.org:1-5.
    [15]高海兵,高亮,周驰,等.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574.
    [16]雷开友.粒子群算法及其应用研究[D].西南大学,2006.
    [17]Kennedy, J., Ebethart, R.C. Particle swarn optimization [C]. Proeeedings of IEEE International Conference on Neural Netwokrs,1995:1942-1948.
    [18]傅忠云.粒子群优化BP算法在电力系统短期负荷预测中的应用[J].重庆工学院学报(自然科学版),2007,21(10):93-96
    [19]张建科.几类改进的粒子群算法[D].西安电子科技大学,2006.
    [20]黄平.粒子群算法改进及其在电力系统的应用[D].华南理工大学,2012.
    [21]乔维德.基于改进PSO-BP神经网络的短期电力负荷预测研究[J].继电器,2007;35(17):17-21.
    [22]杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004(6):87-94.
    [23]Eberhart R, Shi Y. Particle swarm optimization:Developments, applications and resources [C]. Proc. IEEE Congr. Evol. Comput,2001,1:81-86.
    [24]Hu X, Shi Y, Eberhart R. Recent advances in particle swarm [C]. Proc. IEEE Congr. Evol. Comput, 2004,1:90-97.
    [25]Richards M, Ventura D. Choosing a starting configuration for particle swarm optimization [C]. Proc. IEEE Int. Joint. Conf. Neural Network,2004,3:2309-2312.
    [26]Eberhart R, Shi Y, Kennedy J. Swarm Intelligence [M]. San Mateo, CA:Morgan Kaufmann,2001.
    [27]Langdon W B, Poli R. Evolving problems to learn about particle swarm and other optimizers [C]. Proc. CEC-2005,2005,1:81-88.
    [28]Kennedy J. The particle swarm:Social adaptation of knowledge [C]. Proc. IEEE Int. Conf. Evol. Comput,1997:303-308.
    [29]胡庆玉.基于IPSO-BP网络的汽车半主动悬架控制算法研究[D].吉林大学,2010.
    [30]王俊伟.粒子群优化算法的改进及应用[D].东北大学,2006.
    [31]Kim T H, Maruta I, Sugie T.Robust PID controller tuning based on the constrained particle swarm optimization[J].Automatica,2008,44 (4):1104-1110.
    [32]Sun W, Zhang W G, Li X, et al. Driving Fatigue Fusion Detection Based on T-S Fuzzy Neural Network Evolved by Subtractive Clustering and Particle Swarm Optimization[J].Journal of Southeast University (English Edition),2009,25(3):356-361.
    [33]陈大春,马英杰.基于随机粒子群算法的Van Genuchten方程参数优化求解[J].农业工程学报,2006,22(12):82-85.
    [34]师彪,李郁侠,于新花,等.动态调整粒子群-霍尔特模型在径流预测中的应用[J].农业工程学报,2010,26(7):8-13.
    [35]崔莉薇.基于遗传粒子群算法的多机飞行冲突解脱研究[D].重庆大学,2012.
    [36]陈自郁,何中市,何静媛.一种求解集合组合问题的离散粒子群优化模型[J].华南理工大学学报(自然科学版),2010,38(4):141-145.
    [37]崔莉薇,石为人,刘祥明,等.基于遗传粒子群算法的飞行冲突解脱[J].计算机工程与应用,2013,49(7):263-266.
    [38]杨立标.基于混合优化策略的粒子群算法及其应用研究[D].哈尔滨工程大学,2010.
    [39]李季,孙秀霞,李士波等.基于遗传交叉因子的改进粒子群优化算法[J].计算机工程,2008,34(1):181-183.
    [40]夏天,王新晴,梁升,等.带自适应遗传算子的粒子群神经网络及其应用[J].解放军理工大学学报(自然科学版),2011,12(1):70-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700