用户名: 密码: 验证码:
风区铁路接触网风偏检测技术及数值模拟方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强风地区铁路接触网的防风安全对确保高速铁路运输安全、提高运输效率具有重要意义,本文采用机器视觉技术对接触网关键部位风偏量、接触网支柱振动量等技术参数进行在线检测,结合有限元静、动力学数值仿真及空气动力学流场分析结果,研究试验现场不同接触悬挂定位方式等条件下接触网风偏响应机理。
     论文提出并实现了一种基于机器视觉的电气化铁道接触网风偏量检测技术,通过静、动态特征点目标靶面匹配及观测基准失稳运动补偿,以支柱顶端面阵CCD相机的静态特征点靶面动态投影反馈支柱振动响应,结合动态特征点靶面投影中心的像素坐标偏移反推接触悬挂动态特征点的绝对风偏像素偏移,从而实现接触导线、承力索及吊弦等接触悬挂关键部位的横向、抬升风偏及扭转角三分量运动检测。检测算法的实现上,建立了摄像机坐标系下观测基准失稳运动的静态特征点运动反馈数学模型,基于接触网支柱的悬臂梁力学模型分析了最恶劣风环境下支柱在CCD相机安装高度位置的最大挠度及转角值,依据所得参数进一步分析了基准失稳所导致的检测误差构成,同时在此基础上创建并优化了支柱结构的振动检测数学模型和动态特征点的绝对风偏检测数学模型;图形处理算法的实现上,针对现场复杂光照条件和背景干扰,提出了基于改进RGB特征算子的自动阈值寻优分割算法和基于对比度拉伸的一阶亮度矩寻优分割算法,并以彩色图像分割得到的二值化图像为条件构造了基于面积法和几何法的目标偏移及扭转特征提取算法。
     论文从理论和数值计算两方面分别对铁路接触网风偏数值仿真方法进行了研究。理论建模方面,基于平均风速的静态计算法分别对简单自由悬挂和全补偿链形悬挂的风偏理论公式进行了推导,考虑沿跨长方向吊弦动态作用力变化对风偏理论模型进行了修正。数值仿真方面,针对接触网用多股绞线结构的股间几何协调及材料弹性理论,构造了一种既能精确模拟绞线力学行为、又能最大程度减缩求解自由度的新型有限元分析模型;建立了柔性、大跨距、大变形接触网悬索结构的几何非线性有限元求解列式;考虑接触悬挂与支撑结构的互约束创建了能够反映不同定位方式下不同风偏响应机制的接触网耦合分析体系;基于WAWS谐波合成法生成随机风场作为分析的载荷条件输入。
     采用提出的风偏视觉检测技术和数值模拟方法,论文通过现场试验、理论模型及有限元分析、三维流场数值仿真分别对试验段接触网特征点风偏响应和现场地形地貌影响下导线部位的流场分布进行了深入研究,针对接触网结构的定位形式等不同条件得出了一系列有意义的结论。结果表明,论文提出的接触网风偏视觉检测技术能够实现对恶劣大风环境下接触悬挂关键部位风偏量、接触网支柱振动量的实时在线可靠检测,创建的接触网数值仿真模型能够合理反映接触网耦合系统的风偏力学特性,分析数据和结论可为风区铁路接触网的设计、运用到维护均提供更为完备的数据支撑和技术保障。
Wind safety of electrified railway catenary in strong wind area is of great significance to the requirement of railway transportation safety and efficiency. A novel visual detection technique to detect the wind-deviation of key positions of contact suspension and transverse vibration of column was presented. Combined with static and dynamic FEM simulation results, as well as the flow field analysis conclusions, wind-deviation response mechanism of catenary was studied with different conditions such as anchor mode.
     Wind deviation detection of railway catenary based on machine vision method was investigated and achieved. Static detecting points are arranged for column vibration detection and dynamic detecting points were distributed at key positions of contact suspension for wind-deviation detection with the help of area CCD camera set on top of catenary column. Detection of transverse, vertical deviation and rotational angle of contact line, catenary wire and dropper can be realized through target matching at static and dynamic testing points, as well as camera motion compensation of observation datum. As for detection algorithm, target projection feedback model of static point was built under camera coordinate system with the moving camera observation datum. The maximum deflection and rotation angle of column at camera height were obtained based on cantilever beam model under worst wind condition, from which the detecting error structure of datum instability was analyzed. Detecting algorithm of column vibration and absolute wind-deviation of dynamic targets was then constructed and optimized. As for image processing algorithm, automatic threshold segmentation method based on improved RGB characteristic operator and intensity-adaptive color image segmentation based on contrast stretching were presented, both of which had good adaptability to complex illumination conditions and background interference. Target offset and rotation were respectively calculated with area method and geometry method uing the segmented image.
     Wind-deviation simulation model was studied respectively adopting theory method and numerical simulation. Theoretically, sag and wind-deviation of free hanging system and full-compensated chain suspension system were deduced according to statical calculation based on averaged wind velocity. The wind-deviation theoretical model was modified considering the dynamic dropper reation force along the span. Numerically, a novel finite element model of multi-layered wire strand for catenary system was proposed incorporating both material elasticity theory and geometric compatability, which not only can predict its mechanical behavior precisely, but also can reduce solution degrees in the maximal degree. Geometric nonlinearity equations for flexible, large-spanned cable structure of contact suspension was built. The coupled catenary analyzing system was created considering the constraint relations between contact suspension and support structure, which can reflect different wind-deviation response in different anchor mode. Stochastic wind field was generated using WAWS as input load.
     Adopting the proposed visual detection technique and numerical simulation model, wind-deviation response of catenary targets and wind-flow structure with topography and geomorphology in site taken into account were futher studied through field test, theoretical calculation, finite element simulation and areodynamical simulation. A series of conclusions were obtained about the wind-deviation response with different working conditions. It can be concluded that the proposed visual detection technology can realize real-time wind-deviation detection at key positions of contact suspension and vibration detection of catenary column in strong wind. The established theoretical and numerical simulation model can be helpful in reflecting the wind-deviation behavior of coupled catenary system, and thus provide data support and technical assurance for electrified railway construction, application and maintanance in wind area.
引文
[1]田志军.电气化铁路接触网防风技术研究[J].建设机械技术与管理,2007(7):100-103.
    [2]高广军,田红旗,姚松,刘堂红,毕光红.兰新线横风对车辆倾覆稳定性的影响[J].铁道学报,2004,26(4):36-40.
    [3]田红旗.中国列车空气动力学研究进展[J].交通运输工程学报,2006,6(1):1-9.
    [4]熊小慧,梁习锋,高广军,刘堂红.兰州-新疆线强侧风作用下车辆的气动特性[J].中南大学学报:自然科学版,2006,37(6):1183-1188.
    [5]周丹,田红旗,杨明智,鲁寨军.强侧风下客车在不同路况运行的气动性能比较[J].中南大学学报:自然科学版,2008,39(3):554-559.
    [6]高广军,苗秀娟.强横风下青藏线客车在不同高度桥梁上的气动性能分析[J].中南大学学报:自然科学版,2010,41(1):376-380.
    [7]田红旗.中国恶劣风环境下铁路安全行车研究进展[J].中南大学学报:自然科学版,2010,41(6):2435-2443.
    [8]张洁,梁习锋,刘堂红,逯林峰.强侧风作用下客车车体气动外形优化[J].中南大学学报:自然科学版,20011,42(11):3578-3584.
    [9]LI Yan-fei, TIAN Hong-qi. Lateral aerodynamic performance and speed limits of double-deck container vehicles with different structures[J]. J.Cent.South Univ.,2012, (19):2061-2066.
    [10]陈建明.高速铁路接触网技术研究及应用[D].长沙:中南大学,2004.
    [11]朱德胜.德国接触网动态检测技术[J].电气化铁道,2004(3):13-17.
    [12]李大为.德国接触网动态接触压力检测机器缺陷判别技术浅析[J].铁道标准设计,2005(8):101-102.
    [13]陈唐龙,于涤,陈耀坤.接触网检测车振动补偿研究[J].西南交通大学学报,1999,34(4):461-465.
    [14]任艳华.基于激光雷达技术接触网几何参数测试系统研究[D].成都:西南交通大学,2005.
    [15]牛大鹏.非接触式接触网几何参数检测系统研究[D].西南交通大学,2008.
    [16]徐可佳.双目立体视觉技术在接触网几何参数测量中的应用[D].成都:西南交通大学,2004,5.
    [17]朱挺,汤有福.线阵列CCD摄像技术在铁路电力接触线高速检测方面的应用[J].上海铁道科技,2004(3):19-21.
    [18]张韬.基于图像处理的接触网检测系统研究[D].西南交通大学,2008.
    [19]韩伯领,陈治亚,鲁寨军.铁路车辆动态偏移量的在线检测[J].中南大学学报:自然科学版,2008,39(4):787-792
    [20]F. Kiessling, P. Schmidt. Lateral catenary displacement due to wind [J]. Elektrische Bahnen,1998,96(7):231-235.
    [21]A. Bouferrouk, C.J. Baker, M. Sterling, H. O'Neil, S. Wood,2008 "Calculation of the cross wind displacement of pantographs", Bluff Body Aerodynamics and its Applications", Milano, Italy
    [22]H. O'Neil, C.J. Baker, A. Bouferouk,2008. T689 Project; "Pantograph sway and wire displacements under wind loading." Inter-fleet report to RSSB ITLR-T18615-003
    [23]M. BOCCIOLONE, F. RESTA, D. ROCCHI, A. TOSI and A. COLLINA. Pantograph aerodynamic effects on the pantograph-catenary interaction[J]. Vehicle System Dynamics,2006,44:560-570.
    [24]Iwamoto K., Higashi A.Iwamoto K., Higashi A. Some consideration toward reducing aerodynamic noise on pantograph[J]. Jpn. Railw. Eng.,1993,32(1).
    [25]中南大学轨道交通安全教育重点实验室,动车组气动性能风洞试验研究报告[R],湖南长沙,2007
    [26]于万聚.高速电气化铁路接触网[M].成都:西南交通大学出版社,2003:134-140.
    [27]王兴,戚景观.一种新的拉线式位移传感器的设计及其应用[J].机械工程与自动化,2012(4):171-173.
    [28]申利平,李昌春,尹申燕.采用脉冲积累方式提高防撞雷达测距性能[J].重庆大学学报:自然科学版,2006,29(4):29-31.
    [29]廖术娟,刘然,崔德琦.基于毫米波雷达测距的汽车防撞系统研究[J].技术与市场,2010,17(10):10-12.
    [30]张吉康.基于超声波测距系统的汽车安全座椅的研发[J].汽车实用技术,2012(3):30-33.
    [31]杨书凯,刘慧,杨俊贤,初士博.一种超声波测距传感器温湿度补偿装置[J].计算机应用技术,2010(6):75-77.
    [32]雷艳敏,朱齐丹,仲训昱,关秀丽.基于激光测距仪的障碍物检测的仿真研究[J].计算机工程与设计,2012,33(2):718-723.
    [33]董超,孙红月,尚岳全.激光测距在边坡监测中的应用及其修正[J].低温建筑技术,2011(1):92-94.
    [34]赵志强,熊元姣.计算机视觉检测系统的设计方案[J].工业控制计算机,2005,18(10):1-2.
    [35]马玉真,胡亮,方志强,曹素芝.计算机视觉检测技术的发展及应用研究[J].济南大学学报:自然科学版,2004,18(3):222-227.
    [36]王健,王孝通,徐晓刚.基于单目机器视觉的船舶测距定位原理研究[J].中国航海,2005(3):8-14.
    [37]杨迎化,唐大全.单目机器视觉测距技术在无人机自动着舰中的应用[J].新技术新仪器,2003,23(6):18-21.
    [38]阳庆国,刘立人,郎海涛,朱勇建,鲁伟.机器视觉中的微分测距方法研究[J].激光与光电子学进展,2006,43(4):56-59.
    [39]王葵,徐照胜,颜普,王道斌.基于激光测距雷达和机器视觉的障碍物检测[J].仪表技术,2012(8):25-28.
    [40]陈颖,张学典,逯兴莲,张振一,潘丽娜.自准直仪的现状与发展趋势[J].光电机信息,2011,28(1):6-9.
    [41]刘雯,沈妮,李天初.用多齿分度台标定激光小角度干涉仪[J].计量学报,2004,25(4):298-301.
    [42]王国安,丁纪凯,李允明.仿眼睛运动的机器视觉系统的设计[J].机电一体化,2005(5):31-33.
    [43]唐建雄.基于机器视觉的人运动检测[J].现代电子技术,2005(22):113-114.
    [44]陈洪涛,刘登云,程光明,肖献强,于保军.基于机器视觉的运动参数测试方法的研究[J].机械与电子,2007(10):49-52.
    [45]张燕超,徐桂云,崔吉,段松杰.基于机器视觉的运动目标检测方法研究[J].煤矿机械,2008,29(3):65-66.
    [46]郑南宁.计算机视觉与模式识别[M].北京:国防工业出版社,1998:14-20.
    [47]唐士晟,史永革,张小勇.新疆铁路百里风区大风特征统计分析[J].铁道技术监督,2010,39(1):36-40.
    [48]张晶,王黎,高晓蓉,王泽勇,周小红,彭建平.数字图像处理中的图像分割技术及其应用[J].信息技术,2010(11):36-43.
    [49]龚声蓉.数字图像处理与分析[M].北京:清华大学出版社,2005.
    [50]Marko Tkalcic, Jurij F Tasic. Colour spaces-perceptual, historical and applicational background[C]. Ljubljana, Slovenia:EURO-CON,2003:304-308.
    [51]日下秀夫.彩色图像工程[M].北京:科学出版社,2005.
    [52]黄志勇,孙光民,李芳.基于RGB视觉模型的交通标志分割[J].微电子学与计算机,2004,21(10):147-149.
    [53]SOETEDJO A, YAMADA K. An efficient algorithm for traffic sign detection[J]. Journal of Advanced Computational Intelligence and Intelligent Informatic.2006,10 (3):409-417.
    [54]胡牡丹,杨立敬,朱双东.基于三分量色差法的交通标志分割[J].机电工程,2009,26(10):23-26.
    [55]杨璟,朱雷.基于RGB颜色空间的彩色图像分割方法[J].计算机与现代化,2010(8):147-150.
    [56]王志良,高晓亮,王鲁.基于RGB分量统计的可变区域彩色图像分割算法[J].计算机应用研究,2010,27(11):4341-4344.
    [57]阴炳皓,赵臣,韩晓军.基于改进的HSI空间模型的目标搜索方法[J].河北工业大学学报,2003,32(1):6-10.
    [58]陈凤东,洪炳镕,朱莹.基于HSI颜色空间的多机器人识别研究[J].哈尔滨工业大学学报,2004,36(7):928-930.
    [59]刘晓芳,程丹松,刘家锋,管宁.采用改进HSI模型的车牌区域检测和定位方法[J].哈尔滨工业大学学报,2008,40(1):85-89.
    [60]成喜春,全燕鸣.基于HSI模型的彩色图像背景减法[J].计算机应用,2009,29(z1):231-233.
    [61]刘健,张云伟.基于HSI空间的生长状态下茄子图像的分割算法[J].安徽农业科学,2010,38(14):7554-7556.
    [62]李丹丹,史秀璋.基于HSI空间和K-means方法的彩色图像分割算法[J].微电子学与计算机,2010,27(7):121-124.
    [63]金秋春,王杰,童小利.HSI颜色空间中植物叶脉信息提取的研究[J].农机化研究,2010,27(8):178-181.
    [64]Aimi Salihah A N, Mashor M Y, Harun N H, et al. Improving colour image segmentation on acute myelogenous leukaemia images using contrast enhancement techniques[C]//2010 IEEE EMBS Conference on Biomedical Engineering and Sciences. Kuala Lumpur, Malaysia,2010:246-251.
    [65]徐庆,石跃祥,谢文兰,张争珍.基于改进YUV空间的人脸检测方法[J].计算机工程与应用,2008,44(34):158-162.
    [66]程星,吴金,陆生礼,姚建楠.色彩空间RGB与YUV转换的硬件设计[J].电子器件,2007,30(2):661-663.
    [67]马国峰,杨俊红,周兵.基于YUV颜色空间的视频运动检测[J].计算机工程与设计,2008,29(14):3700-3703.
    [68]刘祚时,沈哲.改进的图像分割方法的应用[J].煤炭技术,2010,29(3):218-220.
    [69]李春福,程新文,杨程永.一种改进的苹果彩色图像分割算法[J].计算机科学,2011,38(7A):41-43.
    [70]赵于前,陈真诚,李凌云等.基于对比度信息的彩色图像分割[J].计算机工程与应用,2005,41(34):19-20.
    [71]黄敦,游志胜.对彩色和亮度通道进行各向异性扩散的彩色图像分割[J].计算机工程,2002,28(6):166-169.
    [72]姚军财,石俊生,黄小乔,杨健.彩色图像对比度定义的探讨[J].云南师范大学学报,2006,26(4):49-51.
    [73]王作祥.电气化铁道接触网用绞线标准的技术内涵[J].铁道技术监督,2005(9):10-12.
    [74]孔庆凯,万鹏.钢绞线的基本力学性能及其有限元方法模拟[J].四川建筑,2003,23(1):20-22.
    [75]Jiang W G, Yao M S, Walton J M. A concise finite element model for simple wire rope strand [J]. International Journal of Mechanical Sciences,1999,41(2):43-161.
    [76]Jiang W G,, Henshall J L, Walton J M. A concise finite element model for 3-layered straight wire rope strand [J]. International Journal of Mechanical Sciences,2000,42(1): 63-86.
    [77]Jiang W G, Henshall J L. The analysis of termination effects in wire strand using the finite element method [J]. Journal of Strain Analysis for Engineering Design,1999, 34(1):31-38
    [78]Jiang W G, Warby M K, Henshall J L. Statically indeterminate contacts in axially loaded wire strand [J]. European Journal of Mechanics A/Solids,2008,27(1):69-78.
    [79]Jiang W G A concise finite element model for pure bending analysis of simple wire strand [J]. International Journal of Mechanical Sciences,2012,54:69-73.
    [80]Costello G A. Theory of wire rope.2nd ed [M]. New York:Springer-Verlag,1997: 14-28.
    [81]Ghoreishi S R, Messager T, Cartraud P, Davies P. Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model [J]. International Journal of Mechanical Sciences,2007,49(11):1251-1261.
    [82]Stanova E, Fedorko G, Fabian M, Kmet S. Computer modelling of wire strands and ropes Part Ⅰ:Theory and computer implementation [J]. Advances in Engineering Software,2011,42:322-331.
    [83]Stanova E, Fedorko G, Fabian M, Kmet S. Computer modelling of wire strands and ropes part Ⅱ:Finite element-based applications [J]. Advances in Engineering Software, 2011,42:305-315.
    [84]Usabiaga H, Pagalday J M. Analytical procedure for modelling recursively and wire by wire stranded ropes subjected to traction and torsion loads [J]. International Journal of Solids and Structures,2008,45(21):5503-5520.
    [85]Elata D, Eshkenazy R, Weiss M P. The mechanical behavior of a wire rope with an independent wire rope core [J]. International Journal of Solids and Structures,2004, 41(5):1157-1172.
    [86]王应军,李卓球,宋显辉.钢绞线弹性模量的理论计算及其影响因素分析[J].武汉理工大学学报,2004,26(4):80-82.
    [87]高兴军,马海涛,陈太聪.弹性地基上Timoshenko梁的精确数值解[J].计算力学学报,2011,28(6):904-908
    [88]Thai H T, Kim S E. Nonlinear static and dynamic analysis of cable structures [J]. Finite elements in analysis and design,2011(47):237-246.
    [89]Ozdermir H. A finite element approach for cable problems[J]. International Journal of Solids and Structures,1979(15):429-437.
    [90]Leonard J, Recker W. Nonlinear dynamics of cables with initial tension[J]. Journal engineering mechanics,1972 (98):293-309.
    [91]杨必峰,马人乐.输电塔线体系的索杆混合有限元法[J].同济大学学报,2004(32):296-301.
    [92]周强,杨文兵,杨新华.斜拉桥索力调整在ANSYS中的实现[J].华中科技大学学报(城市科学版),2005,22(增刊):27-28.
    [93]Chen Z H, Wu Y J, Yin Y, etc. Formulation and application of multi-node sliding cable element for the analysis of suspendome structures[J]. Finite elements in analysis and design,2010(46):743-750.
    [94]李正,戴捷,韩大章.斜拉索单元模拟在ANSYS中的实现[J].现代交通技术,2009,6(2):45-47.
    [95]Jayaraman HB, Knudson WC. A curved element for the analysis of cable structures[J]. Computers and Structures,1981(14):325-333.
    [96]唐建民,卓家寿.悬索结构大位移分析改进的两节点索单元模型[J].河海大学学报,1997,27(4):16-19.
    [97]唐建民,沈祖炎.悬索结构非线性分析的滑移索单元法[J].计算力学学报,1999,16(2):143-149.
    [98]王春江,董石麟,王人鹏,钱若军.一种考虑初始垂度影响的非线性索单元[J].力学季刊,2002,23(3):354-361.
    [99]王雷,李传习.索单元结构计算的内力全量迭代法[J].公路交通科技,2011,28(8):90-94.
    [100]郑平芳.有限元中索单元的研究及应用进展[J].山西建筑,2011,37(28):42-43.
    [101]Paola M D, Digital simulation of wind field velocity [J]. Journal of Wind Engineering and Industrial Aerodynamics,1998, (74-76):91-109.
    [102]张希黔,葛勇,严春风,晏致涛.脉动风模拟技术的研究与进展[J].地震工程与工程振动,2008,28(6):206-212.
    [103]赵超,黎景宇.脉动风的数值模拟[J].山西建筑,2009,35(34):327-329.
    [104]张瑛,林斌,武岳,孙晓颖.脉动风场数值模拟的POD-谐波合成法[J].哈尔滨工业大学学报,2011,43(12):13-17.
    [105]王吉民,李琳.脉动风的计算机模拟[J].浙江科技学院学报,2005,17(1):34-37.
    [106]舒新玲,周岱.风速时程AR模型及其快速实现[J].空间结构,2003,9(4):27-32.
    [107]万春风,黄磊,汪江,朱虹.脉动风作用下塔架结构的风振响应分析[J].科技导报,2012,30(1):39-43.
    [108]袁波,应惠清,徐佳炜.基于线性滤波法的脉动风速模拟及其MATLAB程序的实现[J].结构工程师,2007,23(4):55-61.
    [109]陈艾荣,王毅.基于小波方法的随机脉动风模拟[J].同济大学学报:自然科学版,2005,33(4):427-431.
    [110]韩艳,陈政清.利用小波逆变换模拟随机风场的脉动风[J].振动工程学报,2007,20(1):52-56.
    [111]徐闻,叶继红,单建.小波分析在空间随机风场模拟中的应用[J].振动与冲击,2008,27(2):42-48.
    [112]马昌恒.基于小波分析的风场模拟及大型储罐风致屈曲初步研究[D].大庆:大庆石油学院,2007.
    [113]Yamada M, Ohkitani K. Orthonormal wavelet analysis of turbulence[J]. Fluid Dyn. Res.,1991, (8):101-115.
    [114]Kitagawa T, Nomura T. A wavelet-based method to generate artificial wind fluctuation data[J]. J.Wind Eng. Ind. Aerodyn.,2003, (90):943-964.
    [115]中华人民共和国建设部标准.建筑结构荷载规范[S].
    [116]米曦亮.脉动风风速谱及空间相关性研究[J].山西建筑,2007,33(6):299-300.
    [117]边建烽,魏德敏.大跨空间结构风速时程的数值模拟理论[J].暨南大学学报,2005,(2):87-90.
    [118]陆飞,李爱群,程文瀼,陈忠范.脉动风荷载模拟中几点问题的探讨[J].特种结构,2002,19(3):18-20.
    [119]阎启,李杰.随机风场空间相干性研究[J].同济大学学报:自然科学版,2011,39(3):333-339.
    [120]Deodatis G. Simulation of ergodic multivariate stochastic processes[J]. Journal of Engineering Mechanics,1996,122(8):778-787.
    [121]Cao Y H, Xiang H F, ZhouY. Simulation of stochastic wind velocity field on long-span bridges[J]. Journal of Engineering Mechanics,2000,126(1):1-6.
    [122]铁道部.铁路电力牵引供电设计规范(TB10009-2005)[S].铁建设[2005]66号.北京:中国铁道出版社,2005:60-67.
    [123]中铁电气化局集团有限公司译.电气化铁道接触网[M].北京:中国电力出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700