用户名: 密码: 验证码:
地图空间信息量的度量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地图通常表达着复杂的空间地理环境信息,人们通过地图可以便捷地认识自然和社会经济现象。早在60年代捷克制图学家Koldcny把信息的概念引入地图制图学时,地图传输信息的功能在制图学界产生了巨大影响,开创了现代地图学的一个新领域—地图信息传输理论(亦称地图信息论)。地图空间信息量度量是地图信息传输理论的一个最基础的问题,定量计算地图空间信息量一方面可以为地图设计、地图分析评价提供依据;另一方面亦为地图综合提供选取标准,控制地图综合的评价指标。鉴于此,本论文紧紧围绕地图空间信息量的度量这一基础研究问题,分别从地图元素层次和专题地图层次研究空间信息量度量的方法,并探讨地图空间信息量度量在地图信息传输和制图综合中的初步应用。具体地,主要研究内容包括:
     1.系统地分析了地图空间信息量度量的当前进展,包括地图空间信息的分类、度量方法及其应用等方面,详细分析了现有研究中存在的主要问题。进而,为了建立合理的地图空间信息量度量模型,本文归纳分析了不同领域的信息定义,指出了信息产生的本质即多样性或差异性特征,并结合地图制图的特点,系统地阐述了地图空间信息的定义、分类方法、度量准则以及基于特征的信息量度量的数学模型。
     2.系统地研究了点要素、线要素和面要素的空间信息量度量方法。针对点要素的空间信息量度量,研究提出了一种改进的弧比弦算法,并用来定量描述节点的重要性程度,进而建立了节点的空间信息量度量方法。针对线要素和面要素,提出了基于认知的线、面要素几何形态分解方法,给出了定量的描述指标。在此基础上,采用层次策略,分别提出了基于弯曲的线要素空间信息量度量方法和基于凸包的面要素空间信息量度量方法。最后,采用实际的地图要素数据对所提出的方法进行了实验验证和分析,结果表明了所提方法的正确性。
     3.系统地研究了点状专题图、线状专题图和面状专题图的空间信息量度量方法。采用“专题地图空间信息的认知→空间信息内容构成→空间信息内容描述→空间信息量的层次度量”的研究思路,重点研究提出了专题图空间信息的层次分类和描述方法,包括元素层次的结构形态信息、邻域层次的拓扑邻接信息和整体层次的空间分布信息,并分别建立了各层次空间信息量的计算模型。最后,采用实际地图数据对所提出的方法进行了合理性验证和对比实验分析,结果表明所提方法的合理性和优越性。
     4.研究了地图空间信息量的度量方法在地图数据渐进性传输和地图综合算法性能评价方面的初步应用。首先,以面要素为例,采取具有代表性的面要素渐进式传输变化累积模型,研究建立了面要素渐进性传输过程中空间信息量变化分析方法,建立了空间信息传递状况的定量评价指标。然后,以一些最具代表性的线要素化简算法为例,建立了基于层次空间信息量的线要素化简算法性能评价方法。最后,采用实际地图数据对所提出的方法进行了实验验证和对比分析,结果表明所提方法的合理性和优越性。
     最后,总结了本文的研究成果,并展望了该方向进一步研究的若干问题。
Map is a visualization representation of geospatial entities and their distribution. Users often can obtain large amount of information through reading a map, and further solve their application requirements, or better understand the local natural environment, phenomenon and even all over the world. As early in1960s, Kolacny introduced the concept of information into the domain of cartography. This pioneering work promotes the development of theoretical cartography and a new research topic, i.e. map information transmission theory, is paid more and more attention by the scholars from the international cartographic association.
     The measurement of map information content is one of the most important basic research issues in the theory of map information transmission. It has been preliminarily applied to evaluation of map generalization, geospatial information service and visualization of mobile map, geospatial information transmission, the production and updating of multi-scale maps, etc. As a matter of fact, information content has been considered as an important indicator for evaluating the efficiency of map design, map generalization algorithm and the transmission of spatial information. Therefore, this dissertation is focused on the quantitative measurement of geospatial information content of a map, that is, to develop a methodology for the measurement of geospatial information content. It includes two levels, one is to measure the information content of spatial feature, i.e. feature level; the other is measure the information content of a thematic map, i.e. thematic map level. The applications of the proposed methods to map information transmission and map generalization algorithms evaluation are also concerned. In the following, the main work of this dissertation is elaborated.
     1. Many representative methods for measuring map information content are reviewed in detail. These methods are developed based on the Shannon information theory. Indeed, it also should be pointed out that, there are many problems for further consideration. For this purpose, this dissertation firstly analyzes the definition of information in various domains such as information science, computer science and cognition science and discovers the connotation of information, and discovers the essence of information content, i.e. variability or diversity. Further, the definitions of information are naturally extended to map information content, and a scientific definition of map information content is stated by considering the property of cartography. The types of map information content are further analyzed and summarized into statistical information, geometric information, topological information and thematic information. On this basis, the standards of measuring map information content are elaborated and related mathematical foundation (e.g. various types of information entropy) is highlighted.
     2. At feature level, this dissertation systematically discusses the measurement of geospatial information content of point, line and area features. For a point feature, the most common-used local length ratio algorithm is analyzed and an improved local length ratio algorithm is proposed, which is further utilized to describe the importance of vertices. On this basis, a computational model of point information content is developed. For line and area features, their geometric shape is deemed to be the carrier of geospatial information content. Therefore, the partition of a line or an area feature is proposed from the view of spatial cognition, and further quantitative indicators are defined for the description of geometric shape. Sequentially, the computational models are developed to measure the geospatial information content of individual line or area features, which are based upon their partitions, i.e. the bends of individual line and the convex hull of individual area. At last, practical examples are provided to illustrate the rational of the proposed methods.
     3. At thematic map level, this dissertation systematically discusses the measurement of spatial information contents of point-, line-and area-shaped thematic maps, which involves the spatial cognition of thematic map information, the type and description of thematic map information contents, and the computational methods. This dissertation places the emphases on the hierarchical classification of thematic map information contents (i.e. the geometrical structural information at element level, the topological adjacency information at neighborhood level and the spatial distribution information at global level) and their computational models. Finally, some practical examples are provided to illustrate the rational and advantages of the proposed models and methods.
     4. This dissertation investigates the applications of above-mentioned models and methods of map information content to the progressive transmission of geospatial data and the performance evaluation of map generalization algorithms. For the former, the changes accumulation model is chosen as the model of information transfer, and the computational model of geospatial information content is employed to analyze quantitatively the geometrical information transferred in the progressive transmission of area features. Moreover, a set of evaluation indicators of transmission information are put forward to the quantitative analysis of transfer status. The result of the experiments shows that the proposed indicators of information content are feasible to control the transmission process and thus to improve the transmission efficiency of geometrical information. For the latter, the representative line simplification algorithms are chosen as example, and the difference of information content before and after line simplification is computed and utilized to evaluate performance of line simplification algorithms. A river network dataset is used to test the performance evaluations of seven common-used line simplification algorithms by using the indicator of information content. It is proven that this new indicator is very rational to evaluate the performance of these line simplification algorithms. At the meantime, a comparative test is made to show the advantages of the new indicator.
     Finally, this dissertation summarizes the new findings among the above investigations, and highlights some of valuable issues for further research in the future.
引文
[1]ASHBY W. R. Introduction to cybernetics [M]. New York:Wiley,1956.
    [2]AURENHAMMER F. Voronoi diagram-a survey of a fundamental geometric data structure[J]. ACM Computing Surveys,1991,23(3):345-405.
    [3]AI T. H., Li Z. L., LIU Y. Progressive transmission of vector data based on changes accumulation model[A]. In:Proceedings of the 11th Advances in Spatial Data Handling, Berlin:Springer-Verlag,2004:85-961.
    [4]BADAWY O., KAMEL M. Hierarchical representation of 2-D shapes using convex polygons:a contour-based approach [J]. Pattern Recognition Letters,2005,26(7):865-877.
    [5]BATCHELOR B. Hierarchical shape description based upon convex hulls of concavities [J]. Journal of Cybernetics,1980a, (10):205-210.
    [6]BATCHELOR B. Shape descriptors for labeling concavity trees[J]. Journal of Cybernetics, 1980b, (10):233-237.
    [7]BERTIN J. Semiology of graphics[M]. Madison:University of Wisconsin Press,1983.
    [8]BIEDERMAN I. Recognition-by-components:A theory of human image understanding[J]. Psychological Review,1987,94(2):115-147.
    [9]BIEDERMAN I. Higher-level vision[C]. In D.N. Osherson, J. M. Kosslyn, S.M. et al. (eds.), Visual cognition and action:An invitation to cognitive science,1990,2:41-72.
    [10]BITTNER H. R., SERNETZ M. Selfsimilarity within limits:description with the log-logistic function[C]. In:Feigen H. O., Henriques J. M., Penedo L. F.(eds.), Fractals in the fundamental and applied sciences. North-Holland:Elsevier Science Pulishers BV,1991, 47-58.
    [11]BISHOP T. F., McBratney A.B., Whelan B.M., Measuring the quality of digital soil maps using information criteria. Geoderma[J].2001 (103):95-111.
    [12]BJ(?)RKE J. T. Information theory:The implications for automated map design[C]. In M. Konecny, ed. Supplement to proceedings of the conference Europe in Transition:The Context of geographic information systems. Brno:Masaryk University,1994,8-9.
    [13]BJ(?)RKE J. T. Framework for entropy-based map evaluation[J]. Cartography and Geographical Information Systems,1996,23(2):78-95.
    [14]BJ(?)RKE J.T., Generalization of road networks for mobile map services:An information theoretic approach[C]. In:Proceedings of the 21st International Cartographic Conference (ICC), Durban, South Africa,10-16 August,2003,127-135.
    [15]BULBUL R., FRANK A. U. AHD:The alternate hierarchical decomposition of nonconvex polytopes (generalization of a convex polytope based spatial data model)[C]. The 17th International Conference on Geoinformatics,2009,1-6.
    [16]CVEJIC N., LOZA A., BULL D. et al. A novel metric for performance evaluation of image fusion algorithms[J]. World Academy of Science, Engineering and Technology,2005(7), 80-85.
    [17]CHEN J., LI Z. L. A Voronoi-based 9-Intersection model for spatial relations[J]. International Journal of Geographical Information Science,2001,15(3):201-220.
    [18]CHEN J., ZHAO R., LI Z. L. Voronoi-based k-order neighbour relations for spatial analysis[J]. ISPRS Journal of Photogrammerty & Remote Sensing,2004,59:60-72.
    [19]CHEN J., QIAO C., ZHAO R. A Voronoi interior adjacency-based approach for generating a contour tree[J]. Computers & Geosciences,2004,30:355-367.
    [20]DE L., TERMINI S. Definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[J]. Information and Control,1972,20:301-312.
    [21]DENG M., LIU Q. L., CHENG T., et al. An adaptive spatial clustering algorithm based on delaunay triangulation [J]. Computers, Environment and Urban Systems,2009,35: 320-332.
    [22]DEMERS M. N. Fundamentals of geographic information system[M].3rd edition, New York:John Wiley & Sons Inc,2002.
    [23]DOUGLAS D., PEUCKER T. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Canadian Cartographer,1973,10:112-122.
    [24]DUTTON G. H. A fractal approach to controlling cartographic detail[A]. In Computer Graphics 80, proceedings of a conference at Brighton. Northwood Hills,1980,371-381.
    [25]DUBUC B., QUINIOU J. F., ROQUE C. C. Evaluating the fractal dimension of profiles[J]. Physical Review,1989,39(3):1500-1512.
    [26]EFTEKHARI A. Fractal dimension of electrochemical reactions[J]. Journal of the Electrochemical Society,2004,151(9):291-296.
    [27]HARTLEY R. V. Transmission of information [J]. BSTJ,1928, (7):535-563.
    [28]HARRIE L., STIJMAR H. An evaluation of measures for quantifying map information[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2010,65(3):266-274.
    [29]HARRIE L., WEIBEL R., Modeling the overall process of generalization. In:Ruas A., Mackaness W., Sarjakoski T. (Eds.)[A]. Generalization of Geographic Information: Cartographic Modeling and Applications, Elsevier,2007,67-88.
    [30]HENRY W. C., DENIS W. L., Eye movement recording some approaches to the study of map perception[J]. Geographic Information and Geovisualization,2006,15(2):142-150.
    [31]HOFFMAN D., SINGH M. Salience of visual parts [J]. Cognition,1997,63(1):29-78.
    [32]INGH M., SEYRANIAN G., HOFFMAN D. Parsing silhouettes:The short-cut rule[J]. Perception and Psychophysics,1999,61(4):636-660.
    [33]KNOPFLI R. Communication theory and generalization[A]. Graphic communication and design in contemporary cartography, D. R. Fraser Taylor (Ed.). New York:John Wiley & Sons Ltd.,1983,177-218.
    [34]Kolacny A., Cartographic information:a fundamental concept and term in modern cartography[J]. The Cartographic Journal,1969,6(1):47-49.
    [35]KULLBACK S., LEIBLER R.A. On information and sufficiency[J]. Ann. Math. Statist, 1951,22(1):79-86.
    [36]LANG T. Rules for Robot Draughtsman[J]. Geographical,1969,42:50-51.
    [37]LATECKI L., LAKAMPER R. Convexity rule for shape decomposition based on discrete contour evolution [J]. Computer Vision and Image understanding,1999,73(3):441-454.
    [38]LIONEL G, PIERRE S., MARTINO P. Change detection based on information measure [J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(11):4503-4515.
    [39]LI Z. L. Algorithmic foundation of multi-scale spatial representation[M]. CRC Press,2006
    [40]LI Z. L., HUANG P. Z. Quantitative measures for spatial information of maps[J]. International Journal of Geographical Information Science,2002,16(7):699-709.
    [41]LIU H. R., LIU W. Y., LATECKI L. J. Convex shape decomposition[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2010,97-104.
    [42]LONGO G Information theory:new trends and open problems[M]. CISM, Springer-Verlag, 1975.
    [43]MANDELBROT B. B. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science,1967,156(2):636-638.
    [44]MANDELBROT B. B. Fractal:the fractal geometry of nature[M]. New York:W. H. Freeman and Company,1977a.
    [45]MANDELBROT B. B. Fractal:form, chance and dimension [M]. New York:W. H. Freeman and Company,1977b.
    [46]MARAGOS P. and POTAMIANOS A. Fractal dimensions of speech sounds:Computation and application to automatic speech recognition[J]. The Journal of the Acoustical Society of America,1999,105(3):1925-1932.
    [47]MARR D., NISHIHARA H. Representation and recognition of three-dimensional shapes[J]. Proceedings of the Royal Society of London,1978,200(1):269-294.
    [48]NAKO B., MITTROPOULOS V. Local Length Ratio as a Measure of Critical Point Detection for Line Simplification [C]. The Symposium of the 5th ICA Workshop on progress in Automated Map Generalization,2003,28-30.
    [49]NEUMANN J. The topological information content of a map:An attempt at a rehabilitation of information theory in cartography[J]. Cartographical,1994,31:26-34.
    [50]OPHEIM H. Fast data reduction of a digitized curve [J]. Geo-Processing,1982,2:33-40.
    [51]PALMER S. Hierarchical structure in perceptual representation[J]. Cognitive Psychology, 1977,9:441-474.
    [52]PEI T., JASRA A., HAND D. J., et al. DECODE:A New Method for Discovering Clusters of Different Densities in Spatial Data[J]. Data Mining and Knowledge Discovery,2009, 18(3):337-369.
    [53]QUATTROCHI D. A., GOODCHILD M. F. Scale in remote sensing and GIS[M]. Lewis Publishers,1997.
    [54]Qu G.H., Zhang D.L., Yan P.F. Information measure for performance of image fusion[J]. Electronics Letters,2002,38(7):313-315.
    [55]RICHARDSON L. F. The problem of contiguity:an appendix to statistics of deadly quarrels [A]. In General Systems:Yearbook of the Society for General Systems Research,1961, 6(48):139-187.
    [56]ROBINSON A. H., SALE R. D., MORRISON J. L., et al. Elements of Cartography[M], 5thed.New York:John Wiley and Sons,1984.
    [57]RUBINSTEIN R.Y. Optimization of computer simulation models with rare events[J]. European Journal of Operations Research,1997,99,89-112.
    [58]RUBINSTEIN R.Y. The simulated entropy method for combinatorial and continous optimization [J]. Methodolgy and Computing in Applied Probability,1999,2:127-190.
    [59]RUBINSTEIN R.Y., KROSES D. P. The cross-entropy method[J]. Information Science and Statistics.2004,341-357.
    [60]SERRA J. Image analysis and mathematical morphology[M]. Academic Press,1992, 271-296.
    [61]SHANNON C. E. A mathematical theory of communication[J]. The Bell System Technical Journal,1948,27,379-423 & 623-656.
    [62]SHEN G. Fractal dimension and fractal growth of urbanized areas[J]. International Journal of Geographical Information Science,2002,16(5),419-437.
    [63]SIDDIQI K., KIMIA B. B. Parts of visual form:computational aspects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(3):239-251.
    [64]SOILLE P., RIVEST J. F. On the validity of fractal dimension measurements in image analysis[J]. Journal of Visual Communication and Image Representation,1996,7(3): 217-229.
    [65]SUKHOV V. I. Information capacity of a map entropy[J]. Geodesy and Aerophotography, 1967, X,212-215.
    [66]SUKHOV V. I. Application of information theory in generalization of map contents[J]. International Yearbook of Cartography,1970, X,41-47.
    [67]TEH C., CHIN R. On the detection of dominant points on digital curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,11(8):859-872.
    [68]TURCOTLE D. L. Fractals and chaos in geology and geophysics[M]. Cambridge: Cambridge University Press,1992.
    [69]VISVALINGAM M., WHYATT J. Line generalization by repeated elimination of points[J]. The Cartographic Journal,1993,30:46-51.
    [70]WANG Z., MULLER J. C. Line generalization based on analysis of shape characteristics[J]. Cartography and Geographic of Shape Characteristics. Cartography and Geographic Information Systems,1998,25(1):3-15.
    [71]WANG S.Y., DU Q.Y., Wang Z. A quantitative measurement approach for metric information of maps based on spatial cognition[C]. In:Fourth International Conference on Natural Computation, IEEE Computer Society, doi:10.1109/ICNC.2008.379,2008, 235-239.
    [72]WANG H., SU S.W., LI Y.X., et al. Measuring the amount of information of national topographic database based on information entropy[C]. In:International Symposium on Spatial Analysis, Spatial-Temporal Data Modeling, and Data Mining, Y.L. Liu, X.M., Tang (Eds.), Proceeding of SPIE, Vol.7492,74921C1-6,2009,34-39.
    [73]WHELAN B. M., MCBRATNEY A. B. Prediction uncertainty and implications for digital map resolution[C]. In:Robert P. C., Rust R. H., Larson W. E., Z (Eds.), Proceedings of the Fourth International Conference on Precision Agriculture, Madison W. I., USA,1998,4: 1185-1196.
    [74]WU H. Y, ZHU H. J., LIU Y. A Raster-Based Map Information Measurement for QoS[J]. Proceedings of ISPRS,2004,365-370.
    [75]XU J. Hierarchical representation of 2-D shapes using convex polygons:A morphological approach [J]. Pattern Recognition Letters,1997, (18):1009-1017.
    [76]YAN H. W., WEIBEL. An algorithm for point cluster generalization based on the Voronoi diagram [J]. Computers & Geosciences,2008,34:939-954.
    [77]Yang B.S., PURVES R., WEIBEL R. Efficient transmission of vector data over the internet [J]. International Journal of Geographical Information Science,2007,27(2):215-237.
    [781艾廷华.网络地图渐进式传输中的粒度控制与顺序控制[J].中国图像图像学报,2009,14(6):999-1006.
    [79]艾廷华,刘耀林.保持空间分布特征的群点化简方法[J].测绘学报,2002,31(2):175-181.
    [80]艾廷华,李志林,刘耀林等.面向流媒体传输的空间数据变化累积模型[J].测绘学报,2009,38(6):514-519.
    [81]艾廷华,郭仁忠.支持地图综合的面状目标约束Delaunay三角网剖分[J].武汉测绘科技大学学报,2000,25(1):35-40.
    [82]艾廷华,郭仁忠,刘耀林.曲线弯曲深度层次结构的二叉树表达[J].测绘学报,2001,30(4):343-348.
    [83]艾廷华,郭仁忠.基于格式塔识别原则挖掘空间分布模式[J].测绘学报,2007,36(3):302-308.
    [84]艾自兴.水系综合中河网数据组织及其结构[J].武汉测绘科技大学学报,1995a,20(增刊):24-29.
    [85]艾自兴.水系综合中的河流自动综合[J].武汉测绘科技大学学报,1995b,20(增刊):30-34.
    [86]程昌秀,陆锋,牛方曲.栅格地图信息量计算方法的验证分析[J].地球信息科学,2006,8(1):127-130.
    [87]陈鹰,林怡.基于数学形态学的TIN和GRID自动生成研究[J].测绘学报,2002,31(S1):86-91.
    [88]陈军.论数字化地理空间基础框架的建设与应用[J].测绘工程,2002,11(2):1-6
    [89]陈军,闫超德,赵仁亮等.基于Voronoi邻近的移动地图自适应裁剪模型[J].测绘学报,2009,38(2):152-155,161.
    [90]陈晓勇,数学形态学与影像分析[M].北京:测绘出版社,1991.
    [91]陈圣波,胡郁.水系分维模式研究[J].遥感技术与应用,1999,14(4):44-48.
    [92]陈国能.信息科学的若干理论问题思考[J].中山大学学报(自然科学版),2004,43(6):131-134.
    [93]陈杰,邓敏,徐枫等.面状地图空间信息度量方法研究[J].测绘科学,2010,35(1):74-76.
    [94]陈彦光,刘继生.城市规模分布的分形与分维[J].人文地理,1999,14(2):43-48.
    [95]陈雪.信息的通用定义探讨[J].情报探索,2006,(9):25-26.
    [96]陈涛.地理学是一门空间信息科学[J].信阳师范学院学报(自然科学版),1994,7(2):217-220.
    [97]蔡金华,龙毅,毋河海等.基于反S数学模型的地图目标分形无标度区自动确定[J].武汉大学学报(信息科学版),2004,29(5):249-253.
    [98]蔡翠.山东省公路网发展的分维数[J].长安大学学报(自然科学版),2002,22(6):80-81.
    [99]邓敏,陈杰,李志林等.曲线简化中节点重要性度量方法比较及垂比弦法的改进[J].地理与地理信息科学,2009,25(1):40-43.
    [100]邓敏,徐震,赵彬彬等.地图综合中空间目标空间信息传递模型研究[J].地球信息科学学报,2010,12(5):655-661.
    [101]邓敏,刘启亮,李光强等.空间聚类分析及应用[M].北京:科学出版社,2011.
    [102]丁险峰,吴洪,张宏江等.形状匹配综述[J].自动化学报,2001,27(5):678-693.
    [103]董连科.分形理论及其应用[M].沈阳:辽宁科技出版社,1991.
    [104]郭庆胜.点状要素群的结构化及其在综合中的应用[J].测绘学院学报,1999,16(3):210-213.
    [105]郭庆胜,杜晓初,刘浩.空间拓扑关系定量描述与抽象方法研究[J].测绘学报,2005,34(2):123-128.
    [106]郭庆胜,黄远林,章莉萍.曲线的弯曲识别方法研究[J].武汉大学学报(信息科学版),2008,33(6):596-599.
    [107]葛磊,武芳,钱海忠.基于空间认知的三维地理信息系统研究[J].测绘科学,2007,32(2):64-66.
    [108]韩鹏,龚健雅,李志林.基于信息熵的遥感分类最优空间尺度选择方法[J].武汉大学学报(信息科学版),2008,33(7):676-679.
    [109]黄亚锋,艾廷华,刘鹏程.顾及Gestalt认知效应的线性岛屿模式识别[J].武汉大学学报(信息科学版),2011,36(6):717-720.
    [110]何宗宜,白亭颖,滕艳敏.用信息方法确定地图变化信息量[J].武汉测绘科技大学学报,1996,(1):64-68.
    [111]何宗宜.地图信息量的量测[J].测绘科技大学学报,1987,12(1):70-80.
    [112]何宗宜,阮依香,尹为利等.基于分形理论的水系要素制图综合研究[J].武汉大学学报(信息科学版),2002,27(4):427-431
    [113]郝柏林.分形和分维[M].北京:科学出版社,1986.
    [114]霍国庆.论信息概念及其体系[J].晋图学刊,1997,2:1-9.
    [115]江浩,褚衍东,闫浩文等.多尺度地理空间点群目标相似关系的计算研究[J].地理与地理信息科学,2009,25(6):1-4.
    [116]李艺.信息与信息量[J].自然辩证法研究,1998,14(12):35-37.
    [117]李德宜,蒋慧峰,熊革.凸体形状匹配的参考点[J].数学杂志,2005,25(03):336-340.
    [118]林宗坚,张永红.遥感与地理信息系统数据的信息量及不确定性[J].武汉大学学报(信息科学版),2006,31(7):569-571.
    [119]刘文楷,乔朝飞,陈云浩等.等高线图信息定量度量研究[J].武汉大学学报(信息科学版),2008,33(2):157-159,176.
    [120]刘艳芳,兰泽英,刘洋等.基于混合熵模型的遥感分类不确定性的多尺度评价方法研究[J].测绘学报,2009,38(1):82-87.
    [121]刘宏林.地图信息的科学含义再探[J].解放军测绘学院学报,1992a,2,51-55.
    [122]刘宏林.地图信息度量方法的研究[J].解放军测绘学院学报,1992b,3,49-55.
    [123]刘宏申.确定轮廓形状匹配中形状描述函数的方法[J].华中科技大学学报(自然科学版),2005,33(4):13-16.
    [124]刘建忠.基于Strip-Tree的矢量地图渐进式传输的研究[D].西南交通大学,2007.
    [125]刘长林.论信息的哲学本性[J].中国社会科学,1985,2:103-118.
    [126]刘慧敏,樊子德,邓敏,等.地图上等高线信息度量的层次方法研究[J].测绘学报,2012,41(5):777-783.
    [127]刘鹏程,艾廷华,胡晋山等.基于原型模板形状匹配的建筑多边形化简[J].武汉大学学报(信息科学版),2010,35(11):1369-1372.
    [128]刘鹏程,罗静,艾廷华,李畅,.基于线要素综合的形状相似性评价模型[J].武汉大学学报(信息科学版),2012,(1).
    [129]刘艳芳,兰泽英,刘洋等.基于混合熵模型的遥感分类不确定性的多尺度评价方法研 究[J].测绘学报,2009,38(1):82-87.
    [130]刘颖.空间图形的表达、识别与综合[D].中国人民解放军信息工程大学,2005.
    [131]鲁学军.空间认知模式研究[J].地理信息世界,2004,(06):9-13.
    [132]鲁学军,周成虎,龚建华.论地理空间形象思维——空间意象的发展[J].地理学报,1999,54(05):401-408.
    [133]罗广祥,陈晓羽,赵所毅.软多边形地图要素弯曲识别模型及其应用研究[J].武汉大学学报(信息科学版),2006,31(2):160-163.
    [134]毛政元.集聚型空间点模式结构信息提取研究[J].测绘学报,2007,36(2):181-186.
    [135]马耀峰,李君轶.旅游者地理空间认知模式研究[J].遥感学报,2008,12(02):378-384.
    [136]偶卫军,姚贤林.地图信息量的测度—综合特征量算法[J].地图,1988(4):3-7.
    [137]钱海忠,武芳,陈波等.采用斜拉式弯曲划分的曲线化简方法[J].测绘学报,2007,36(4):443-449,456.
    [138]钱海忠,武芳.基于Delaunay三角关系的面状要素合并方法[J].测绘学院学报,2001,18(3):207-209.
    [139]钱海忠,刘颖,张琳琳等.基于圆特征的地图要素自动综合算法研究[J].海洋测绘,2005,25(1):14-16.
    [140]仇东东.分维数方法在公路网评价中的应用[J].江苏交通科技,2003,5,12-14.
    [141]仇东东.浙江省公路网分维数的研究[J].温州大学学报,2004,17(2),32-35.
    [142]帅赞,艾廷华,帅海燕等.基于形状模板匹配的多边形查询[J].武汉大学学报(信息科学版),2008,33(12):1267-1269.
    [143]宋龙,夏青,李之歆.移动电子地图空间认知与信息传输的研究[J].地理信息世界,2011,(06):38-40.
    [144]田晶,艾廷华.街道渐进性选取的信息传输模型[J].武汉大学学报(信息科学版),2010,35(4):415-418.
    [145]唐炉亮,李清泉,杨必胜.空间数据网络多分辨率传输的几何图形相似性度量[J].测绘学报,2009,38(04):336-340.
    [146]童小华,邓愫愫,史文中.基于概率的地图实体匹配方法[J].测绘学报,2007,33(02):210-217.
    [147]王桥,毋河海.地图信息的分形描述与自动综合研究[M].武汉:武汉测绘科技大学出版社,1998.
    [148]王少一,王昭,杜清运.顾及地图要素级别的空间信息量量测方法[J].测绘科学,2007,32(4):60-62.
    [149]王占宏.遥感影像信息量及质量度量模型的研究[D].武汉大学,2004.
    [150]王家耀.我国地图制图学与地理信息工程学科发展研究[J].测绘通报,2007,5:1-6.
    [151]王昭,吴中恒,费立凡等.基于空间信息熵的面要素注记配置[J].测绘学报,2009,38(2):183-188.
    [152]王雪飞,胡青泥.基于分层加权的多边形图形匹配[J].工程图学学报,2002,(02):89-96.
    [153]王郑耀,程正兴,汤少杰.基于视觉特征的尺度空间信息量度量[J].中国图象图形学报,2005,10(7):922-928.
    [154]王晓明,刘瑜,张晶.地理空间认知综述[J].地理与地理信息科学,2005,21(06):1-9.
    [155]王雷.黄土高原数字高程模型(DEM)的地形信息容量研究[D].西北大学,2005.
    [156]吴华意,章汉武.地理信息服务质量(QoGIS):概念和研究框架[J].武汉大学学报(信息科学版),2007,32(5):385-388.
    [157]毋河海.地图信息自动综合基本问题研究[J].武汉测绘科技大学学报,2000,25(5):377-386.
    [158]毋河海.数字曲线拐点的自动确定[J].武汉大学学报(信息科学版),2003,28(3):330-335.
    [159]毋河海.自动综合的结构化实现[J].武汉测绘科技大学学报,1996,21(03):277-284.
    [160]徐震,刘慧敏,邓敏等.基于层次凸分解的面要素空间信息度量[C].2011中国地理信息产业青年优秀论文,2011.
    [161]肖强,孙群,安晓亚.点位信息度量模型及其在曲线化简中的应用[J].测绘通报,2010,(9):57-59.
    [162]闫超德.基于Voronoi邻近的移动地图自适应生成方法研究[D].中国矿业大学(北京),2006.
    [163]闫浩文,王家耀.基于Voronoi图的点群目标普适综合算法[J].中国图象图形学报,2005,10(5):603-606.
    [164]杨春成,张清浦,田向春.基于簇分解的面状地理实体聚类[J].测绘科学,2005,30(01):52-54.
    [165]杨春成,何列松,谢鹏等.顾及距离与形状相似性的面状地理实体聚类[J].武汉大学学报(信息科学版),2009,34(03):335-338.
    [166]张济忠.分形[M].北京:清华大学出版社,1995.
    [167]张宇星.城市和城市群形态的空间分形特性[J].新建筑,1995,(3):42-46.
    [168]张茜.黄土高原不同空间尺度DEM的地形信息量研究[D].西北大学,2006.
    [169]张宇,王青.城市形态分形研究:以太原市为例[J].山西大学学报(自然科学版),2002,23(4):365-368.
    [170]张法.地图信息量的量测和评价[J].四川测绘,2006,29(1):21-24.
    [171]张青年.地图图形结构分析与概括研究[J].中山大学学报(自然科学版),2002,41(01):87-90.
    [172]张青年,廖克.基于结构分析的曲线概括方法[J].中山大学学报(自然科学版),2001,40(5):118-121.
    [173]张青年,秦建新.面状分布地物群识别与概括的数学形态学方法[J].地理研究,2000,19(01):93-100.
    [174]祝国瑞,王建华.现代地图分析有关问题的探讨[J].测绘学报,1995,24(1):77-79.
    [175]祝国瑞,黄采芝.一览图上居民地要素语义信息量的测度[J].武汉测绘学院学报,1985,10(4):89-96.
    [176]邹建华.地图信息计量方法探讨[J].解放军测绘学院学报,1991,4,72-77.
    [177]钟义信.信息科学原理[M].北京:北京邮电大学出版社,2002.
    [178]钟义信.自然语言理解的全信息方法论[J].北京邮电大学学报,2004,27(4):1-12.
    [179]钟义信.论信息:它的定义和测度[J].自然辩证法研究,1986,2(5):19-27.
    [180]朱鲲鹏,武芳,王辉连等.Li-Openshaw算法的改进与评价[J].测绘学报,2007,36(4):450-456.
    [181]翟仁健,武芳,朱丽等.曲线形态的结构化表达[J].测绘学报,2009,38(2):175-182.
    [182]左淑霞,席建,肖殿良等.“特色交通标志”设计及其信息量度量方法研究[J].中国安全科学学报,2010,20(11):139-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700