用户名: 密码: 验证码:
干旱盐渍区非饱和—饱和带水盐耦合模拟与调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焉耆盆地深处西北腹地新疆天山南麓,属大陆性干旱气候,拥有内陆最大淡水湖—博斯腾湖(简称博湖)。自20世纪50年代开辟为农垦区以来,不合理的灌溉方式、不完善的排水系统及大规模地表引水,导致地下水位急剧上升、博湖淡水收入减少,兼之特殊的气候与土壤条件,产生土壤次生盐渍化、地下水环境恶化及博湖水环境退化在内的一系列严重生态环境问题。为缓解乃至最终解决上述问题,应深入研究土壤水、地下水中水盐时空分布规律,构建符合实际的地下水流及溶质运移模型,提出合理的水盐宏观调控方案。
     论文首先分析焉耆盆地第四系土壤水、地下水含水介质岩性及水盐时空分布规律;利用HYDRUS1D软件构建一维非饱和—饱和水分及溶质运移模型(以典型区水盐监测点为例),设计合理的田间灌溉与洗盐制度;绘制研究区不同深度土壤岩性分区和地下水位埋深分区图,进行区域非饱和带综合分区,选取代表性土壤剖面确定非饱和—饱和带水盐交换关系,作为饱和地下水系统上边界条件,构建区域非饱和—饱和水流及溶质运移耦合数值模型;虚拟不同的水土利用方案,利用数值模型预测地下水流场及化学场变化趋势,确定研究区合理的水盐宏观调控模式,提出土壤盐渍化防治具体建议。得出如下主要认识与结论:
     1.第四系地下水含水系统包括山前潜水和平原承压—无压2个子含水系统;流动系统分为区域、中间和局部3级,区域流动系统包含4个中间流动系统。地下水自山前向博湖汇流,水位1140~1050 m,水力梯度2~0.5;水位动态以灌溉—蒸发型为主。地下水矿化度主要介于0~50g/L,自山前向博湖递增,且河流沿岸较低,排渠附近较高;按舒卡列夫分类法,地下水化学类型从西部、北部山前低矿化重碳酸盐型渐变为湖滨高矿化硫酸盐一氯化物型,东部、南部属高矿化硫酸盐一氯化物型或氯化物型。
     2.确定土壤岩性空间分布规律,绘制不同深度土壤岩性区划图及岩性组合类型区划图。土壤岩性从山前至博湖逐渐变细,依次为砂卵砾石、中一细砂、粉砂与粉细砂、粉土和粉质粘土;岩性剖面呈明显上细下粗特征,且越向盆地外缘上部细粒土厚度越薄。
     3.探讨不同土地类型土壤水盐时空分布规律。灌期耕地上层土壤水分增加明显,荒地水分变化不大,深部略有上升。耕地浅层水分动态曲线随灌溉同步波动,深部变化不大;荒地水分变化平稳。表层盐分从山前向博湖递增,开都河沿岸低于周边;据含盐量大小、变异性与表聚性,盐分剖面分为均布型、表聚型和振荡型。耕地盐分动态曲线分为春灌交替脱盐积盐期(4~7月)、相对稳定期(8~9月)及冬灌后积盐期(10~3月)。土壤盐分组成以SO_4~(2-)(约40%)和C1~-(约20%)为主;盐渍化类型以氯化物—硫酸盐为主:盐渍化程度荒地高于耕地,前者以盐土为主,后者以强盐渍化和中度盐渍化为主。
     4.建立地下水浅埋典型区一维土壤水分及溶质运移数值模型,提出可行的田间灌溉制度建议。土壤水分补给量与排泄量分别为1187.1mm/a、1039.0mm/a,补给量以灌溉入渗为主(占91.8%),排泄量以土壤水渗漏为主(占74.6%);水分储量变化不足5%,调蓄能力有限。土壤盐分补给量与排泄量分别为1210g/m~2/a、5322g/m~2/a,补给量以灌溉带入为主(占50.2%),排泄量以土壤水渗漏为主(占99.4%);盐分储量减少30%,呈明显脱盐状态。利用识别后数值模型预测土壤水盐变化趋势,确定800mm/a为最佳灌溉及洗盐定额,并依据作物生长规律提出可行的田间灌溉制度建议。
     5.根据土壤岩性、地下水位埋深及灌区分布状况,对研究区非饱和带进行综合分区。按地下水埋藏状况,可分为地下水深埋区(水位埋深大于3m)与浅埋区(水位埋深小于3m)。灌区地下水浅埋时土壤水与地下水间水盐双向运动,地下水深埋时仅存在土壤水单向补给地下水;非灌区地下水浅埋时仅存在地下水单向补给土壤水,地下水深埋时土壤水与地下水间不存在水盐交换。综合土壤岩性分区图、地下水位埋深图及灌区分布图,研究区划分为18个非饱和带综合分区,在土壤水与地下水存在水盐交换的14个区设置代表性土壤剖面S1~S14。
     利用HYDRUS1D软件建立土壤剖面S1~S14水流及溶质运移模型,计算非饱和—饱和带水盐交换量。灌区地下水浅埋时,地下水接受土壤水补给率为591~966mm/a(约占灌水49%~80%),通过土壤层进行的蒸散排泄率为391~1065mm/a;灌区地下水深埋时,地下水接受土壤水补给率为172~389mm/a(约占灌溉量14%~32%)。非灌区地下水浅埋时,地下水通过土壤层进行的蒸散率约为123~145mm/a。土壤岩性越细,地下水接受补给量与蒸散排泄量越大。土壤水与地下水间盐分交换量受水流通量、土壤含盐量、灌水矿化度和潜水矿化度影响。
     6.进行区域地下水水盐均衡分析,构建了非饱和—饱和水流及溶质运移耦合数值模型。地下水水分补给量为11.051×10~8m~3/a,以侧向径流(40.42%)和渠系渗漏(38.47%)为主;水分排泄量为11.006×10~8m~3/a,以蒸散发为主(52.40%),其次为排渠排泄(20.38%)与河流排泄(15.28%),人工开采量较小(8.4%)。盐分补给量为253.897×10~4t/a,以渠系渗漏为主(50.23%),侧向径流(27.92%)和灌溉入渗(20.26%)次之;盐分排泄量为255.615×10~4t/a,以排渠排泄(33.61%)与潜水蒸散(32.71%)为主,人工开采很少(6.4%)。非饱和—饱和数值模型以潜水面作为耦合界面(土壤水下边界、地下水上边界),实时计算非饱和—饱和带水盐交换量;从而提高了地下水上边界源汇项的计算精度,提高了数值模型的仿真程度。
     7.利用识别后地下水耦合模型,预测现状方案下地下水水位及矿化度变化趋势,观测孔水位预测结果显示:地下水深埋区曲惠乡和乌什塔拉回族乡,水位逐年上升;浅埋区乌拉斯台农场、包尔海乡和查汗诺尔乡等地水位年际变化不大,年内波幅增加,受灌溉影响明显。区域流场预测结果显示:和硕县水位明显上升(0~0.30m/a),博湖西部沿岸、开都河下游(焉耆县以南)、黄水河两岸、清水河沿岸及博湖南部局部水位下降(0.03~0.11m/a),其余地区变化不大。观测孔矿化度预测结果显示:大部分孔地下水矿化度上升,尤其21团、七个星镇和特尔里克镇等地。区域化学场预测结果显示:博湖西部、西北部广大平原地区,和硕县曲惠乡和乌拉斯台乡一带,南部局部地带以及博湖环湖地带,地下水矿化度均上升。
     8.虚拟水土开发方案,预测地下水水位及矿化度趋势,确定合理的水盐宏观调控模式。地下水开采量由0.924×10~8m~3/a增加到4.056×10~8m~3/a,其他条件保持不变,作为规划方案Ⅰ:在方案Ⅰ基础上,将田间灌溉定额减少至800mm/a,得到方案Ⅱ。方案Ⅰ的目标在于改变地表水与地下水联合调度中两者相对份额,减少渠系引水损失,改善地下水位状况;方案Ⅱ则在继承方案Ⅰ优势基础上,实现节水灌溉,进一步控制地下水水位上升及水质咸化趋势。
     从预测结果看,规划方案Ⅰ、Ⅱ与现状方案相比,地下水水位及矿化度均出现下降,且方案Ⅱ效果优于Ⅰ。从长期趋势看,方案Ⅱ地下水位逐年下降并趋于稳定,基本控制矿化度上升势头。可选择方案Ⅱ作为合理的水盐宏观调控模式。同时为保证地下水流场稳定,对局部地区地下水开采进行调整:包尔海农用灌溉水源地适当下调现有地下水开采量,东北部89800部队适当上调地下水规划开采量。
     9.提出土壤盐渍化防治措施。灌溉水来源上,增加地下水开采量(由0.924×10~8m~3/a增加到4.056×10~8m~3/a),减少地表水引水量;灌溉制度上,按照800mm/a灌溉定额进行节水灌溉,并对灌溉定额按作物生长阶段合理分配;灌溉方式上,土壤盐渍化区采用沟灌或大水喷灌,微咸水灌溉区采用滴灌,地下水深埋和土壤透水性能好地区采用渗灌;排水方式上,地下水深埋区采用井灌井排法压盐,浅埋区加强水平排盐强度、加深排渠深度、采用多级明渠与暗管结合排水排盐。同时配套采用生物改良、物理改良及化学改良等措施。
     本文特色和创新在于:(1)进行了焉耆盆地不同深度土壤岩性分区及土壤剖面岩性组合类型分区;(2)基于土壤岩性、地下水位埋深及灌区分布,进行区域非饱和带综合分区,模拟计算了各分区非饱和—饱和带水盐交换量;(3)以地下潜水面为耦合界面,构建并识别了区域非饱和—饱和水流及溶质运移耦合数值模型;(4)基于现状及虚拟水土开发方案,预测地下水水位及矿化度变化趋势,提出了合理可行的水盐宏观调控模式,给出了具体的土壤盐渍化防治建议。
Yanqi basin is located in an arid area of northwestern China which contains the biggest inland fresh lake-Bosten Lake. Since the 1950s the basin has been reclaimed, the flooding irrigation, incomplete drainage system and enormous surface-water conducting caused the sharply rising of groundwater table and decreasing of flow into Bosten Lake. These human activities plus the special conditions of local climate and soil, have lead to a series of serious environment problems such as secondary salinization of soil and deterioration of groundwater and Bosten Lake. To solve the above problems, it is necessary to study the temporal changes and spatial distribution of water and salts in soil and groundwater, construct the applicable water flow and solute transport model for unsaturated-saturated groundwater, and propose the applicable macroscopical controlling patterns for water and salts of soil and groundwater.
     Firstly the author analyzed the water-bearing medium of Quaternary sediment, and the temporal and spatial distribution of water and salts in the unsaturated zone and saturated zone. Secondly HYDRUS1D software was applied to construct the 1-D variant saturated flow and solute transport simulation model in a representative area, and design the reasonable field irrigation schedule. Thirdly the regionalization maps for soil-texture types and depth of groundwater were drawn, which helped to obtain the integrated regionalization for areal unsaturated domain. In different unsaturated subregions representative soil profiles were selected to study the water and salts exchange across the interface between soil and groundwater, and the unsaturated-saturated coupled model for water and salt transport was constructed. Finally the calibrated coupled model was utilized to predict the evolvement of flow field and chemical field under the actual and suppositional condition of water and land use, based on which the applicable macroscopical pattern for controlling water and salts in soil and groundwater was put forward and concrete methods for solving secondary salinization was suggested. Some essential results and conclusions are as follows.
     1. Quaternary groundwater containing system includes both unconfined aquifer subsystem of piedmont plain and confined-unconfined aquifer subsystem of inner plain. Quaternary groundwater flow systems can be on a local, intermediate and regional basis, and the regional system contains four intermediate ones. Groundwater flowes from piedmont plain into Bosten Lake, and water-table varies from 1140m to 1050m with the hydraulic gradient from 0.002 to 0.0005. The regime type of water table is irrigation-evaporation. TDS of unconfined groundwater varies mainly from 0 to 50g/L increasing from the piedmont plain to Bosten Lake, and it is lower along riverside and higher around drainage canals. The Shukarlev classification for chemical types of groundwater changes from dicarbonate type with lower mineralization in the western and northern piedmont plain to sulfate-chloride type with higher mineralization around the lake, and is sulfate-chloride type or chloride type with higher mineralization in the east and south of Yanqi Basin.
     2. Spatial distribution of soil texture was determined, and the regionalization maps of soil texture types for single layer and texture combination types for soil profile were obtained. The soil texture become more and more fine varying with gravel, intermediate-fine sand, very fine sand, silt, and silty clay from the piedmont plain to the vicinity adjacent to Bosten Lake. Soil profiles show textures are fine at the upper and coarse at the low, and the thickness of fine-grain soil become thinner near the edge of the basin.
     3. Temporal and spatial distribution of water content and salinity of unsaturated soil for different types of land use were discussed. Water content of shallow soil is obviously affected by irrigated water in farmlands for irrigation period but not in wastelands. And several peak values occur at the regime curve of shallow soil moisture for farmlands in irrigation period but not for wastelands. Shallow soil salinity increases from piedmont plain to Bosten Lake, and which is lower at riveside of Kaidu River. According to the amount, variability and surface accumulation of soil salt content, salinity profiles can be classified into three types: equably distribution type, surface accumulation type and oscillation type. And the regime curve of soil salinity can be demarcated into three parts: the first part showes the alternate of desalting periods and salt return periods of spring-irrigation stage from April to June, the second part is relatively stable period from July to September and the last part is salt return period at the winter-irrigation stage from October to next March. Chemical components of soil salts are mainly sulfate and chloride ions with the relative ratio about 40% and 20% separately. Classification of salinized soil is mainly chloride-sulfate type, and the grading of soil salinity in wastelands with saline soil is higher than that in farmlands with strong salinization and middle salinization.
     4. The 1-D unsaturated water flow and salt transport simulation model for a representative area of shallow groundwater table was built and the suitable field irrigation schedule was designed. The water recharge and discharge of unsaturated zone was 1187.1 mm/a and 1039.0mm/a separately. The irrigated water infiltration was the major component of recharge (relative ratio was 91.8%) and water leakage into groundwater was the major component of discharge (74.6%). And the change in soil water storage was less than 5% which indicated the capacity of soil-water reservoir regulation was limited. The salts recharge and discharge was 1210 g/m~2/a and 5322 g/m~2/a separately. Salts taken by irrigated water was the major component of recharge (50.2%) and those by soil water leakage was the major component of discharge (99.4%). And the change in salts storage accounted for 30% of original storage indicating the desalination of soil. The constructed and calibrated simulation model was utilized to predict the tendency of changes for soil moisture and salinity, to determine the reasonable irrigation of 800mm/a for crop growing and washing soil salts, and to design the suitable field irrigation schedule mainly based on the discipline of crop growing.
     5. Integrated regionalization of unsaturated domain was determined according to the soil texture, depth of groundwater table and distribution of irrigation areas. The study area could be divided into groundwater deeply-buried subareas (water table deeper than 3m) and groundwater shallowly-buried subareas (water table shallower than 3m). In irrigation areas when depth of water table was shallower than 3 m water and salts exchange occurred cross the interface between saturated and unsaturated zones, and when depth of water table was deeper than 3m only water and salts of soil infiltrated into phreatic water. In non-irrigation areas when depth of water table was shallower than 3m only groundwater recharged soil water by evapotranspiration, and when depth of water table was deeper than 3m there was no exchange cross the interface. Combining the distribution maps for soil texture, depth of water table and irrigation areas, the unsaturated domain of the study area could be divided into eighteen subregions, where fourteen occurred water and salts exchange between soil and groundwater where representative soil profiles (S1~S14) were selected.
     Water flow and salt transport models for fourteen representative soil profiles (S1~S14) were constructed by applying HYDRUS-1D and were simulated to determine the water and salt exchanges cross the interface between saturated and unsaturated zones. In irrigation areas where the depth of water table was shallower than 3m infiltration recharge rate for groundwater was 591~966 mm/a (about 49%~80% of irrigated water), and actual evapotranspiration rate was 391~1065 mm/a. In irrigation areas where the depth of water table was deeper than 3m, only infiltration for groundwater occurred and the recharge rate was 172~389 mm/a (14%~32% of irrigated water). In non-irrigation areas where the depth of water table was shallower than 3m, only evapotranspiration of groundwater occurred and its rate was 123~145 mm/a. And the rate of infiltration recharge and evapotranspiration of groundwater increased when soil texture became fine. Salts exchange between soil and groundwater was affected by water flow, soil salinity and TDS of groundwater.
     6. Water and salts budget of groundwater were analyzed and the coupled simulation model of water flow and salt transport for unsaturated-saturated groundwater was constructed. Water recharge rate for groundwater was 11.051×10~8m~3/a where the major compositions were lateral recharge and canal leakage accouting for 40.42% and 38.47%. And water discharge rate was 11.006×10~8m~3/a where the major composition was evapotranspiration accouting for 52.40%, the secondary ones were drainage discharge and river discharge accouting for 20.38% and 15.28%, and the artificial extraction was very low with the ration of 8.4%. Salts recharge rate of groundwater was 253.897×10~4t/a where the major compositions were from canal leakage accouting for 50.23% of tall and secondary ones are lateral recharge and irrigation infiltration accouting for 27.92% and 20.26% respectively. And the salts discharge rate was 255.615×10~4t/a where the major compositions were drainage discharge and evapotranspiration accouting for 33.61% and 32.71%, and the artificial extraction was very low accouting for 6.4%. The coupled model for unsaturated-saturated zone thought of the water table as coupling interface (low boundary of the unsaturated and upper boundary of the saturated) and calculated real-time water and salts exchange cross the interface. As a result determination for the sink and source through the upper boundary of groundwater was more reliable and the emulation accuracy of simulation model was improved.
     7. Under the actual condition for water-use and land use the tendency of spatial and temporal changes for water table and TDS of groundwater was predicted by applying the calibrated coupled model of groundwater. Water-table prediction for observed boreholes showed: water table would rise gradually in Quhui Village and Wushitala Village within water deeply-buried areas, and would keep stable except for fluctuate of water-table expanding caused by irrigation in Wulasitai Village, Baoerhai Village and Chahannuoer Village within groundwater shallowly-buried areas. And the predicted flow field showed: water table would increase obviously at the rate of 0~0.30m/a in Heshuo County and would decrease at the rate of 0.03~0.11m/a in the areas west to Bosten Lake, along downstream of Kaidu River(south to Yanqi County), Huangshui River, Qingshui River and the local areas south to Bosten Lake. The TDS predication for observed boreholes showed: TDS of groundwater of most boreholes would increase particularly in those located in Twentieth Regiment, Qigexing Town and Telier Town. The predicted concentration field showed: TDS of groundwater would increase in the broad plain west and northwest to Bosten Lake, the areas around Quhui County and Wulasitai County, and some areas in the south of Yanqi Basin.
     8. Under different suppositional patterns for water-use and land use, the tendency of spatial and temporal distribution of water table and TDS of groundwater was predicted and the applicable macroscopical pattern for controlling water and salts in soil and groundwater was selected. Planning theme-I is designed to increase the withdrawl of groundwater from 0.924×10~8m~3/a at present to 4.056×10~8m~3/a in future while other conditions are unchanged. Based on the theme-I, planning theme-II is designed to decrease field irrigation amount to 800mm/a as the reasonable irrigation. The target of I was to change the relative ratio between the surface water and groundwater as resources of irrigated water in order to reduce water loss from canal transmission and improve groundwater environment. On the base of inheriting advantages of I, target of II was to further control the rising of water table and TDS of groundwater and realize the water-saving irrigation.
     Comparing I with II, the prediction shows that the water table and TDS of groundwater would descend and the effect of II was better than that of I. From the long-term tendency, the water table would fall gradually and come to constant eventually, and would control the increase tendency of TDS in general under II. So II could be considered and selected as the applicable controlling pattern for Yanqi Basin. At the same time, to keep the steady of groundwater field, the pumping rate of groundwater should be reduced in the areas around Baoerhai irrigation sources site, and that could be properly increased at the Group 89800 in the northeastern basin.
     9. Concrete methods of preventing and treating soil salinization were put forward. From the point of irrigated water sources, groundwater withdrawal could be increased from 0.924×10~8 m~3/a to 4.056×10~8 m~3/a and surface water should be decreased. From the point of irrigation schedule, the field irrigation ration of 800mm/a would be suitable for saving water and should be time-distributed properly according to crop growing. From the the point of irrigation style, blooding furrow irrigation or spout irrigation could be extended for the areas of soil salinization, drip irrigation for the areas of irrigating saltish water and seep irrigation for the areas of groundwater deeply-buried and high permeability of the soil. From the point of drainage style, in the areas of water deeply-buried well-irrigation and well-drainage could be applied to low the soil salinity, and in the areas of water table shallowly-buried capacity of horizontal discharge for salts should be strengthened, the depth of drainage canal should be deeper, and the combination with multilevel canal system and underground pipes could be utilized. Further more, the biological, physical and chemical amendments could be employed in association.
     The characteristics and innovations of the present paper are that: 1) it discussed the spatial distribution of soil texture types for different single layers and texture type units for soil profile; 2) regionalized the areal unsaturated zone mainly based on the soil texture , depth of water table and irrigation-area distribution, and simulated the water and salt exchanges cross the interface between soil and groundwater at different subregions applying the 1-D water flow and salt transport modeling; 3) constructed and calibrated the coupled simulation model of water flow and salt transport for unsaturated-saturated groundwater regarding the phreatic surface as the coupled interface for matter exchanges; and 4) predicted the tendency of temporal and spatial distribution for water table and TDS of groundwater under actual and suppositional patterns for water use and land use, put forward the applicable macroscopical pattern for controlling water and salts of soil and groundwater, and suggested the concrete methods for preventing and amending the soil salinization.
引文
[1]Acutis,M.,and M.Donatelli.2003.SOILPAR2.00:software to estimate soil hydrological parameters and functions [J].European Journal of Agronomy,18:373 377.
    [2]Alexandra,K.,and R.Zhang.1998.Estimating the soil water retention from particle-size distribution and water retention scaling [J].Soil Sci.,163(3):171 179.
    [3]Arya,L.M.,F.J.Leij,M.Th.van Genuchten,et al.1999.Scaling parameter to predict the soil water characteristic from particle-size distribution data [J].Soil Soc.Am.J.,63:510 519.
    [4]Bear,J.1972.Dynamics of fluid in porous media [M].American Elsevier,New York.[5]Benson,D.A.1998.The fractional advection-dispersion equation:development and application [D].Dissertation for Ph.D.,University of Nevada,Reno.
    [6]Belmans,C,J.G.Wesseling,and R.A.Feddes.1983.Simulation model of the water balance of a cropped soil:SWATRE [J].J.Hydro.,63:271 286.
    [7]Biggar,J.W.,and D.R.Nielsen.1961.Miscible displacement:Ⅱ.Behavior of tracers [J].Soil Sci.Soc.Am.J.,26:125 128.
    [8]Biggar,J.W.,and D.R.Nielsen.1963.Miscible displacement:V.Exchange processes [J].Soil Sci.Soc.Am.J.,27:623 627.
    [9]Biggar,J.W.,and D.R.Nielsen.1976.Spatial variability of the leaching characteristics of a field soil [J].Water Resour.Res.,12:78 84.
    [10]Bresler,E.B.,B.L.Mc Neal,and D.L.Carter.1982.Saline and sodic soils:Principles,dynamics,modeling [M].Springer-verlag,New York.
    [11]Bresler,E.,and A.Naor.1987.Estimating transport parameters in soils by a maximum likelihood approach [J].Soil Sci.Soc.Am.J.,51:870 875.
    [12]Bromly,M,and C.Hinz.2004.Non-Fickian transport in homogeneous unsaturated repacked sand [J].Water Resour.Res.,40(7):1 12.
    [13]Brooks,R.H.,and A.J.Corey.1964.Hydraulic properties of porous media[M].Hydro.Paper 3,Colorado State Univ.,Fort Collins.
    [14]Buckingham,E.1907.Studies on the movement of soil moisture [M].Bull,nia Press,Berkeley.[15]Clausnitzer,V.,J.W.Hopmans,and D.R.Nielsen.1992.Simultaneous scaling of soil water retention and hydraulic conductivity curves [J].Water Resour.Res.,28 (1):19 31.
    [16]Cortis,A.,and B.Berkowitz.2004.Anomalous transport in “classical” soil and sand columns [J].Soil Sci.Soc.Am.J.,61:1539 1548.
    [17]Costa,J.L.,and L.Prunty.2006.Solute transport in fine sandy loam soil under different flow rates [J].Agri.Water Manage.,83:111 118.
    [18]Dirksen,C.2000.Unsaturated hydraulic conductivity [A].In:Soil and environmental analysis:physical methods[C],K.A.Smith,and C.E.Mullins(ed.),Marcel Dekker,Inc,New York,183 237.
    [19]Downer,C.W.2002.Identification and modeling of important stream flow producing processes in watersheds[D].Dissertation for Ph.D.,University of Connecticut,USA.
    [20]Dunkel,Z.,and I.Grob-Szenyan.2002.A simple method for estimation of evapotranspiration using remotely sensed data during vegetation period in Hungary [J].Phys.Chem.Earth,27:1109-1111.
    [21]Dyson,J.S.,and R.E.White.1987.A comparison of the convection-dispersion equation and transfer function model for predicting chloride leaching through an undisturbed structured clay soil [J].Soil Sci.,38:157 172.
    [22]Engelen,G.B.,and G.P.Jones.1986.Developments in the analysis of groundwater flow system [M].IAHS Press,Amsterdam.
    [23]Feddes,R.A.,P.J.Kowalik,and H.Zaradny.1978.Simulation of field water use and crop yield [M].John Wiley&Sons,New Yrok.
    [24]Feddes,R.A.,G.H.de Rooij,and J.C.van Dam.2004.Unsaturated zone modeling,progress,challenges and applications [M].Wageningen UR Frontis Series,Kluwer Academic Publishers.
    [25]Feyen,J.,D.Jacques,A.Timmerman,et al.1998.Modeling water flow and solute transport in heterogeneous soils:a review of recent approaches [J].J.Agri.Eng.Res.,70:231 256.
    [26]Gamerdinger,A.P.,A.T.Lemley,and R.J.Wagenet.1991.Non-equilibrium sorption and degradation of three 2 chloro-s-triazine herbicides in soil-water systems [J].J.Environ.Qual.,20:815 822.
    [27]Gardner,W.R.1960.Dynamic aspects of water availability to plants [J].Soil Sci.,89:63 73.
    [28]Gelhar,L.W.,C.Welty,and K.R.Rehfeldt.1992.A critical review of data on field-scale dispersion aquifers [J].Water Resour.Res.,28:1955 1974.
    [29]Gomez,J.A.,K.Vanderlinden,and M.A.Nearing.2005.Spatial variability of surface roughness and hydraulic conductivity after disk tillage:implications for runoff variability [J].J.Hydro.,311(14).
    [30]Grove,D.B.,and K.G Stollenwerk.1987.Chemical reactions simulated by ground-water-quality models [J].Water Resour.Bulletin,23(4):601 615.
    [31]Guarracino,L.,and J.E.Santos.2004.Stochastic modeling of variably saturated transient flow in fractal porous media [M].Math.Geo.,36(2):217 238.
    [32]Gupta,S.R.and S.I.Solomon.1977.Distributed numerical model for estimating runoff and sediment discharge of ungauged rivers.Water Resour.Res.13:619 625.
    [33]Hillel,D.,H.Talpaz,and H.van Keulen.1976.A macroscopic-scale model of water uptake by a nonuniform root system and of water and salt movement in the soil profile [J].Soil Sci.,121:242 255.
    [34]Inoue,M.,J.Simunek,S.Shiozawa,and J.W.Hopmans.2000.Simultaneous estimation of soil hydraulic and solute transport parameters from transient infiltration experiments [J].Adv.in Water Resour.,23:677 688.
    [35]Jury,W.A.1982.Simulation of solute transport using a transfer function model[J].Water Resour.Res.,18:363 368.
    [36]Jury,W.A.1996.Stochastic solute transport modeling trends and their potential compatibility with GIS [A].In:Applications of GIS to the modeling of non-point source pollutants in the vadose zone[C],Soil Science Society of America,Madison,WI.,57 68.
    [37]Jury,W.A.,and K.Roth.1990.Transfer functions and solute movement through soil:Theory and applications [M].Birkhauser Verlag,Basel,Switzerland.
    [38]Klotz,D.,and H.Moser.1974.Hydrodynamic dispersion as aquifer characteristic:model experiments with radioactive tracers [A].In:Isotope Techniques in Groundwater Hydrology Ⅱ[C],277 294.
    [39]Lane,L.J.,E.M.Romney,and T.E.Hakson.1984.Water balance calculations and net production of perennial vegetation in the northern Mojave Desert [J].J.Range Manage.,37:12 18.
    [40]Lapidus,L.,and N.R.Amundson.1952.Mathematics of adsorption in beds [J].J.Phys.Chem.,56:984 995.
    [41]Leij,F.J.,and M.Th.van Genuchten.2002.Solute transport [A].In:Soil physics companion[C],A.W.Warrick (ed.),CRC Press,Boca Raton,FL.,189 248.
    [42]Levy,M.,and B.Berkowitz.2003.Measurement and analysis of non-Fickian dispersion in heterogeneous porous media [J].J.of Cont.Hydro.64(3 4):203 226.
    [43]Li,L.,D.A.Barry,P.J.Culligan-Hensley,et al.1994.Mass transfer in soils with local stratification of hydraulic conductivity [J].Water Resour.Res.,30:2890 2900.
    [44]Matheron,G,and G de Marsily.1980.Is transport in porous media always diffusive? A counter example [J].Water Resour.Res.,16(5):901 917.
    [45]Mantoglou,A.,and L.W.Gelhar.1987.Stochastic modeling of large-scale transient unsaturated flow system [J].Water Resour.Res.,23:37 46.
    [46]Mantoglou,A.1992.Theoretical approach for modeling unsaturated flow in spatially variable soils:Effective flow models in finite domains and nonstationarity [J].Water Resour.Res.,28:251 267.
    [47]Matthews,C.J.,R.D.Braddock,and G.C.Sander.2004.Modeling flow through a one-dimensional multi-layered soil profile using the method of lines [J].Environ.Modeling and Assessment,9:103 113.
    [48]Molz,F.J.1981.Models of water transport in the soil-plant system:A review[J].Water Resour.Res.,17:1245 1260.
    [49]Monteith,J.L.1965.Evaporation and environment [J].Sym.Soc.Exp.Bio.,19:205 234.
    [50]Mualem,Y.1976.A new model predicting the hydraulic conductivity of unsaturated porous media [J].Water Resour.Res.,12(3):513 522.
    [51]Nemes,A.,M.G Schaap,and F.J.Leij.2001.Description of the unsaturated soil hydraulic database UNSODA version 2.0 [J].J.Hydro.,251:151 162.
    [52]Neuman,S.R 1990.Universal scaling of hydraulic conductivities and dispersivities in geologic media [J].Water Resour.Res.,26:1749 1758.
    [53]Nielsen,D.R.,and J.W.Biggar.1961.Miscible displacement in soils:I.Experimental information [J].Soil Sci.Soc.Am.J.,25:1 5.
    [54]Nielsen,D.R.,and J.W.Biggar.1962.Miscible displacement in soils:Ⅲ.Theoretical considerations[J].Soil Sci.Soc.Am.J.,26:216 221.
    [55]Nielsen,D.R.,and J.W.Biggar.1963.Miscible displacement in soils:IV.Mixing in glass beads [J].Soil Sci.Soc.Am.J.,27:10 13.
    [56]Nielsen,D.R.,J.W.Biggar,and K.T.Erh.1973.Spatial variability of field-measured soil-water properties [J].Hilgardia,42:215 259.
    [57]Olioso,A.,Y.Inoue,S.Ortega-Farias,et al.2005.Future directions for advanced evapotranspiration modeling:Assimilation of remote sensing data into crop simulation models and SVAT models [J].Irrigation Drainage System,19,377 412.
    [58]Palma,H.C,and L.R.Bentley.2007.A regional-scale groundwater flow model for the Leon-Chinandega aquifer,Nicaragua [J].Hydrogeo.J.,15:1457 1472.
    [59]Penman,H.L.1953.Natural evaporation from open water,bare soil and grass [J].Proceedings of the Royal Society of London Series A,93:120 145.
    [60]Pickens,J.F.and G.E.Grisak.1981.Scale-dependent dispersion in a stratified granular aquifer [J].Water Resour.Res.,17(4):1191 1211.
    [61]Pietro,L.2003.Predicting preferential water flow in soils by traveling dispersive waves [J].J.Hydro.,278(1):64 75.
    [62]Poulovassilis,A.,M.Psychoyou,and P.Kerkides.2007.Solute transport in soils:An algorithmic approach [J].Water Resour.Manage.,21(11):1941 1954
    [63]Ptak,T,M.Piepenbrink,and E.Martac.2004.Tracer tests for the investigation of heterogeneous porous media and stochastic modeling of flow and transport:A review of some recent developments [J].J.Hydro.,294:122 163.
    [64]Rana,G,and N.Katerji.2000.Measurement and estimation of actual evapotranspiration in the field under mediterranean climate:A review [J].Euro.J.Agron.,13:125 153.
    [65]Rao,P.S.C,D.E.Rolston,et al.1980.Solute transport in aggregated porous media:Theoretical and experimental evaluation [J].Soil Sci.Soc.Am.J.,44:1139 1146.
    [66]Reynolds,W.D.,and W.D.Zebchuk.1999.Hydraulic conductivity in a clay soil:two measurement techniques and spatial characteristics [J].Soil Soc.Am.J.,60:1679 1685.
    [67]Richards,L.A.1931.Capillary conduction of liquids through porous mediums [J].Physics,1 (5):318 333.
    [68]Rieu,M.,and G Sposito.1991 Fractal fragmentation,soil porosity,and soil water properties:I,Theory [J].Soil Sci.Soc.Am.J.,55:1231 1238.
    [69]Russo,D.,and M.Bouton.1992.Statistical analysis of spatial variability in unsaturated flow parameters[J].Water Resour.Res.,28:1911 1925.
    [70]Sanchez-Vila,X.,J.Carrera,and J.P.Girardi.1996.Scale effects in transmissivity [J].J.Hydro.,183:1 22.
    [71]Schaap,M.G,F.J.Leij,and M.Th.van Genuchten.2001.ROSETTA:A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer methods [J].J.Hydro.,251:163 176.
    [72]Shao,M.,R.Horton,and R.K.Miller.1998.An approximate solution to the convection-dispersion equation of solute transport in soil [J].Soil Sci.,163(5):339 345.
    [73]Silliman,S.E.,L.F.Konikow,and C.I.Voss.1987.Laboratory investigation of longitudinal dispersion in anisotropic media[J].Water Resour.Res.,23(11):2145 2151.
    [74]Sims,D.J.,W.S.Andrews,and K.Creber.2005.Measuring and modeling the transport of fission products in unsaturated prairie soil [J].Journal of Radioanalytical and Nuclear Chemistry,263(3):619 623.
    [75]Simunek,J.,T.Vogel,and M.Th.van Genuchten.1994.The SWMS2D code for simulating the water flow and solute transport in two-dimensional variably-saturated,version 1.1 [R].U.S.Salinity Lab.,USDA-ARS,Riverside,CA.
    [76]Simunek,J.,J.Nick,M.Th.van Genuchten,et al.2003.Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone [J].J.Hydro.,272:14 35.
    [77]Simunek,J.,T.Sejna,and M.Th.van Genuchten.1998.The HYDRUS-ID software package for simulating the one dimensional movement of water,heat,and multiple solutes in variably saturated media,version 2.0 [M].Colorado School of Mines Publishers,Riverside,CA.
    [78]Simunek,J.,M.Th.van Genuchten,and M.Sejna.2005.The HYDRUS-ID software package for simulating the one-dimensional movement of water,heat and multiple solutes in variably-saturated media,version 3.0[R].Dep.of Environ.Sci.,Univ.of Calif.,Riverside,CA.
    [79]Slater,L.2007.Near surface electrical characterization of hydraulic conductivity from petrophysical properties to aquifer geometries:A review [J].Surv.Geophys,28:169 197.
    [80]Smiles,D.E.,and B.N.Gardiner.1982.Hydrodynamic dispersion during unsteady,unsaturated water flow in a clay soil [J].Soil Sci.Soc.Am.J.,46:9 14.
    [81]Smiles,D.E.,and J.R.Philip.1978.Solute transport during absorption of water by soil:Laboratory studies and their practical implications[J].Soil Sci.Soc.Am.J.,42:537 544.
    [82]Smiles,D.E.,J.R.Philip,J.H.Knight,and D.E.Elrick.1978.Hydrodynamic dispersion during absorption of water by soil [J].Soil Sci.Soc.Am.J.,42:229 234.
    [83]Soet,M.,J.N.M.Strieker.2003.Functional behavior of pedotransfer functions in soil water flow simulation [J].Hydro.Proc,17:1659 1670.
    [84]Sposito,G R.1986.Scale dependence and scale invariance in hydrology [M].Cambridge University Press,Cambridge.
    [85]Su,N.2007.Scale and time effects on mathematical models for transport in the environment [J].Appl.Math.J.Chinese Univ.Sen,22(3):267 276.
    [86]Tanji,K.K.1981.River basin hydro-salinity modeling [J].Agri.Water Manage.,4:207 225.
    [87]Taskinen,A.,H.Sirvio,and M.Bruen.2008.Statistical analysis of the effects on overland flow of spatial variability in soil hydraulic conductivity [M].Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,53 (2):387 400.
    [88]Toth,J.1986.Models of subsurface hydrology of sedimentary basins[A].In Brain Hitchon et al.(Ed.),Third Canadian/American on Hydrogeology,NWWA,Dublin,Ohio,USA.
    [89]USDA-SCS.1975.Soil taxonomy:A basic system of soil classification for making and interpreting soil surveys[S].U.S.Gov.Print Office,Washington D.C.
    [90] UNESCO/FAO. 1973. Irrigation, drainage and salinity [M]. An international source book, edited by V. A.Kovda, C. van den Berg and R. M. Hagan, Hutchinson, London.
    [91] van Genuchten, M. Th., and P.J. Wierenga. 1976. Mass transfer studies in sorbing porous media: I, Analytical solutions [J]. Soil Sci. Soc. Am. J., 40:473 480.
    [92] van Genuchten, M. Th. 1980. Predicting the hydraulic conductivity of unsaturated soil [J]. Soil Sci. Soc. Am.J., 44:892 898.
    [93] van Genuchten, M. Th., and R. J. Wagenet. 1989. Two-site/two-region models for pesticide transport and degradation: Theoretical development and analytical solutions [J]. Soil Sci. Soc. Am. J., 53:1303 1310.
    [94] van Genuchten, M. Th, Leij F. J., and S. R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils, version 1.0 [R]. EPA report 600/2 91/065, U. S. Salinity Lab., USDA-ARS,Riverside, CA.
    [95] van Genuchten, M.Th., M.G. Schaap, B.P.Mohanty, et al. 1999. Modeling flow and transport processes at the local scale [A]. In: Modeling of transport processes in soils-International workshop of Eur Ag Eng's field of interest on soil and water[C], J. Feyen, K. Wigo(ed.), Wagenigen Pers, Wageningen, Netherlands, 23 45.
    [96] Van Genuchten, M. Th. 1987. A numerical model for water and solute movement in and below the root zone[R]. Research report No. 121, U. S. Salinity Lab., USDA-ARS, Riverside, CA.
    [97] Vanderborght, J., A. Timmerman, and J. Feyen. 2000. Solute transport for steady-state and transient flow in soils with and without macropores [J]. Soil Sci. Soc. Am. J., 64:1305 1317.
    [98] Vogel, T., and M. Cislerova. 1988. On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve [J]. Transport in Porous Media, 3: 1 15.
    [99] Vogel, T., M. Th. van Genuchten, and M. Cislerova. 2001. Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions [J]. Adv. Water Resour., 24(2): 133 144.
    [100] Vogel, H. J, and K. Roth. 2003. Moving through scales of flow and transport in soil[J]. J. Hydro.,27:95 106.
    [101] Ward, C., S. Darghouth, G. Minasyan, and G. Gambarelli. 2006. Reengaging in agricultural water management, challenges and options [M]. The World Bank, Directions in Development, Washington D. C.
    [102] Whitaker, S. 1967. Diffusion and dispersion in porous media [J]. A. I. Ch.E. J., 13:420 427.
    [103] White, R. E., G. W. Thomas, and M. S. Smith. 1984. Modeling water flow through undisturbed soil cores using a transfer function model derived from 3 HOH and Cl transport [J]. Soil Sci., 35:159 168.
    [104] White, R. E. 1987. A transfer function model for the prediction of nitrate leaching under field condition [J]. J.Hydro., 92:207 222
    [105] Williams, R. D., and L. R. Ahuja. 1992. Evaluation of similar-media scaling and a one-parameter model for estimating the soil water characteristic [J]. Soil Sci., 43:237 248.
    [106] Wosten, J. H. M., Y. A. Pachepsky, and W. J. Rawls. 2001. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics [J]. J. Hydro., 251:123 150.
    [107] Wu, A. S. Y, J. Liu, and B. Yang. 2006. Formative mechanism of preferential solution flow during dump leaching [J]. Journal of Central South University of Technology, 13(5): 590 594.
    [108] Yamaguchi, T., P.Moldrup, and S. Yokosi. 1989. Using breakthrough curves for parameter-estimation in the convection-dispersion model of solute transport [J]. Soil Sci. Soc. Am. J., 53:1635 1641.
    [109] Young, C., W. Wallender, G. Schoups, et al. 2007. Modeling shallow water table evaporation in irrigated regions [J]. Irrigation Drainage System, 21:119 132.
    [110] Yule, D. F., and W. R. Gardner. 1978. Longitudinal and transverse dispersion coefficients in unsaturated plain field sand [J]. Water Resour. Res., 14(4): 582 588.
    [111] 陈丹,莫兴围,林忠辉,等.2006.基于MODIS数据的无定河流域蒸散模拟[J].地理研究,25(4):617 624.
    [112] 陈刚,徐恒力,陈植华.1998.多孔介质渗透系数的空间尺度效应研究进展[J].地质科技情报,17:27 34.
    [113] 陈秋方,A.E.Evans,P.H.Nicholls,G.G.Briggs.1986.用计算机模拟农药在土壤中的移动和降解[J].土壤学报,23(4):375 381.
    [114] 成建梅,胡进武.2003.饱和水流溶质运移问题数值解法综述[J].水文地质工程地质,(2):99 106.
    [115] 董新光,周金龙,王跃滨等.2005.新疆开都河-孔雀河流域水盐监测与模型应用研究[R].新疆农业大学,新疆巴音郭楞蒙古自治州水利局.
    [116] 樊军,邵明安,王全九.2006.田间测定土壤导水率的方法研究进展[J].中国水土保持科学,4(2):114 119.
    [117] 冯效毅,滕洁,刘春阳,等.2006.污染物在土壤中运移模型的研究进展[J].环境监测管理与技术,18(3):30 34.
    [118] 高瑾.2001.新疆焉耆盆地开荒典型区水盐运移规律试验研究[D].硕士论文,乌鲁木齐:新疆农业大学.
    [119] 黄冠华,沈荣开.1997.非均质土壤中二维非饱和土壤水分运动的随机分析[J].水科学进展,8(2):117 121.
    [120] 黄冠华,沈荣开.1997.大尺度非饱和土壤水分运动的随机模型及有效参数的结构分析[J].水利学报,(11):39 48.
    [121] 黄冠华,H.Zhan,叶自桐.2003.水力传导度空间变异性的分形模拟研究进展[J].水科学进展,14(2):236 241.
    [122] 黄康乐.1987.原状土等温吸附特性的试验研究[J].灌溉排水,(3):26 29.
    [123] 黄康乐.1988.野外条件下非饱和弥散系数的确定[J].土壤学报,(2):27 33.
    [124] 黄明斌,邵明安,李玉山.2000.一个改进的随机动力学水平衡模型及其应用研究:Ⅰ.模型[J].水利学报,(6):20 26.
    [125] 黄元仿,李韵珠.2002.土壤水力性质的估算-土壤转换函数[J].土壤学报,39(4):517 523.
    [126] 郝振纯,冯杰.2002.水及溶质在大孔隙土壤中运移的实验研究进展[J].灌溉排水,21(1):61 67.
    [127] 胡继超,张佳宝,冯杰.2004.蒸散的测定和模拟计算研究进展[J].土壤,36(5):492 497.
    [128] 胡守忠,乔冬梅,史海滨.2006.盐渍化地区土壤水分运动参数的测定及标定[J].灌溉排水学报,(2):30 34.
    [129] 贾宏伟,康绍忠,张富仓.2004.土壤水力学特征参数空间变异的研究方法评述[J].西北农林科技大学学报(自然科学版),32(4):97 102.
    [130] 雷志栋,杨诗秀,谢森传.1988.土壤水动力学[M].北京:清华大学出版社.
    [131] 雷志栋,胡和平,杨诗秀.1999.土壤水研究进展与评述[J].水科学进展,10(3):311 318.
    [132] 李保国,胡克林,黄元仿,刘刚.2005.土壤溶质运移模型的研究及应用[J].土壤,37(4):345 352.
    [133] 李国敏,陈崇希.1995.空隙介质水动力弥散尺度效应的分形特征及弥散度初步估计.地球科学-中国地质大学学报,20(4):405 409.
    [134] 李海涛,李小梅,B.Philip,等.2006.电磁感应方法在土壤盐渍化评价中的应用研究[J].水文地质工程地质,33(1):95 98.
    [135] 李海涛,P.Brunner,李文鹏,等.2006.ASTER遥感影像数据在土壤盐渍化评价中的应用[J].水文地质工程地质,33(5):75 79.
    [136] 李卫红,袁磊.2002.新疆博斯腾湖水盐变化及其影响因素探讨[J].湖泊科学,14(3):223 226.
    [137] 李韵珠,李保国.1998.土壤溶质运移[M].北京:科学出版社.
    [138] 林丽蓉.2006.焉耆盆地水文循环与盐分迁移聚集模式研究[D].博士论文,武汉:中国地质大学.
    [139] 林琳,杨金忠,史良胜,等.2005.区域饱和-非饱和地下水流运动数值模拟[J].武汉大学学报(工学版),38(6):53 57.
    [140] 林琳,杨金忠,史良胜,等.2007.区域饱和-非饱和多孔介质的溶质运移简化模型[J].水力学报,38(3):342 348.
    [141] 刘昌明,窦清晨.1992.土壤-植物-大气连续体模型中的蒸散发计算[J].水科学进展,3(4):255 263.
    [142] 刘昌明.1997.土壤-植物-大气系统水分运行的界面过程研究[J].地理学报,52(4):366 373.
    [143] 刘春平,叶乐安,邵明安,等.2004.土壤溶质运移参数估计图解方法[J].土壤学报,41(5):715 720.
    [144] 刘春平,夏卫生,邵明安,等.2005.多孔介质中溶质运移参数拟线性化估计方法[J].水利学报,36(12):1445 1449.
    [145] 刘建国,聂永丰.2001.非饱和土壤水力参数预测的分形模型[J].水科学进展,12(1):99 106.
    [146] 刘亚平,陈川.1996.土壤非饱和带中的优先流[J].水科学进展,7(1):85 89.
    [147] 刘延锋.2004.新疆焉耆盆地地表水-地下水转化及水资源可持续利用[D].博士论文,武汉:中国地质大学.
    [148] 刘云鹏.2002.土壤结构的分形特征及土壤水分运动模型研究[D].博士论文,陕西杨凌:西北农林科技大学.
    [149] 罗廷彬,任崴,谢春红.2001.新疆盐碱地生物改良的必要性与可行性[J].干旱区研究,18(1):46 48.
    [150] 吕岁菊,李春光.2005.土壤水-盐运移规律数值模拟研究综述[J].农业科学研究,26(1):80 84.
    [151] 马东豪,王全九.2004.两区模型与两流区模型对比分析[J].水利学报,(6):92 97.
    [152] 马东豪,王全九.2006.用Brooks-Corey模型确定两流区模型参数[J].土壤学报,43(2):209 214.
    [153] 孟江丽,董新光,周金龙,等.2004.HYDRUS模型在干旱区灌溉土壤盐化关系研究中的应用[J].新疆农业大学学报,27(1):45 49.
    [154] 毛晓敏,杨诗秀,雷志栋.1998.叶尔羌灌区冬小麦生育期SPAC水热传输的模拟研究[J].水利学报,(7):35 39.
    [155] 毛晓敏,尚松浩,雷志栋,等.2001.利用SPAC模型对冬小麦蒸散发的研究[J].水利学报,(8):7 11.
    [156] 闵安成,张一平,朱铭莪,等.1995.田间土壤的水势温度效应[J].土壤学报,32(2):235 240.
    [157] 倪余文,区自清,应佩峰.2001.土壤优先水流及溶质优先迁移的研究[J].应用生态学报,12(1):103 107.
    [158] 牛健植,余新晓,张志强.2006.优先流研究现状及发展趋势[J].生态学报,26(1):231 243.
    [159] 欧阳正平.2008.干旱内陆盆地田间土壤水盐运移模拟及调控-以新疆焉耆盆地典型区为例[D].硕士论文,武汉:中国地质大学.
    [160] 秦耀东,任理,王济.2000.土壤中大孔隙流研究进展与现状[J].水科学进展,11(2):203 206.
    [161] 任理,马军花,刘兆光.2003.考虑残留氮对非稳定流场硝态氮淋失贡献的传递函数模型:Ⅱ,农田应用[J].水利学报,(12):89 97.
    [162] 司建华,冯起,张小由,等.2005.植物蒸散耗水量测定方法研究进展[J].水科学进展,16(3):450 459.
    [163] 石辉,郑纪勇,邵明安.2003.土壤溶质运移CDE模型参数估计的一种新方法-截距法[J].土壤学报,40(1):136 139.
    [164] 石元春,辛德惠,等.1983.黄淮海平原的水盐运动和旱涝盐碱的综合治理[M].河北人民出版社.
    [165] 石元春,陈介福,谢经荣.1986.区域水盐运动的类型及其划分,盐渍土的水盐运动[M].北京:农业大学出版社.
    [166] 石元春,李保国,等.1991.区域水盐运动监测预报[M].北京:河北科学技术出版社.
    [167] 孙昌禹,董博飞,董文琦.2006.区域蒸散量估算技术研究进展[J].河北农业科学,10(3):103 106.
    [168] 孙景生,康绍忠,等.1995.夏玉米田蒸散的计算[J].中国农业气象,16(5):1 7.
    [169] 田桂萍,康双阳.1997.盐碱土壤小麦体内盐分含量动态变化规律[J].灌溉排水,16(4):28 31.
    [170] 田哲旭,王坚.1996.线性根系吸水模型在上壤-作物系统中的应用[J].中国农业大学学报,1(1):49 53.
    [171] 汤秋鸿,田富强,胡和平.2004.干旱区平原绿洲散耗型水文模型[J].水科学进展,15(2):146 150.
    [172] 王大纯,张人权,等.1986.水文地质学基础[M].北京:地质出版社.
    [173] 王大纯,张人权,史毅虹,等.1995.水文地质学基础[M].北京:地质出版社.
    [174] 王全九.2005.土壤溶质迁移理论研究进展[J].灌溉排水学报,24(3):77 80.
    [175] 王全九,王文焰,白锦鳞.1994.土壤水分运移热力学特性的研究[J]_水土保持学报,8(1):63 68.
    [176] 王铁军,郑西来,赵淑梅.2005.土壤非饱和带确定性数值模型研究进展[J].海洋湖沼通报,(2):99 104.
    [177] 王同科,孙景生.1997.SPAC系统中水热耦合运移方程的有限元迭代算法[J].水利学报,(3):65 69.
    [178] 王文焰,王全九,张建丰,等.2002.甘肃秦王川地区土壤水分运动参数及相关性[J].水土保持学报,16(3):110 113.
    [179] 王水献.2005.焉耆盆地典型试验区土壤水盐数值模拟研究[D].硕士论文,乌鲁木齐:新疆农业大学.
    [180] 王遵亲,祝寿泉,俞仁培,等.1993.中国盐渍土[M].北京:科学出版社.
    [181] 魏新平,王文焰.1999.用水平土柱测定非饱和土壤水扩散律的瞬时剖面法[J].水利水电技术,(11):25 28.
    [182] 谢森传,杨诗秀,雷志栋.1989.水平入渗条件下溶质含量对土壤水分运动的影响和土壤水盐运动综合扩散系数Dsh(θ)的测定[J].灌溉排水,8(1):6 12.
    [183] 熊云武,黄冠华,黄权中.2006.非均质土柱中溶质迁移的连续时间随机游走模拟[J].水科学进展,17(6):797 802.
    [184] 徐英,陈亚新,史海滨,等.2004.土壤水盐空间变异尺度效应的研究[J].农业工程学报,25(3):45 48.
    [185] 徐绍辉,刘建立.2003.估计不同质地土壤水分特征曲线的分形方法[J].水利学报,(1):99 106.
    [186] 许秀元,陈同斌.1998.土壤中溶质运移模拟的理论与应用[J].地理研究,17(1):99 106.
    [187] 薛绪掌,张仁铎,桂胜祥.2001.测定尺度对所测土壤导水参数及其空间变异性的影响[J].水土保持通报,21(3):47 51.
    [188] 杨邦杰.1996.斥水土壤中的水热运动规律与数值模型[J].土壤学报,33(4):351 369.
    [189] 杨建锋,李宝庆,李运生,等.1999.浅地下水埋深区潜水对SPAC系统作用初步研究[J].水利学报,(7):27 32.
    [190] 杨建锋,万书勤,邓伟,等.2005.地下水浅埋条件下包气带水和溶质运移数值模拟研究述评[J].农业工程学报,21(6):158 165.
    [191] 杨金忠,蔡树英,黄冠华,等.2000.多孔介质中水分及溶质运移的随机理论[M].北京:科学出版社.
    [192] 杨金忠,蔡树英,叶自桐.1998.区域地下水溶质运移随机理论的研究与进展[J].水科学进展,9(3):84 98.
    [193] 杨金忠,叶自桐.1994.野外非饱和土壤水流运动速度的空间变异性及其对溶质运移的影响[J].水科学进展,5(1):9 17.
    [194] 杨艳,王全九.2005.层状土溶质运移特性及其参数分析[J].灌溉排水学报,24(6):19 21.
    [195] 詹卫华,黄冠华.2000.土壤水力特性分形特征研究进展[J].水科学进展,11(4):457 462.
    [196] 张人权.1987.水文地质学发展的若干趋向[J].水文地质工程地质,17 19.
    [197] 张蔚榛.1996.地下水与土壤水动力学[M].北京:中国水利水电出版社.
    [198] 张瑜芳,张蔚榛,沈荣开,等.1997.排水农田中氮素转化运移和流失[M].武汉:中国地质大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700