用户名: 密码: 验证码:
三孔并行盾构隧道近接施工的影响度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的不断发展,我国对基础设施,尤其是交通设施建设的需求在不断增加,目前,铁路、公路正进行着大规模的建设。路网的完善和扩能,提速及高速路网的发展,西部大开发战略的实施和大城市的发展,出现了大量地下工程及隧道的近接施工问题。而隧道经典理论主要基于半无限体或无限体中单一洞室的力学行为,大量的近接施工研究多基于经验和个案研究,系统性研究较少。从现行国内设计规范来看,主要基于弹性解的无影响范围和经验值,或仅限于个别类型的相关规定,缺乏必要而充分的理论分析。因此有必要对理论进行新的发展,为规范和指南的制定提供依据。
     本文以上海轨道交通9号线R413项目三孔并行盾构隧道下穿铁路和自身近接的工程问题为依托,结合建设部三孔并行软土地铁盾构隧道的控制技术研究课题,综合运用调查研究、数值分析、模型试验、现场测试和经验类比方法,在归纳总结和批判吸收的基础上,对盾构隧道下穿铁路近接施工和三孔并行盾构隧道的近接施工的特殊性和普遍性问题进行研究,得到了以下主要成果和结论:
     1、本文在文献[1]相关近接理论的基础上,定义了几何近接度和近接影响度的概念,提出了近接影响度和近接影响分区的表达式,并将近接影响分区限定在常规措施条件下,完善了文献[1]提出的相关理论。
     2、研究了基于地表沉降判别准则的不同影响度或分区的相关阈值;提出了钢筋混凝土结构的强度判别准则表达式和相关分区阈值;基于变化影响程度的概念,提出强度判别准则比和相关阈值;提出以动静荷载比作为分析列车动载对下伏隧道影响的强度判别准则。
     3、根据近接影响度和影响分区理论,运用统计力学方法,分别基于地表位移判别准则、结构强度判别准则,以及动静荷载比判别准则对近接影响度表达式中的几何近接度影响修正系数α_(0ij),埋深影响的修正系数α_(4ij)和综合系数K_(ij)进行了研究,并得到了基于埋深比(H/D)—几何近接度A,或应力比(R_b/σ_0)—几何近接度A的近接影响分区。
     4、利用平面、三维数值模拟,离心模型试验和现场测试研究了三孔并行盾构隧道近接施工的应力场、位移场和结构内力的演变规律,指出了近接施工的控制关键及其力学原理,阐述了盾构施工参数分级的思路,并研究了对策措施分级以分别与常规近接影响度相对应。
     5、采用死活单元法、刚度和荷载迁移法模拟了盾构的推进,利用软弱实体和逐步增大弹模的方法模拟了惰性浆液的注入和硬化,利用温度的升降产生的膨胀和收缩效应模拟了注浆压力和压力的消散;利用水囊定量注放水的方式在离心模型实验中模拟了盾构施工的地层损失;建立了三维动力有限元模型,模拟了上下行列车同时对向行驶的轮载的移动,实现了列车动载作用下的土—结构动力分析;大量采用影响线方法对近接施工的力学行为进行了分析;建立了基于隧道拱顶动土压力的平面简化计算模式。
     6、得到了三孔并行盾构隧道个案和普遍性研究的一些结论。
     本文主要针对三孔并行盾构隧道的同步近接情况,地质条件也仅限于类似R413工程的地层,在影响因素上也只对几何近接度和埋深的影响进行了研究。由于近接施工类型和影响因素繁多,需要加大力度划分类型和影响因素进行研究。尤其是应用较多的几个近接类型,应该重点突破,力求尽快完善和建立影响分区的指标体系,为规范和指南的编制提供依据,以指导设计、施工和管理。
With the boost of economy, the demand of infrastructure is increasing, especially in means of transportation. Lots of cases of adjacent construction in tunnel and underground project had appeared in the perfection of traffic net. Tradition theory is based on the mechanical behaviors of single cavern in semi-infinite or infinite medium, while most of the researches on adjacent construction are based on experience and case study with a little systematic study. It seems from actual design norms in China that such researches are mainly based on non-influential zone of elastic solution and empirical value, or separate model, which lack of necessary and sufficiency theoretical analysis. For framing norms and guides, it's necessary to do some research on the theory.
     This dissertation carried out a study on the particularity and universality of the adjacent construction which depends on the project of R413 in the ninth line of shanghai track traffic, by using the methods of investigation and study, numerical analysis, model test, in-situ test and analog.
     The following achievement and outcome was gained:
     1. This dissertation develops the theory of literature [1] by defining geometric adjacent degree and adjacent influence degree, putting forward the expressions of adjacent influence degree and adjacent influence subzone and limiting the adjacent influence subzone to normal procedure measures.
     2. This dissertation researches coherent threshold of different influence degrees and subzones based on the criterion of Land subsidence, and puts forward the criterion expression of reinforced concrete strength and coherent threshold. Ratio threshold of strength and coherent threshold based on the concept of influence grade are given. And so is the using of the ratio of dynamic and static load as the strength criterion of analyzing dynamic load of train acts on the tunnel.
     3. In this dissertation, according to the definitions of adjacent influence degree and influence subzone, the coefficient of the geometric adjacent degreeα_(0ij), the one influence by depthα_(4ij), and the synthesis coefficient K_(ij) are studied by using statistical mechanics, with the base of the land displacement criterion, strength criterion and the criterion of ratio of dynamic and static load. Therefore the influence subzones based on ration of depth (H/D) with geometric adjacent degree A, or the stress ratio (R_b/σ_0) are put forward.
     4. By the use of 2D and 3D numerical simulation, centrifugal model experiment and in-situ test, the stress field, displacement field and the regularity of inner force are studied. And the control key and mechanics principles are indicated. Therefore, the classifying process of parameter in shield construction and classifying of countermeasures that correspond with the conventional adjacent degree are studied.
     5. In this dissertation, the driving of the shield is simulated by the method of dead and live element and the stiffness and load migration. The filling and hardening of inert fluid are simulated by the use of weak solid mass and gradually increasing the modulus of elasticity. And the pressure of injecting and the dissipation of the pressure are simulated by the expansion and contraction effect brought by temperature. The loss of soil in the ground in shield driving is simulated by the method of injecting and releasing certain amount of water contained in pockets. A three-dimensional finite element model is established in this dissertation to simulate the movement of the wheel load when the trains are vis-a-vis with each other, and the dynamic analysis with the interaction of solid and stricter is realized. This dissertation also uses the influence line method greatly to analyze the mechanical behavior of adjacent construction, and establishes a simplified model in plane based on the dynamic earth pressure of vault.
     6. Some conclusions about the shield tunnel cases and the universality study of three-pore tunnel were gained.
     This dissertation mainly deal with the research on synchronous adjacent situation of three parallel tunnel that constructed by shield, which geological conditions are similar with the project of R413. And in the aspect of influencing factors, only the influence of geometric adjacent degree and depth are researched. Much more work should be done type by type and factor by factor because of the great numbers of adjacent construction types and influence factors. For framing norms and guides to direct the design, construction and management, the index system of influencing subzone should be established and perfected as soon as possible by putting the emphasis on a few adjacent tunnel types that are in common use.
引文
[1] 仇文革.地下工程近接施工力学原理与对策研究[D].西南交通大学博士学位论文.2003.3
    [2] 郑余朝.地铁区间重叠隧道近接施工力学行为三维数值模拟[D].西南交通大学硕士学位论文.2000.3
    [3] 郑余朝,仇文革.重叠隧道结构内力演变的三维弹塑性数值模拟[J].西南交通大学学报.2006,41(169):376-380.
    [4] 陈卫军,朱中隆.近距离交叠隧道研究现状及评析[J].现代隧道技术.39(1).2002.12
    [5] 孙钧,刘洪洲.交叠隧道盾构法施工土体变形的三维数值模拟[J].同济大学学报,2002,30(4):643~646
    [6] 白廷辉,尤旭东,李文勇.盾构超近距离穿越地铁运营隧道的保护技术[J].地下空间.1999,19(4):311-318.
    [7] 张健儒.南京地铁某立交隧道近接施工技术[J].隧道建设.2003,5:
    [8] 周文波,吴惠明.观光隧道盾构叠交施工技术初探[J].中国市政工程.2002,4(100):20-23.
    [9] 仇文革等.三管软土地铁隧道近接施工控制技术研究[R].西南交通大学.成都:2006.3.
    [10] 王明年,李志业,关宝树.3孔小间距浅埋暗挖隧道地表沉降控制技术研究[J].岩土力学.2002,23(6):821-824.
    [11] 王明年,李志业,刘智成等.软弱围岩3孔小间距平行浅埋隧道施工力学研究[J].铁道建筑技术.2002,4:11-14.
    [12] 尼玉瀛.并行浅埋超薄间距隧道的施工[J].西部探矿工程.1999,11(2):58-59.
    [13] 黄拔洲,陈少华,秦峰.小净距隧道在京福高速公路上的实践[J].2003,26(10):19-22
    [14] 原郭兵,孟庆明.板桃隧道洞口段两超小净距隧道的施工[J].铁道标准设计.2003(增刊).
    [15] 张志强、何川.深圳地铁隧道邻接桩基施工力学行为研究[J].岩土工程力学报.25(2).2003.3
    [16] 袁先机.盾构隧道穿越土坝的地层沉降控制[J].合肥工业大学学 报.2003,26(5):1107-1110.
    [17] 洪开荣.盾构隧道穿越广州火车站站场的设计与施工[J].现代隧道技术.2002,39(6):34-37.
    [18] I.Yamaguchi,I.Yamazaki,Y.Kiritani.Study of ground-tunnel interaction four shield tunnels driven in close proximity, in relation to design and construction of shield tunnels[J]. Tunnelling and Underground Space Technology. 1998,16(3):289-304.
    [19] 曾小清,多孔隧道施工的研究进展[J],地下空间,1999,19(5),373-378
    [20] K.W.Lo,L.F.Leung,S.L.Lee.H.Makino,H.Tajima,Field Instrumenta-tion of a Multiple Tunnel Interaction Problem,Tunnels & Tunnelling,July, 1998
    [21] 铁道部.铁路隧道设计规范[S].中国铁道出版社.2000
    [22] 交通部.公路隧道设计规范[S].人民交通出版社.2004
    [23] 建设部.地下铁道设计规范[S].中国计划出版社.2003
    [24] 谢贻权,林钟祥,丁皓江.弹性力学[M].浙江大学出版社.1988
    [25] 熊祝华等.塑性力学[M].上海科学技术出版社.1984
    [26] 关宝树.隧道力学概论[M].西南交通大学出版社.1993
    [27] 樗木武.力学[M].共立出版株式会社.1977
    [28] H.卡斯特奈.隧道与坑道静力学[M].上海科学技术出版社.1980
    [29] 周顺华.开挖理论[M].中国铁道出版社.1999
    [30] г.Н.萨文.孔附近的应力集中[M].科学出版社.1978
    [31] C.B. Kooi, A.Verruijt. Interaction of circular holes in an infinite elastic medium. Tunnelling and Underground Space Technology. 2001(16) 59-62
    [32] Zimmerman, R.W., 1988. Second-order approximation for the compressionof an elastic plate containing a pair of circular holes.ZAMM 68: 575-577
    [33] J.S.Sharma A.M.Hefny.Effect of large excavation on deformation of adjacentMRT tunnels. Tunnelling and Underground Space Technology.2001 16:93-98
    [34] D. Wen, J. Poh, Y.W. Ng.Design considerations for bored tunnels at close proximity. Tunnelling and Underground Space Technology. 2004, 19:468-469.
    [35] Chi-Te Chang, Chieh-Wen Sun.Response of a Taipei Rapid Transit System TRTS tunnel to adjacent excavation. Tunnelling and Underground Space Technology. 2001,16:151-158.
    [36] M.Jao,M.C.Wang.Stability of stip footing above concrete-lined soft ground tunnels. Tunnelling and Underground Space Technology. 2003,13(4): 427-434
    [37] H. Mroueh, I. Shahrour.A full 3-D finite element analysis of tunneling-adjacent structures interaction.Computers and Geotechnics. 2003,30: 245-253.
    [38] H.S. Shin, C.Y. Kim, K.Y. Kim, G.J. Bae, S.W. Hong.A new strategy for monitoring of adjacent structures to tunnel construction in urban area. Tunnelling and Underground Space Technology. 2006,21:461-462.
    [39] Y.J.Lee, C.S.Yoo.Behaviour of a bored tunnel adjacent to a line of loaded piles. Tunnelling and Underground Space Technology.2006.21:370
    [40] 刘建航,候学渊.盾构法隧道[M].北京:中国铁道出版社,1991
    [41] 张凤祥、朱合华、傅德明.盾构隧道[M].人民交通出版社.2004
    [42] 关宝树译.盾构推进中的地层变异[M].内部资料.
    [43] 日本土木学会编,朱伟译.隧道标准规范(盾构篇)及解说[M].北京:中国建筑工业出版社.2001.11.
    [44] 铁道综合技衍研究所.既设近接施工对策[M].日本:铁道综合技衍研究所.平成8年9月
    [45] 设计要领(1)本体保全(近接施工)平成10年10月
    [46] 上原精治、土居洋一.近接衲助工法研究.住友建设株式会社技衍研究所所报No.18.1991
    [47] 同本技衍協会.近接施工课题对应.施工体验发表会Vol.31.1992
    [48] 高传贤.用浅埋暗挖法施工下穿铁路的电缆隧道[J].铁道建筑.2001,9:45-47.
    [49] 叶超明,郑智军,陈小满.拾荷隧道下穿铁路段设计与施工技术要点[J].重庆交通学院学报.2001,20(2):106-109.
    [50] 孙建平.八米塬隧道下穿既有铁路安全施工技术[J].铁道标准设计.2004,6:91-93.
    [51] 西南交通大学.国电大渡河深溪沟电站运碴隧道下穿成昆铁路长河坝车站技术安全性评估报告[R].西南交通大学.2004.10.
    [52] 西南交通大学.新马电站取水口下穿成昆铁路引水隧洞结构安全评估报告[R].西南交通大学.2004.10.
    [53] 段恩新.高限速下非标准D型便梁的应用及监测[J].铁道建 筑.2004,8:24-26.
    [54] 王宏坤.多孔小角度斜交框架桥的顶进施工[J].铁道建筑.2003,8:9-11.
    [55] 游励晖.道路下穿既有铁路箱形框架桥顶进法施工技术[J].铁道标准设计.2004,9:49-59.
    [56] 郭玉梅.盾构穿越铁路的沉降综合控制技术[J].市政技术.2003,21(4):203-207.
    [57] 丛恩伟.并行双洞小净距公路隧道施工技术[J].铁道标准设计.2003.10:71-74
    [58] 赖德良.金旗山小净距隧道施工技术探讨[J].华东公路.2003,140:32-37.
    [59] 黄波.小净距隧道施工技术要点[J].公路.2003,12:132-136.
    [60] 刘洪伟,李建华.交叉口段相邻隧道施工方法及稳定性分析[J].西部探矿工程.2001,68:56-57.
    [61] 吴焕通.小间距地铁区间隧道施工工序模拟分析[J].现代隧道技术.2002,39(5):32-35.
    [62] Yuchao Zheng & Wenge Qiu. 3-D FEM Analysis of Closely Spaced Vertical Twin Tunnel. ITA2005WTC,Proceedings. Balkama Press.
    [63] 白廷辉.江中段近距离盾构施工相互影响及治理[J].上海建设科技.1999.
    [64] 况龙川,李智敏,殷宗泽.地下工程施工影响地铁隧道的实测分析[J].清华大学学报.2000,40(S1).
    [65] 先明其,译.在住宅稠密地区开挖浅埋大断面双孔平行隧道—横滨市二环线港南隧道(临时名称)[J].隧道译丛.1994,8:1-9.
    [66] 王建宇.隧道工程监测和信息化设计原理[M].北京:中国铁道出版社,1990.
    [67] Peck R B. Deep excavations and tunneling in soft ground[A]. Proceedings Of the 7th International Conference on soil Mechanics and Foundation Engineering[C].Mexico City: State of the Art Volume, 1969.225-290.
    [68] 阳军生,刘宝琛.城市隧道施工引起的地表移动及变形[M].中国铁道出版社.2002.
    [69] 方江华,刘海燕,姜玉松.盾构掘进法丌挖隧道对地表沉降影响的预估[J].安徽理工大学学报.2004,24(S):36-40
    [70] Fino G J,Clough G W.Evaluation of soil response to EPB shield tunnelling[J].Journal of Geotechnical Engineering, 1985,115(2): 155-173.
    [71] Attewell P.B,Years J.and Selby A.R.Soil movements induced by tunnelling and effects on pipelines and structures,Blackie and Son, London,1981.
    [72] M.P.O'Reilly,B.M.New,Settlement above tunnels in the UK of their magnitude and prediction,Tunnling'82,1982.173-181.
    [73] 卓发成.广州地铁隧道施工对地表建(构)筑物影响研究[D].北京:中国矿业大学,2002.
    [74] 侯学渊,廖少明.盾构隧道沉降预估[J].地下工程与隧道,1993(4):24-32.
    [75] Fang Y S,Lin S J.Time and settlement in EPB shield tunneling[J]. Tunnel and tunneling, 1993,134(11):27-28.
    [76] 李桂花.盾构法施工引起的地表沉陷估算方法[J].同济大学学报,1984,12(2):20-22.
    [77] 刘宝琛,林德瘴.浅部隧道开挖引起的地表移动及变形[J].地下工程,1983(7):1-7.
    [78] 刘宝琛,张家生.近地表开挖引起的地表沉降的随机介质方法[J].岩石力学与工程学报1995,14(4):289-296
    [79] 朱忠隆,张庆贺,易宏传.软土隧道纵向地表沉降的随机预测方法[J].岩土力学.2001,22(1):56-59.
    [80] 田尚志.深圳地铁重叠隧道的模型试验研究[D].成都:西南交通大学土木工程学院.2000.
    [81] 包承纲,饶锡保.土工离心模型的试验原理[J].长江科学院院报.1998,15(2):2~5.
    [82] 周小文,濮家骝,包承钢.隧洞拱冠砂土位移与破坏的离心模型试验研究[J].岩土力学.1999,20(2):32~36.
    [83] 周小文,濮家骝.隧洞结构受力及变形特征的离心模型试验研究[J].清华大学学报.2001,41(8):110~113
    [84] 马亮,高波.隧道施工地表沉降控制的离心模型试验[J].施工技术。2005,34(6),6-8。
    [85] 吴波,刘维宁,高波等.深圳地铁区间隧道富水地层非降水施工技术研究[J].土木工程学报.2004,37(4):93~98.
    [86] Takao Shimada et al,隧道开挖中的地表F沉模型试验,隧道详丛,1983(1)
    [87] T.Kimura,R.J.Meir,Centrigugal testing of model tunnels in soft clay[J],Proc. Of 10th Int. Conf. Soil mechanics & Foundation Engineering, Stockholm, Balkema.1981.
    [88] 周文波.盾构法隧道施工对周围环境影响和防治的专家系统[J].地下工程与隧道,1993,(4):120~138.
    [89] 周文波,吴惠明.盾构法隧道施工智能化辅助决策系统[J].城市道桥与防洪.2004,1:65-71.
    [90] 李建华.盾构法隧道施工引起地层移动的随机理论预测[D].上海:同济大学,1995.
    [91] 黄修云,曹国安,张青.人工神经网络在地下工程预测中的应用[J].北方交通大学学报,1998,22(1):39-43.
    [92] 王穗辉,潘国荣.人工神经网络在隧道地表变形预测中的应用[J].同济大学学报,2001,29(10):1147-1152.
    [93] Yeh-Cheng.Application of neural networks to automatic pressure balance control for shield tunneling[J].Automation in Construction, 1997,5(5):421~426.
    [94] Shi Jinsheng,Ortigao J A R, Bai Junli. Modular neural net works for predicting settlements during tunneling[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE, 1998,124(5):389-395.
    [95] 安红刚,胡向东,赵永辉.软土盾构施工地表变形的小样本进化神经网络预测[J].岩土力学.2003,24(S):43-47.
    [96] 孙钧,袁金荣.盾构施工扰动与地层移动及其智能神经网络预测.岩土工程学报.2001,23(3).
    [97] Ito T,Hisatake M.Three dimensional surface subsidence caused by tunnel driving[A].In:Balke ma A Z.Processings of the Fourth International Conference on Numerical Methods in Gomethanicals[C].Rotterdam. 1982:551-559.
    [98] Lee K M, Rowe R K. Finite element modeling of the three-dimensional ground deformations due to tunnelling in son cohesive soils: pant Ⅰ -method of analysis[J]. Computers and Geotechnics, 1990, (10): 87-109.
    [99] Lee K M, Rowe R K. Finite element modelling of the three-dimensional ground deformations due to tunnelling in soft cohesive soils: part Ⅱ-results[J]. Computers and Geotechnics, 1990. 10:111-138.
    [100] Lee K M,Rowe K.Analysis of three-dimensional ground movements:the Thunder Bay tunnel[J].Can Geotech J, 1991,28(1):25-41.
    [101] Rowe R.K.,Lee K.M.,An evaluation of simplified techniques for estimating three-dimensional undrained ground movements due to tunneling in soft soils.Can.Geotech.J. 1992,29:39-52
    [102] 孙钧.地下工程理论与实践[M].上海:上海科学技术出版社.1996.
    [103] 张冬梅,黄宏伟,王箭明.盾构推进引起地面沉降的粘弹性分析[J].岩石力学,2001,22(3):311~314.
    [104] 刘洪洲,孙钓.软土隧道盾构推进中地面沉降影响因素的数值法研究[J].现代隧道技术.2001,38(6):24-28.
    [105] 孙钧,刘洪洲.交叠隧道盾构法施工土体变形的三维数值模拟[J].同济大学学报.2002,30(4):379-385.
    [106] 蒋正华,吴波,高波.地铁区间隧道施工对管线影响的数值模拟[J].2003,40(1):16-20.
    [107] 于宁,朱合华.盾构隧道施工地表变形分析与三维有限元模拟[J].岩土力学.2004,25(8):1330-1334.
    [108] 张志强,何川,佘才高.南京地铁盾构掘进施工的三维有限元仿真分析[J].铁道学报.2005,27(1):84-89.
    [109] 王铁生,张利平,华锡生.地铁隧道施工变形预测研究综述[J].水利水电科技进展.2003,23(5):
    [110] 翟婉明.车辆-轨道耦合动力学[M].北京:中国铁道出版社,1997.9-71.
    [111] 潘昌实,Pande G N.黄土隧道列车动荷载响应有限元初步数定分析研究[J].土木工程学报,1984,17(4):19—28.
    [112] 梁波,蔡英.不平顺条件下高速铁路路基的动力分析[J].Vol.21.No.2.1999.4
    [113] 李军世,李克钏.高速铁路路基动力反应的有限元分析[J].铁道学报,1995,17(1):66—75
    [114] 刘维宁,夏禾,郭文军.地铁列车振动的环境响应[J].岩石力学与工程学报.1996.S1期
    [115] 刘维宁,张昀青.轨道结构在移动荷载作用下的周期解析解[J].工程力学.2004.05期
    [116] 罗雁云 移动载荷作用下铁路柔性道口板动力分析[J].上海铁道大学学报.1998.06
    [117] Rucker, W.Measurement and evaluation of random vibration,, Proc.DMSR 77/Karlsruhe. 1977,1:407-421
    [118] 潘昌实,谢正光.地铁区间隧道列车振动测试与分析[J].土木工程学报.1990.02期
    [119] Balendra T, Koh C G, Ho Y C. Dynamic response of buildings due to tains in underground tunnel[J].Earthquake Engineering and Structural Dynamics, 1991, 20: 275-291.
    [120] 潘昌实,谢正光.北京地铁列车振动对环境影响的探讨[J].振动与冲击.1995.04
    [121] 潘昌实,刘维宁.隧道列车振动试验与动态分析[J].兰州铁道学院学报,1985,4(2)
    [122] 李德武,高峰.金家岩隧道列车振动现场测试与分析[J].兰州铁道学院学报.Vol.16.No.3.1997.9
    [123] 张玉娥.地铁列车振动对隧道结构激振荷载的模拟[J].振动与冲击.Vol.19.No.3.2000
    [124] 夏禾,吴萱,于大明.城市轨道交通系统引起的环境振动问题[J].北方交通大学学报.Vol.23.No.4.1999.8
    [125] 李志斌.列车运行对民宅影响的测试与分析[J].华南地震.Vol.23.No.1.2003.3
    [126] 陈卫军,张璞.列车动载作用下交叠隧道动力响应数值模拟[J].岩土力学.2002,23(6):770-774.
    [127] 张璞.列车振动荷载作用下上下近距离地铁区间交叠隧道的动力响应分析[D].同济大学博士学位论文.2001.8.
    [128] Toki.Unified formulation of radiation conditions for the wave equation.International Journal for Numerical Methods in Engineering. 2002,53(2):275-95
    [129] Sato..Infinite elements in quasi-static materially nonlinear problems, Comput-ers and Structures 1983; 18(4):739-751
    [130] 曾三平,曹志远.计入结构.介质动力相互作用的地下结构抗爆计算[J].爆炸与冲击.1985(1).
    [131] E.soliman,H.Duddeck and H.Ahrens,Two and Threedimensional Ana-lysis of Closely Spaced Double-tube Tunnels,Tunnelling and Underground Space Technology, 1993,Vol.8,No. 1.13-18
    [132] K. W . Lo, L. K Chong, L. P Leung, s L lee. H Makinn. H Tajima. Field Instrumentation of a Multiple Tunnel Interaction Problem, Tunnels & Tunnelling, July, 1998
    [133] Takeshi Asano, Mototsugu Ishihara, Yasuaki Kiyota. An observational excavation control method for adjacent mountain tunnels.Tunnelling and Underground Space Technology. 2003,18: 291-301
    [134] M.I. Junica, K. Aoki, K. Iwai, M. Shinji, K. Nakagawa.The assessment of influences on ground due to 2nd tunnel excavation based on 1st tunnel excavation. Tunnelling and Underground Space Technology. 2004, 19:442
    [135] 王景春,殷杰.相邻隧道中心距的研究.石家庄铁道学院学报[J].1995,8(2):109-114.
    [136] 曾小清,张庆贺,曹志远.地铁工程双线盾构平行推进的相互作用[J].同济大学学报.1997,25(4):
    [137] 万明富.隧道围岩净距讨论与小净距隧道研究[J].公路.2000,7:55-58
    [138] 刘艳青等.小净距并行隧道力学状态的试验研究[J].岩石力学与工程学报.19(5).2000.9
    [139] 李强,曾德顺.盾构施工中垂直交叉隧道变形的三维有限元分析[J].2001,22(3):334-338.
    [140] 胡元芳.小线间距城市双线隧道围岩稳定性分析[J].岩石力学与工程学报.2002,21(9):1335~1338
    [141] 刘伟,靳晓光,陈少华.高速公路小净距隧道合理净距的探讨[J].地下空间.2004,24(3):380-386.
    [142] 仇文革等.深圳地铁一期工程重叠隧道技术研究报告[R].西南交通大学.1999
    [143] 仇文革等.深圳地铁重叠隧道近接施工影响的数值模拟分析[J].铁道标准设计.2000.6
    [144] 仇文革等.深圳地铁重叠隧道平面应变模型试验研究[A].地下铁道文集.1999.12
    [145] 仇文革等.地铁区间重叠隧道临桩施工的相互影响分析[J].工程力学.2000增刊.
    [146] 仇文革等.基于数值模拟计算的地铁区间重叠交错隧道工法优化分析[J].施工技术.2000,1
    [147] 陈先国,高波.地铁近距离平行隧道有限元数值模拟[J].岩石力学与工程学报.2002,21(9):1330-1334.
    [148] 张志强,何川.南京地铁区间盾构隧道“下穿”玄武湖公路隧道施工的关键技术研究[J].岩土力学.2005,26{11}:1711-1716.
    [149] 关宝树.隧道工程维修要点集[M].人民交通出版社.北京:1993
    [150] 铁道部.既有铁路桥隧构筑物劣化评定标准.中国铁道出版社.北京: 1998
    [151] 范锡盛等.建筑物改造和维修加固新技术[M].中国建材工业出版社.1999
    [152] 交通部.公路隧道养护技术规范.人民交通出版社.北京:2003
    [153] 朱合华,丁文其,地下结构施工过程的动态仿真模拟分析[J],岩石力学与工程学报,1999,18(5),558-562
    [154] 郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社.2002.
    [155] 徐凌,黄宏伟,严佳梁,等.盾构隧道纵向有效刚度研究[J].第三届中日盾构年会论文集.2006.
    [156] Thomas Kasper, Gunther Meschke. On the influence of face pressure, grouting pressure and TBM design in soft ground tunneling[J]. Tunnelling and Underground Space Technology. 2006, 21:160~171.
    [157] S. Bernat & B. Cambou. Soil-structure Interaction in Shield Tunnelling in Soft Soil[J]. Computers and Geotechnics. 1998, 22: 221~242.
    [158] 李树锋.三管并行盾构隧道的离心模型试验研究[D].硕士学位论文.成都:西南交通大学,2006.
    [159] 沈培良,张海波,殷宗泽.上海地区地铁隧道盾构施工地面沉降分析[J].河海大学学报.2003,31(5):556-559.
    [160] 周顺华.三孔盾构隧道下穿铁路技术方案研究[R].上海同济大学.2005.
    [161] 龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000.
    [162] 潘昌实.隧道力学数值方法[M].中国铁道出版社.1995
    [163] 王余龙.在既有铁路列车动力影响下的三管盾构隧道力学行为及对策研究[D].硕士学位论文.成都:西南交通大学,2006.
    [164] 雷震宇,周顺华,许恺.列车动荷载对下立交结构的影响分析[J].岩石力学与工程学报.2004.23(20):3536~3540
    [165] 唐益群,黄雨,叶为民,王艳玲.地铁列车荷载作用下隧道周围土体的临界动应力比和动应变分析[J].岩石力学与工程学报.2003.22(9):1566-570
    [166] 铁道部.铁道车辆动力学性能评定和试验鉴定规范[S].铁道出版社.
    [167] 张玉娥,白宝鸿.高速铁路隧道列车振动响应数值分析方法[J].振动与冲击.2001.20(3)91-93
    [168] 高峰,关宝树.隧道地震反应分析中几种边界条件的比较[J].甘肃科 学学报.2004,16(1):109-112.
    [169] 李林.盾构隧道下穿既有铁路信息化施工技术研究[D].硕士学位论文.成都:西南交通大学,2006.
    [170] 曾桅栋.深圳地铁重叠隧道信息化施工技术研究[D].硕士学位论文.成都:西南交通大学,2003
    [171] 龚伦.公路山岭隧道信息化施工技术研究[D].硕士学位论文.成都:西南交通大学,2005.
    [172] 吕康成.隧道工程试验检测技术[M].人民交通出版社.2000
    [173] 黄声享,尹晖,蒋征.变形监测数据处理[M].武汉大学出版社
    [174] 建设部.混凝土结构设计规范[S](GB50010-2002).北京:建筑科学出版社;
    [175] 王祖化,陈眼云 编.混凝土结构与砌体结构[M].广州:华南理工大学出版社.1996.2.
    [176] 闻毓民.两孔平行盾构隧道近接施工的力学行为分析[D].硕士学位论文.成都:西南交通大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700