用户名: 密码: 验证码:
新型有机分子导线的合成及分子电导性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去二十年中,分子电子学得到了长足的发展,研究有机分子内的电子输运性质成为近年来研究的热点。通过构建金属/有机分子/金属的分子结来表征有机分子的电学性质成为分子电子学领域广泛接受的表征手段。然而,单分子纳米结的构筑与电学性质测量仍然是一个非常具有挑战性的课题,存在许多技术难点与科学问题有待解决。
     本文以研究有机分子导线的电学性质为口的,首先搭建了两套适用于纳米尺度电学性质研究的测量系统,同时设计合成了两个系列的新型有机分子导线,进而研究了这些分子导线在双电极体系分子结中的电子输运性能。取得了以下成果:
     ●完成了适用于有机分子导线电学性质研究的高灵敏度的电学测试系统。包括用于表征单分子电导的STM断裂结系统,和用于表征单分子自组装薄膜I-Ⅴ特性的十字交叉隧道结系统。
     ●设计并合成了一系列绝缘树状分子包覆的oligo(phenylene ethynlene) OPE共轭骨架的“核-壳”结构的分子导线,并研究了外层树状分子的结构对分子导线电学性质的影响。采用各种光谱、能谱、电化学技术进行对以上分子导线的自组装单分子膜进行了表征,发现随着外围树状分了代数的增加,自组装薄膜的表面覆盖度和有序性下降。采用“十字交叉隧道结”,“扫描隧道谱”和“STM断裂结”三种技术对分子导线的电子传输性质进行了表征。结果表明“核-壳”结构分子导线的外围树状分子有可以效地将OPE共轭骨架间隔开来,避免了π-π相互作用的影响。同时通过改变外围接枝树状分了的代数,可以在分子尺度上调控OPE骨架间的间距。
     ●设计并合成了一系列新型的OPE类分子导线,通过调节分子学线中的联苯结构的二面角可以调控分子导线的共轭程度。采用STM断裂结技术对其电子输运性质进行了表征,研究表明分子导线中的电子传输机理为电子隧穿(tunneling)机制,同时发现分子导线的电导与其联苯结构的二面角的cos2θ呈线性关系。应用第一性原理和非平衡态格林函数对该系列分子的电子输运性质进行了理论模拟,验证了实验测量的可靠性。
The pursuit of molecular electronics has created an increasing interest in the electrical measurement of single molecule in past decades. Understanding the electron transport properties in metal/molecule/metal junctions is an important step towards using individual molecules as building blocks for electronic devices. However, the fabrication and measurement of single molecule junction are still very challenging today due to many technical difficulties.
     This thesis aims to understand the electron transport mechanism in various organic molecular wires by studying their molecular conductance in metal/molecule/metal junctions. We firstly set up two measurement systems capable of conducting electrical measurements in nano-scale junctions, including STM break junction and crossed-wire junction. Meanwhile, we design two series of novel molecular wires and investigated the electron transport properties in these molecular wires.
     The main results of the thesis are listed as following:
     ●We have successfully setup two highly sensitive electrical measurement systems, including a STM break junction system for measuring single molecule conductance and a crossed-wire junction system for measuring 1-V curves of self-assembled monolayers (SAMs).
     ●An systematic electron transport investigation on a series of "core-shell" structured oligo(phenylene ethynylene)s (OPEs) molecular wires has been conducted. By using dendrimers of different generations as insulating "shells", the intermolecularπ-πinteractions between the OPE "cores" can be precisely controlled in single component monolayers. Three techniques were used to evaluate the electron transport properties of the Metal/Molecule/Metal molecular junctions, including crossed-wire junction, scanning tunneling spectroscopy (STS), and scanning tunneling microscope (STM) break junction techniques. STM break junction measurement reveals that the electron transport pathways are strongly affected by the size of the side groups. We demonstrated that using different generation dendrimer groups as shells not only allows tailoring the molecular packing density, but also enables a good control to the intermolecular interaction and electron transport pathways.
     ●A study of electron transport in a series of conformation controlled OPE molecular wires by STM break junction has been reported. We find that the conductance for these molecular wires decreases with the increasing twist angle consistent with a cosine-squared relation. To gain further understanding of the electron transport in these molecular wires, we applied an ab-initio calculation with the first-principle package ATK to simulate the molecular wires electrical properties, which is based on DFT and NEGF technology. The calculated results are in good agreement with the experimental results.
引文
1.白春礼.分子科学前沿.科学出版社:2007年.
    2. Aviram, A.; Ratner, M. A., "Molecular rectifiers." Chem. Phys. Lett.1974,29 (2),277-283.
    3. Service, R. F., "Molecules Get Wired." Science 2001,294 (5551),2442-2443.
    4. Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.; Burgin, T. P.; Jones, L.; Allara, D. L. Tour, J. M.; Weiss, P. S., "Are Single Molecular Wires Conducting?" Science 1996,271 (5256),1705-1707.
    5. Kergueris, C.; Bourgoin. J. P.; Palacin, S.; Esteve, D.; Urbina, C.; Magoga, M.; Joachim, C. "Electron transport through a metal-molecule-metal junction."Physical Review B 1999,59 (19),12505.
    6. Magoga, M.; Joachim, C., "Minimal attenuation for tunneling through a molecular wire.' Physical Review B 1998,57 (3),1820.
    7. Langlais, V. J.; Schlittler, R. R.; Tang, H.; Gourdon, A.; Joachim, C; Gimzewski, J. K., "Spatially Resolved Tunneling along a Molecular Wire." Phys. Rev. Lett.1999,83 (14),2809.
    8. Fraysse, S.; Coudret, C.; Launay, J.-P., "Synthesis and Properties of Dinuclear Complexes with a Photochromic Bridge:An Intervalence Electron Transfer Switching "On" and "Off". Eur. J. Inorg. Chem.2000,2000 (7),1581-1590.
    9. Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddart, J. F., "A chemically and electrochemically switchable molecular shuttle." Nature 1994,369 (6476),133-137.
    10. Metzger, R. M., "Unimolecular Electrical Rectifiers." Chem. Rev. (Washington, DC, U. S.) 2003,103(9),3803-3834.
    11. Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A., "Magnetic bistability in a metal-ion cluster." Nature 1993,365 (6442),141-143.
    12. Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M., "Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device." Science 1999,286 (5444), 1550-1552.
    13. Tour, J. M.; Wu, R.; Schumm, J. S., "Extended orthogonally fused conducting oligomers for molecular electronic devices." J. Am. Chem. Soc.1991,113 (18),7064-7066.
    14. Joachim, C.; Gimzewski, J. K.; Aviram, A., "Electronics using hybrid-molecular and mono-molecular devices." Nature 2000,408 (6812),541-548.
    15. Xu, B., "Modulating the Conductance of a Au-octanedithiol-Au Molecular Junction." Small 2007, 3 (12),2061-2065.
    16. Mishchenko, A.; Vonlanthen, D.; Meded, V.; Burkle, M.; Li, C.; Pobelov, I. V.; Bagrets, A.; Viljas, J. K.; Pauly, F.; Evers, F.; Mayor, M.; Wandlowski, T., "Influence of Conformation on Conductance of Biphenyl-Dithiol Single-Molecule Contacts." Nano Lett.2009,10 (1), 156-163.
    17. Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. "Dependence of single-molecule junction conductance on molecular conformation." Nature 2006,442 (7105),904-907.
    18. Mishchenko, A.; Zotti, L. A.; Vonlanthen, D.; Biirkle, M.; Pauly. F.; Cuevas. J. C.; Mayor. M.; Wandlowski. T., "Single-Molecule Junctions Based on Nitrile-Terminated Biphenyls:A Promising New Anchoring Group." J. Am. Chem. Soc.2010,133 (2).184-187.
    19. (a) Datta, S.;Tian. W.; Hong, S.; Reifenberger. R.; Henderson, J. I.; Kubiak, C. P., "Current-Voltage Characteristics of Self-Assembled Monolayers by Scanning Tunneling Microscopy." Phys. Rev. Lett.1997,79 (13),2530:(b) Gimzewski, J. K.;Joachim, C., "Nanoscale Science of Single Molecules Using Local Probes." Science 1999,283 (5408). 1683-1688.
    20. (a) Wold, D. J.; Frisbie, C. D., "Formation of metal-molecule-metal tunnel junctions: Microcontacts to alkanethiol monolayers with a conducting AFM tip." J. Am. Chem. Soc. 2000,122 (12),2970-2971; (b) Fan, F. R. F.; Yang, J. P.; Cai, L. T.; Price, D. W.; Dirk, S. M.; Kosynkin, D. V.; Yao, Y. X.; Rawlett, A. M.; Tour, J. M.; Bard, A. J., "Charge transport through self-assembled monolayers of compounds of interest in molecular electronics."J. Am. Chem. Soc.2002,124(19),5550-5560.
    21. Lewis, P. A.; Inman, C. E.; Yao, Y.:Tour, J. M.; Hutchison. J. E.; Weiss, P. S., "Mediating Stochastic Switching of Single Molecules Using Chemical Functionality." J. Am. Chem. Soc. 2004,126(39),12214-12215.
    22. (a) Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.;Lindsay, S. M., "Reproducible measurement of single-molecule conductivity." Science 2001,294,571; (b) Cui, X. D.; Zarate. X.; Tomfohr, J.; Sankey, O. F.; Primak, A.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M., "Making electrical contacts to molecular monolayers." Nanotechnology 2002,13,5; (c) Rawlett, A. M.; Hopson, T. J.; Nagahara, L. A.; Tsui, R. K.; Ramachandran, G. K.; Lindsay, S. M., "Electrical measurements of a dithiolated electronic molecule via conducting atomic force microscopy." Appl. Phys. Lett.2002,81,3043.
    23. (a) Moreland, J.; Ekin, J. W., "Electron tunneling experiments using Nb-Sn "break" junctions." J. Appl. Phys.1985,58 (10),3888-3895; (b) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M., "Conductance of a Molecular Junction." Science 1997,278 (5336), 252-254.
    24. Xu, B.; Tao, N. J., "Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions." Science 2003,301 (5637),1221-1223.
    25. Xu, B.; Xiao, X.; Tao, N. J., "Measurements of Single-Molecule Electromechanical Properties." J. Am. Chem. Soc.2003,125,16164.
    26. Lee, T.; Wang, W.; Klemic, J. F.; Zhang, J. J.; Su, J.; Reed, M. A., "Comparison of Electronic Transport Characterization Methods for Alkanethiol Self-Assembled Monolayerst." The Journal of Physical Chemistry B 2004,108 (25),8742-8750.
    27. (a) Kushmerick, J. G.; Holt, D. B.; Pollack, S. K.; Ratner, M. A.; Yang, J. C.; Schull, T. L. Naciri, J.; Martin H. Moore; Shashidhar, R., "Effect of Bond-Length Alternation in Molecular Wires." J. AM. CHEM. SOC.2002,124,10654; (b) J.G., K.; J., N.; C., Y. J.; R., S., "Conductance Scaling of Molecular Wires in Parallel." Nano. Lett.2003,3,897; (c) Kim, B.; Beebe, J. M.; Olivier, C.I.; Rigaut, S. p.; Touchard, D.; Kushmerick, J. G.; X.-Y. Zhu; Frisbie, C. D., "Temperature and Length Dependence of Charge Transport in Redox-Active Molecular Wires Incorporating Ruthenium(Ⅱ) Bis(arylacetylide) Complexes." J. Phys. Chem. C 2007, 111,7521; (d) Seferos, D. S.; Trammell, S. A.; Bazan, G. C.; Kushmerick. J. G., "Probing coupling in molecular junctions." PNAS 2005,102,8821.
    28. Chen, X.;Jeon, Y.-M.; Jang, J.-W.; Qin, L.; Huo, F.; Wei, W.; Mirkin. C. A., "On-Wire Lithography-Generated Molecule-Based Transport Junctions:A New Testbed for Molecular Electronics." Journal of the American Chemical Society 2008,130 (26),8166-8168.
    29. Loo, Y.-L.; Lang, D. V.; Rogers, J. A.; Hsu, J. W. P., "Electrical Contacts to Molecular Layers by Nanotransfer Printing." Nano Letters 2003,3(7),913-917.
    30. Akkerman, H. B.; Blom, P. W. M.; de Leeuw, D. M.; de Boer, B., "Towards molecular electronics with large-area molecular junctions." Nature 2006,441 (7089),69-72.
    31. Feldman, A. K.; Steigerwald, M. L.; Guo, X.; Nuckolls, C., "Molecular Electronic Devices Based on Single-Walled Carbon Nanotube Electrodes." Accounts of Chemical Research 2008, 47(12),1731-1741.
    1. Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E., "Surface Studies by Scanning Tunneling Microscopy." Phys. Rev. Lett.1982,49(1),57.
    2. Binnig, G.;Quate, C. F.; Gerber, C., "Atomic Force Microscope." Phys. Rev. Lett.1986,56 (9), 930.
    3. Briggs, D.; Seah, M. P., In Practical Surface Analysis (Second Edition), Volume 1:Auger and X-ray Photoelectron Spectroscopy, John Wiley & Sons:1992.
    4.翁诗甫,傅里叶变换红外光谱分析(第二版).化学工业出版社:2010.
    5.杨序纲;吴琪琳,拉曼光谱的分析与应用.国防工业出版社:2008.
    6.藤岛昭(日)著;陈震;姚建年;译,电化学测定方法.北京大学出版社:1995.
    1. (a) Datta, S.; Tian, W.; Hong, S.; Reifenberger, R.; Henderson, J.I.; Kubiak, C. P., "Current-Voltage Characteristics of Self-Assembled Monolayers by Scanning Tunneling Microscopy." Phys. Rev. Lett.1997,79 (13),2530; (b) Gimzewski, J. K.; Joachim, C.. "Nanoscale Science of Single Molecules Using Local Probes." Science 1999,283 (5408). 1683-1688; (c) Wold, D. J.; Frisbie, C. D., "Formation of metal-molecule-metal tunnel junctions:Microcontacts to alkanethiol monolayers with a conducting AFM tip." J. Am. Chem. Soc.2000,122 (12).2970-2971; (d) Fan, F. R. F.; Yang, J. P.; Cai, L. T.; Price, D. W.; Dirk, S. M.; Kosynkin, D. V.; Yao, Y. X.; Rawlett, A. M.; Tour, J. M.; Bard, A. J., "Charge transport through self-assembled monolayers of compounds of interest in molecular electronics."J. Am. Chem. Soc.2002,124 (19),5550-5560.
    2. (a) Moreland, J.; Ekin, J. W., "Electron tunneling experiments using Nb-Sn "break" junctions." J. Appl. Phys.1985,58 (10),3888-3895; (b) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M., "Conductance of a Molecular Junction." Science 1997,278 (5336), 252-254; (c) Xu, B.; Tao, N. J., "Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions." Science 2003,301 (5637),1221-1223; (d) Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L., "Dependence of single-molecule junction conductance on molecular conformation." Nature 2006,442 (7105), 904-907.
    3. (a) Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M., "Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device." Science 1999,286 (5444), 1550-1552; (b) Petta, J. R.; Slater, S. K.; Ralph, D. C., "Spin-Dependent Transport in Molecular Tunnel Junctions." Phys. Rev. Lett.2004,93(13).136601.
    4. (a) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R., "A [2]Catenane-Based Solid State Electronically Reconfigurable Switch." Science 2000,289 (5482),1172-1175; (b) Kushmerick, J. G.; Holt, D. B.; Pollack, S. K.; Ratner, M. A.; Yang, J. C.; Schull, T. L.; Naciri, J.; Moore, M. H.; Shashidhar, R., "Effect of Bond-Length Alternation in Molecular Wires." J. Am. Chem. Soc. 2002,124 (36),10654-10655; (c) Stewart, D. R.; Ohlberg, D. A. A.; Beck, P. A.; Chen, Y.; Williams, R. S.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F., "Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices." Nano Lett.2003,4 (1),133-136.
    5. Loo, Y.-L.; Lang, D. V.; Rogers, J. A.; Hsu, J. W. P., "Electrical Contacts to Molecular Layers by Nanotransfer Printing." Nano Letters 2003,3 (7),913-917.
    6. Kushmerick, J. G.; Naciri, J.; Yang, J. C.; Shashidhar, R., "Conductance Scaling of Molecular Wires in Parallel." Nano Lett.2003,3 (7),897-900.
    7. Gregory, S., "Inelastic tunneling spectroscopy and single-electron tunneling in an adjustable microscopic tunnel junction." Phys. Rev. Lett.1990,64 (6),689.
    8. Cai, L.; Yao, Y.; Price, D. W.; Tour, J. M., Chem. Mater.
    1. James, D. K.; Tour, J. M.. "Electrical Measurements in Molecular Electronics." Chem. Mater. 2004,16(23),4423-4435.
    2. (a) Metzger, R. M., "Electrical Rectification by a Molecule:The Advent of Unimolecular Electronic Devices." Acc. Chem. Res.1999,32 (11),950-957; (b) Adams, D. M.; Brus, L. Chidsey, C. E. D.; Creager, S.; Creutz, C.;Kagan. C. R.; Kamat, P. V.; Lieberman, M.; Lindsay, S.; Marcus, R. A.; Metzger, R. M.; Michel-Beyerle, M. E.; Miller, J. R.; Newton, M. D.; Rolison. D. R.; Sankey. O.; Schanze, K. S.;Yardley, J.; Zhu, X., "Charge Transfer on the Nanoscale:Current Status." J. Phys. Chem. B 2003,107 (28),6668-6697; (c) Metzger. R. M., "Unimolecular Electrical Rectifiers." Chem. Rev.2003,103 (9),3803-3834.
    3. (a) Goldhaber-Gordon, D.; Montemerlo, M. S.; Love, J. C.; Opiteck. G. J.; Ellenbogen, J. C., "Overview of nanoelectronic devices." Proc. IEEE 1997,85 (4),521-540; (b) Hush, N. S., An overview of the first half-century of molecular electronics. In Molecular Electronics lii, New York Acad Sciences:New York,2003; Vol.1006, pp 1-20; (c) Metzger, R. M., "Unimolecular electronics." J. Meter. Chem.2008,18 (37),4364-4396.
    4. (a) Datta, S.; Tian, W.; Hong, S.; Reifenberger, R.; Henderson, J. I.; Kubiak, C. P., "Current-Voltage Characteristics of Self-Assembled Monolayers by Scanning Tunneling Microscopy." Phys. Rev. Lett.1997,79 (13),2530; (b) Gimzewski, J. K.; Joachim, C., "Nanoscale Science of Single Molecules Using Local Probes." Science 1999,283 (5408), 1683-1688.
    5. (a) Wold, D. J.; Frisbie, C. D., "Formation of metal-molecule-metal tunnel junctions: Microcontacts to alkanethiol monolayers with a conducting AFM tip." J. Am. Chem. Soc. 2000,122 (12),2970-2971; (b) Fan, F. R. F.; Yang, J. P.; Cai, L. T.; Price, D. W.; Dirk, S. M.; Kosynkin, D. V.; Yao, Y. X.; Rawlett, A. M.; Tour, J. M.; Bard, A. J., "Charge transport through self-assembled monolayers of compounds of interest in molecular electronics." J. Am. Chem. Soc.2002,124 (19),5550-5560.
    6. (a) Moreland, J.; Ekin, J. W., "Electron tunneling experiments using Nb-Sn "break" junctions." J. Appl. Phys.1985,58 (10),3888-3895; (b) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M., "Conductance of a Molecular Junction." Science 1997,278 (5336), 252-254.
    7. (a) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R., "A [2]Catenane-Based Solid State Electronically Reconfigurable Switch." Science 2000,289 (5482),1172-1175; (b) Kushmerick, J. G.; Holt, D. B.; Pollack, S. K.; Ratner, M. A.; Yang, J. C.; Schull, T. L.; Naciri, J.; Moore, M. H.; Shashidhar, R., "Effect of Bond-Length Alternation in Molecular Wires." J. Am. Chem. Soc. 2002,124 (36),10654-10655; (c) Stewart, D. R.; Ohlberg, D. A. A.; Beck, P. A.; Chen, Y.; Williams, R. S.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F., "Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices." Nano Lett.2003,4 (1),133-136; (d) Gregory, S., "Inelastic tunneling spectroscopy and single-electron tunneling in an adjustable microscopic tunnel junction." Phys. Rev. Lett.1990,64 (6),689.
    8. Xu, B.; Tao, N. J., "Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions." Science 2003,301 (5637),1221-1223.
    9. (a) Chen, J.; Reed. M. A.; Rawlett, A. M.; Tour, J. M., "Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device." Science 1999,286 (5444), 1550-1552; (b) Petta, J. R.; Slater, S. K.; Ralph, D. C., "Spin-Dependent Transport in Molecular Tunnel Junctions." Phys. Rev. Lett.2004,93 (13),136601.
    10. (a) Cornil, J.; Beljonne, D.; Calbert, J. P.; Bredas, J. L., "Interchain Interactions in Organic π-Conjugated Materials:Impact on Electronic Structure, Optical Response, and Charge Transport." Adv. Mater.2001,13 (14),1053-1067; (b) Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M., "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers." Nature 1999,401 (6754),685-688.
    11. Jenekhe, S.; Alam, M.; Zhu, Y.; Jiang, S.; Shevade, A., "Single-Molecule Nanomaterials from π-Stacked Side-Chain Conjugated Polymers." Adv. Mater.2007,19 (4),536-542.
    12. Selzer, Y.; Cai, L.; Cabassi, M. A.; Yao, Y.; Tour. J. M.; Mayer, T. S.; Allara, D. L., "Effect of Local Environment on Molecular Conduction:Isolated Molecule versus Self-Assembled Monolayer." Nano Lett.2004,5(1),61-65.
    13. Wu, S.; Gonzalez, M. T.; Huber, R.; Grunder, S.; Mayor, M.; Schonenberger, C.; Calame, M., "Molecular junctions based on aromatic coupling." Nat. Nano.2008,3 (9),569-574.
    14. Martin, S.; Grace, I.; Bryce, M. R.; Wang, C. S.; Jitchati, R.; Batsanov, A. S.; Higgins, S. J.; Lambert, C. J.; Nichols, R. J., "Identifying Diversity in Nanoscale Electrical Break Junctions." J. Am. Chem. Soc.2010,132 (26),9157-9164.
    15. Lewis, P. A.; Inman, C. E.; Yao. Y.; Tour, J. M.; Hutchison, J. E.; Weiss, P. S., "Mediating Stochastic Switching of Single Molecules Using Chemical Functionality." J. Am. Chem. Soc. 2004,726(39),12214-12215.
    16. Frampton, M.; Anderson, H., "Insulated Molecular Wires." Angew. Chem. Int. Ed.2007,46 (7),1028-1064.
    1. Aviram. A.; Ratner. M. A., "Molecular rectifiers." Chem. Phys. Lett.1974,29 (2),277-283.
    2. Benniston, A. C.; Harriman, A., "Charge on the move:how electron-transfer dynamics depend on molecular conformation." Chem. Soc. Rev.2006,35 (2).169-179.
    3. Fraysse, S.; Coudret, C.; Launay, J.-P., "Synthesis and Properties of Dinuclear Complexes with a Photochromic Bridge:An Intervalence Electron Transfer Switching "On" and "Off". Eur. J. Inorg. Chem.2000,2000 (7),1581-1590.
    4. Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. "Dependence of single-molecule junction conductance on molecular conformation." Nature 2006,442(7105),904-907.
    5. Mishchenko, A.; Vonlanthen, D.; Meded, V.; Burkle, M.; Li, C.;Pobelov,I. V.;Bagrets, A.; Viljas, J. K.; Pauly, F.; Evers, F.; Mayor, M.; Wandlowski, T., "Influence of Conformation on Conductance of Biphenyl-Dithiol Single-Molecule Contacts." Nano Lett.2009,10 (1), 156-163.
    6. Mishchenko, A.; Zotti, L. A.; Vonlanthen, D.; Burkle, M.; Pauly, F.; Cuevas. J. C.; Mayor, M.; Wandlowski, T., "Single-Molecule Junctions Based on Nitrile-Terminated Biphenyls:A Promising New Anchoring Group." J. Am. Chem. Soc.2010,133 (2),184-187.
    7. Hines, T.; Diez-Perez, I.; Hihath, J.; Liu, H.; Wang, Z.-S.; Zhao, J.; Zhou, G.; Mullen. K.;Tao, N., "Transition from Tunneling to Hopping in Single Molecular Junctions by Measuring Length and Temperature Dependence." J. Am. Chem. Soc.2010,132 (33),11658-11664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700